Dobór naturalny w sekwencjach genów. Metody analizy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dobór naturalny w sekwencjach genów. Metody analizy"

Transkrypt

1 Dobór naturalny w sekwencjach genów Metody analizy

2 Podstawy ewolucji molekularnej Ewolucja sekwencji DNA i białek

3 Zmiany genetyczne w ewolucji } Mutacje } tworzą nowe allele genów } Inwersje } zmieniają układ genów na chromosomach } mogą uniemożliwić rekombinację na danym odcinku i doprowadzić do utrwalenia haplotypu } Duplikacje } dotyczą fragmentów DNA, w tym całych genów } lub całych chromosomów i całych genomów } główne źródło innowacji ewolucyjnej } Transfer horyzontalny } w tym zdarzenia symbiotyczne 3

4 Substytucje } Tranzycje zachodzą w naturze częściej od transwersji } mimo tego, że możliwych transwersji jest więcej } stosunek ts/tv od ~2 (ndna) do ~15 (mtdna człowieka) } wyjątek mtdna roślin } duże różnice ts/tv u różnych grup organizmów 4

5 Tranzycje i transwersje } Dlaczego tranzycje są częstsze? } Wyjaśnienia selekcyjne (tranzycje rzadziej zmieniają aminokwas i częściej są neutralne) } Ale: } tranzycje są częstsze też w genach rrna, pseudogenach i obszarach niekodujących } tranzycje są częstsze w pozycjach 4-krotnie zdegenerowanych (kodony typu CUN Leu) 5

6 Tranzycje i transwersje } Dlaczego tranzycje są częstsze? 6 } Wyjaśnienia mechanistyczne mechanizmy powstawania i naprawy mutacji } Tranzycje powstają w wyniku m. in.: } przejść tautomerycznych } deaminacji (np. oksydacyjnej) } Tranzycje w mniejszym stopniu zaburzają strukturę podwójnej helisy podczas replikacji } mniejsza wydajność naprawy przez system MMR } Korelacje z: } zawartością par G/C w genomie } aktywnością transkrypcyjną } tempem metabolizmu

7 Modele ewolucji sekwencji } Badając ewolucję nie dysponujemy z reguły sekwencją przodka } Liczbę mutacji musimy oszacować na podstawie różnic między sekwencjami współczesnymi } Konieczne jest uwzględnienie wielokrotnych mutacji w tej samej pozycji, zwłaszcza dla bardziej odległych sekwencji 7

8 Modele ewolucji sekwencji } Modele Markova stan w pokoleniu n +1 zależy tylko od stanu w pokoleniu n i reguł przekształcenia (macierz prawdopodobieństw zmiany stanów) } Modele o różnym stopniu skomplikowania } Mogą uwzględniać: } mutacje wielokrotne w tej samej pozycji (poprawka Poissona) } różne prawdpodobieństwa zmian nukleotydowych (lub białkowych) } różne prawdopodobieństwo mutacji w różnych pozycjach sekwencji } różne częstości nukleotydów 8

9 Modele ewolucji sekwencji } Modele Markova stan w pokoleniu n +1 zależy tylko od stanu w pokoleniu n i reguł przekształcenia (macierz prawdopodobieństw zmiany stanów) } Modele o różnym stopniu skomplikowania } Mogą uwzględniać: } mutacje wielokrotne w tej samej pozycji (poprawka Poissona) } różne prawdpodobieństwa zmian nukleotydowych (lub białkowych) } różne prawdopodobieństwo mutacji w różnych pozycjach sekwencji } różne częstości nukleotydów 9

10 Modele ewolucji DNA model Jukesa- Cantora } Jednakowe częstości nukleotydów (f=0,25) } Jednakowe prawdopodobieństwo każdej substytucji A C G T A 1-3α α α α C α 1-3α α α G α α 1-3α α T α α α 1-3α } } Odległość po poprawce wynosi: D JC = 3 4 ln(1 4 3 D) Przykładowo: D OBS =0.43 => D JC =

11 Inne modele } Kimura (K80, dwuparametrowy) - różne prawdopodobieństwo tranzycji i transwersji } Felsenstein (F81), Hasegawa-Kishino-Yano (HKY85) - różne częstości nukleotydów (F81) + różne prawd. tranzycji i transwersji (HKY85) } GTR (General Time Reversible, Tavare 86) 11

12 Model GTR } Różne prawdopodobieństwo każdej substytucji (ale symetrycznie, czyli np. A T = T A) - 6 parametrów } Różne częstości nukleotydów - 4 parametry 12

13 Rozkład gamma } Proste modele zakładają jednakowe prawdopodobieństwo zmiany w każdej pozycji - nierealistyczne } Rozkład prawdopodobieństw zmian w różnych pozycjach rozkład gamma 13

14 Mutaje na poziomie kodu } Mutacje mogą: } zmienić kodon na inny, ale kodujący ten sam aminokwas } mutacje synonimiczne } zmienić kodon na kodujący inny aminokwas } mutacje niesynonimiczne } zmienić kodon na kodon STOP } mutacje nonsens } spowodować zmianę fazy odczytu } wpłynąć na ekspresję genu 14

15 Mutacje i dobór naturalny } Efekty działania mutacji obserwujemy pośrednio } różnice sekwencji między populacjami (gatunkami) } polimorfizm sekwencji w obrębie populacji } Na allele wytworzone przez mutacje może działać dobór } Za zmiany częstości powstających alleli może odpowiadać dryf genetyczny } Obserwujemy mutacje utrwalone całkowicie lub częściowo (polimorfizmy) w puli genowej 15

16 Podstawowe pytanie ewolucji molekularnej } Jaka jest rola dryfu i doboru w wyjaśnieniu obserwowanego zróżnicowania sekwencji? } wewnątrzpopulacyjnego (polimorfizmy) } międzygatunkowego } Pytanie dotyczy zróżnicowania ilościowego! } Nikt nie podaje w wątpliwość tego, że adaptacje w ewolucji powstają dzięki działaniu doboru! 16

17 Dobor czy dryf? } Selekcjonizm } większość utrwalonych mutacji została wyselekcjonowana przed dobór } większość polimorfizmów jest utrzymywana przez dobór } dobór równoważący, naddominacja, dobór zależny od częstości } Neutralizm (Kimura, 1968) } większość utrwalonych mutacji została utrwalona przez dryf } za większość polimorfizmów odpowiada dryf } mutacje utrwalane przez dobór są rzadkie, nie mają wpływu na ilościową analizę zmienności molekularnej 17

18 Mutacje i dobór } niekorzystne (szkodliwe) } s < 0 } eliminowane przez dobór (oczyszczający/negatywny) } neutralne } s 0 (a konkretniej, s 1/4N) } utrwalane przez dryf } korzystne } s > 0 } utrwalane przez dobór (z udziałem dryfu dla niewielkich s) 18

19 Selekcjonizm i neutralizm } Selekcjonizm: } większość mutacji jest niekorzystna } większość utrwalonych mutacji jest korzystna } mutacje neutralne są rzadkie (nie częstsze od korzystnych) } Neutralizm } większość mutacji jest niekorzystna lub neutralna } większość utrwalonych mutacji jest neutralna } mutacje korzystne są rzadkie (znacznie rzadsze od neutralnych) 19

20 Selekcjonizm i neutralizm selekcjonizm neutralizm pan-neutralizm Neutralizm nie oznacza pan-neutralizmu, czyli negowania znaczenia selekcyjnego mutacji! 20

21 Przesłanki teorii neutralnej } Tempo zmian sekwencji i polimorfizm są zbyt duże, by dały się wyjaśnić doborem } Stałe tempo ewolucji molekularnej (zegar molekularny) } Sekwencje o mniejszym znaczeniu funkcjonalnym (pseudogeny, mniej istotne obszary białek) ewoluują szybciej, niż obszary kluczowe dla funkcji 21

22 Stałe tempo ewolucji molekularnej } Wiele sekwencji ewoluuje w stałym tempie } Tempo to jest różne dla różnych sekwencji, ale stałe w czasie ewolucji dla danej sekwencji } Tzw. zegar molekularny Różnice sekwencji globin kręgowców 22

23 Tempo ewolucji i dryf } Neutralny dryf jest procesem losowym, ale jego tempo będzie stałe w odpowiednio długim czasie } Zależy tylko od częstości mutacji (jedna zmiana na 1/µ pokoleń) } Dla doboru stałe tempo zmian oznacza stałe tempo zmian środowiska } Tempo zmian adaptacyjnych nie wydaje się być stałe 23

24 Zegar molekularny } Jest konsekwencją neutralnego modelu ewolucji } Tempo akumulacji zmian w danej sekwencji jest stałe } ale różne dla różnych sekwencji } Weryfikacja test względnego tempa K AC - K BC = 0 A B C } W rzeczywistości testuje stałość tempa pomiędzy gałęziami, ale nie w czasie 24

25 Zegar molekularny - problem } W modelu neutralnym tempo utrwalania mutacji: 2Nµ 1 2N = µ } Powinno być stałe w przeliczeniu na pokolenie } Czas generacji jest różny u różnych organizmów } Czyli nie powinna być obserwowana stałość tempa w czasie rzeczywistym } A często jest (w tych sekwencjach, które zachowują zegar) 25

26 Problem czasu generacji } Czas generacji różnych organizmów jest istotnie różny ~3 pokolenia/rok,03 pokolenia/rok } Dlaczego nie wpływa to na tempo utrwalania mutacji? 26

27 Zmiany prawie neutralne } Model Kimury dotyczy zmian neutralnych (s = 0), takie nie są częste } Mutacje zachowują się jak neutralne gdy spełnione jest: s 1 4N e } Mutacje o niewielkim współczynniku doboru s będą zachowywały się jak neutralne w małych populacjach, a w większych populacjach będą podlegały doborowi 27

28 Zmiany prawie neutralne } Istnieje odwrotna korelacja między czasem generacji a wielkością populacji 28

29 Zmiany prawie neutralne s 1 4N e ~3 pokolenia/rok ~0,03 pokolenia/rok Długi czas generacji Mniej mutacji na rok Krótki czas generacji Więcej mutacji na rok Populacja nieliczna (małe N e ) Populacja liczna (duże N e ) Więcej mutacji zachowuje się jak neutralne i utrwala przez dryf Więcej mutacji podlega doborowi (i jest eliminowane przez dobór oczyszczający) 29 Efekty czasu generacji i wielkości populacji się znosząc, dając stałe tempo w czasie (Ohta

30 Zegar molekularny } Dla sekwencji białek i zmian niesynonimicznych w DNA zmiany jednostajne w czasie } Na poziomie DNA, } dla mutacji synonimicznych } pseudogenów } niektórych sekwencji niekodujących } tempo ewolucji zależy od czasu generacji 30

31 Tempo ewolucji sekwencji a funkcja Sekwencje o mniejszym znaczeniu funkcjonalnym (pseudogeny, mniej istotne obszary białek) ewoluują szybciej, niż obszary kluczowe dla funkcji 31

32 Degeneracja w kodzie 32 miejsce 4-krotnie zdegenerowane miejsce 2-krotnie zdegenerowane

33 Tempo ewolucji sekwencji a funkcja Sekwencje o mniejszym znaczeniu funkcjonalnym (pseudogeny, mniej istotne obszary białek) ewoluują szybciej, niż obszary kluczowe dla funkcji 33

34 Tempo zmian jednostka: PAM/10 8 lat Jednostka czasu ewolucyjnego: ile lat (w milionach, 10 6 ) potrzeba do utrwalenia 1 mutacji/ 100 aa (1 PAM) } Białka zaangażowane w podstawowe funkcje komórki ewoluują wolniej. } W sekwencji białka obszary kluczowe dla funkcji ewoluują wolniej. 34

35 Tempo zmian } Czynnikiem decydującym o tempie zmian jest dobór oczyszczający (negatywny) } w ważniejszych sekwencjach więcej zmian będzie niekorzystnych (eliminacja przez dobór) } w mniej istotnych sekwencjach więcej zmian będzie neutralnych (utrwalanie przez dryf) } zmiany bez znaczenia dla funkcji będą neutralne } pseudogeny } niekodujące obszary międzygenowe? } podstawienia synonimiczne? 35

36 Status neutralizmu } Wyjaśnia wiele zjawisk obserwowanych w ewolucji molekularnej } wysoki polimorfizm sekwencji DNA i białek } zegar molekularny } ale jest wiele odstępstw, nie istnieje globalny zegar prawdziwy dla wszystkich gałęzi drzewa życia } wolniejsza ewolucja sekwencji o kluczowym znaczeniu } to też można wyjaśnić modelem, w którym większość mutacji jest albo niekorzystna, albo korzystna, ale niekorzystnych jest więcej } Jest bardzo przydatny jako hipoteza zerowa do badania doboru naturalnego na poziomie sekwencji! 36

37 Status neutralizmu } Dane molekularne, zwłaszcza genomowe, pozwoliły ocenić zgodność modelu neutralnego z obserwacją zmienności sekwencji } Kimura: 1968 nie były wtedy znane metody sekwencjonowania DNA! 37

38 Status neutralizmu } Smith & Eyre-Walker % podstawień aminokwasowych w ewolucji Drosophila sp. utwalonych przez dobór dodatni } Andolfatto 2005 pomiędzy D. melanogaster i D. simulans dobór dodatni odpowiada za utrwalenie: } 20% podstawień w DNA w intronach i obszarach międzygenowych } 60% podstawień w DNA w sekwencjach UTR 38

39 Status neutralizmu } Głównym i nieprzemijającym osiągnięciem jest stworzenie matematycznego opisu współdziałania dryfu i doboru naturalnego (dodatniego i oczyszczającego) w ewolucji molekularnej } Dzięki tym modelom opracowano testy poszukujące śladów doboru w sekwencjach (model neutralny jako hipoteza zerowa) } Istnieje znacząca liczba pozycji i sekwencji ewoluujących według modelu neutralnego } można dobrać sekwencje tak, by uzyskać zegar molekularny 39

40 Status neutralizmu } Dryf genetyczny ma w ewolucji molekularnej bardzo znaczącą, ale nie wyłączną rolę } znaczne obszary genomu ewoluują w sposób bliski neutralnemu 40

41 Jak szukać śladów działania doboru } Większość sekwencji genów zmienia się jednostajnie, w tempie wyznaczanym przez eliminację mutacji niekorzystnych zegar molekularny } Odstępstwa od jednostajnego tempa w określonej gałęzi dobór specyficzny dla tej gałęzi Orangutan Goryl Szympans Człowiek Orangutan Goryl Szympans Człowiek Orangutan Goryl Szympans Człowiek Równomierne tempo zmian Przyspieszone zmiany Spowolnione zmiany

42 Badanie doboru } Założenie: mutacje synonimiczne są neutralne, sekwencje porównywane są parami Ka (dn) liczba mutacji niesynonimicznych na liczbę możliwych miejsc niesynonimicznych Ks (ds) liczba mutacji synonimicznych na liczbę możliwych miejsc synonimicznych Stosunek Ka/Ks (ω) jest miarą działania doboru ω=1 ewolucja neutralna ω<1 dobór negatywny (oczyszczający) ω>1 dobór pozytywny

43 Badanie doboru } Wartość ω rzadko przekracza 1 dla całej sekwencji (wyjątek np. geny MHC) } Średnia wartość ω w porównaniach między naczelnymi a gryzoniami wynosi 0,2, między człowiekiem a szympansem 0,4 } Odchylenie ω od średniej dla konkretnego genu w konkretnej linii ewolucyjnej może świadczyć o działaniu doboru } W sekwencji mogą występować obszary o różnej wartości ω, wskazując na działanie doboru na poszczególne regiony a nawet pozycje aminokwasowe w białku

44 Badanie doboru II } Porównanie zmian synonimicznych i niesynonimicznych w obrębie populacji danego gatunku i pomiędzy gatunkami.

45 Test McDonalda-Kreitmana } Stosunek mutacji synonimicznych do niesynonimicznych w obrębie populacji vs. taki sam stosunek dla różnic między gatunkami } Jeżeli zmiany są neutralne, wówczas stosunek ten powinien być w obu przypadkach taki sam

46 Przykład: gen ADH u trzech gatunków Drosophila synonimiczne niesynonimiczne stosunek wewnątrzpopulacyjne 42 2 ~0,05 międzygatunkowe 17 7 ~0,41 Wniosek: zmiany niesynonimiczne są szybko utrwalane w specjacji nie są neutralne

47 Inne testy } Test HKA (Hudson, Kreitman, Aguadé) statystyczna korelacja zmienności wewnątrzpopulacyjnej i międzygatunkowej dla mutacji synonimicznych i niesynonimicznych } Test Tajimy porównuje częstość polimorfizmów wewnątrzpopulacyjnych z przewidywaniami teorii neutralnej } Test Fu & Li podobny do testu Tajimy, wykorzystuje dane filogenetyczne

48 Testowanie hipotez } Kryterium wiarygodności } Program PAML (Phylogenetic Analysis by Maximum Likelihood) autor Ziheng Yang }

49 Wiarygodność (likelihood) } Wiarygodność=prawdopodobieństwo uzyskania danych przy założeniach modelu i jego określonych parametrach: P(dane model) } Prawdopodobieństwo dotyczy zdarzenia przyszłego przy znanym modelu - np. jeżeli rzucam idealną (symetryczną) monetą, to prawdopodobieństwo uzyskania orła = 1/2 (dwóch orłów 1/4 itd.) } Wiarygodność odnosi się do wyjaśnienia zjawiska, które już zaszło - np. jeżeli przy dużej liczbie rzutów monetą uzyskuje 50% orłów, to najbardziej wiarygodnym modelem jest ten, w którym moneta jest symetryczna

50 Test ilorazu wiarygodności } LRT (Likelihood Ratio Test) } Dla porównania dwóch zagnieżdżonych modeli o różnej liczbie parametrów } Dla każdego modelu oblicza się wiarygodność (L1, L2) LR = 2 [ln(l1) ln(l2)]# } Istotność LR określa się porównując z wartością χ2 dla df równego różnicy w liczbie parametrów obu modeli

51 Przykład #1 Model 0 wartość ω taka sama w całym drzewie: wiarygodność L0 Czy ewolucja w gałęzi #1 jest szybsza? LR = 2 [ln(l1) ln(l0)]# Czy LR większe od χ 2 dla df=1? Model 1 wartość ω w gałęzi #1 inna, niż w pozostałych gałęziach drzewa: wiarygodność L1

52 Pliki programu PAML } Sekwencje: format PHYLIP (np. z Clustal) } Drzewo: format Newick, ew. z zaznaczanymi gałęziami } plik kontrolny: codeml.ctl

53 Notacja nawiasowa (Newick) dla drzew (Macaca,Cerco,(Pongo,(Gorilla,(Homo,Chimp)))); (Macaca,Cerco,(Pongo,(Gorilla,(Homo#1,Chimp)))); #1 #1 #1 #1 #1 #1 (Macaca,Cerco,(Pongo,(Gorilla,(Homo,Chimp))$1)); #1 #1 #1 #2 #1 (Macaca,Cerco,(Pongo,(Gorilla,(Homo#2,Chimp))$1));

54 seqfile = treefile = outfile = noisy = 9 verbose = 2 runmode = 0 * 0,1,2,3,9: how much rubbish on the screen * 1: detailed output, 0: concise output * 0: user tree; 1: semi-automatic; 2: automatic * 3: StepwiseAddition; (4,5):PerturbationNNI seqtype = 1 * 1:codons; 2:AAs; 3:codons-->AAs CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table clock = 0 * 0: no clock, unrooted tree, 1: clock, rooted tree model = 0 * models for codons: * 0:one, 1:b, 2:2 or more dn/ds ratios for branches NSsites = 0 icode = 0 * dn/ds among sites. 0:no variation, 1:neutral, 2:positive * 0:standard genetic code; 1:mammalian mt; 2-10:see below fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated kappa = 2 * initial or fixed kappa fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate omega = 1 * initial or fixed omega, for codons or codon-transltd AAs fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha alpha =.0 * initial or fixed alpha, 0:infinity (constant rate) Malpha = 0 * different alphas for genes ncatg = 4 * # of categories in the dg or AdG models of rates getse = 0 * 0: don't want them, 1: want S.E.s of estimates RateAncestor = 1 * (1/0): rates (alpha>0) or ancestral states (alpha=0) fix_blength = 1 * 0: ignore, -1: random, 1: initial, 2: fixed method = 0 * 0: simultaneous; 1: one branch at a time

55 Modele } Modele gałęzi (branch models) - czy ω w którejś gałęzi drzewa (lub grupie gałęzi) odbiega od pozostałych gałęzi drzewa } Modele miejsc (site models) - jakie są klasy miejsc (kodonów) w sekwencji pod względem parametru ω (czy we wszystkich pozycjach tak samo działa dobór)? } Modele gałęzi i miejsc (branch and site models) - czy w którejś gałęzi drzewa pojawiają się klasy kodonów, na które inaczej działa dobór?

56 Modele gałęzi } Hipoteza zerowa - ω takie samo we wszystkich gałęziach drzewa } Hipoteza testowana - istnieją gałęzie o ω innym, niż w reszcie drzewa } Model swobodny - każda gałąź ma inną wartość ω } df = różnica liczby parametrów (każda wyróżniona gałąź dodaje 1)

57 Modele gałęzi seqfile = treefile = outfile = noisy = 9 verbose = 2 runmode = 0 * 0,1,2,3,9: how much rubbish on the screen * 1: detailed output, 0: concise output * 0: user tree; 1: semi-automatic; 2: automatic * 3: StepwiseAddition; (4,5):PerturbationNNI seqtype = 1 * 1:codons; 2:AAs; 3:codons-->AAs CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table clock = 0 * 0: no clock, unrooted tree, 1: clock, rooted tree model = 0 * models for codons: * 0:one, 1:b, 2:2 or more dn/ds ratios for branches NSsites = 0 icode = 0 * dn/ds among sites. 0:no variation, 1:neutral, 2:positive * 0:standard genetic code; 1:mammalian mt; 2-10:see below fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated kappa = 2 * initial or fixed kappa fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate omega = 1 * initial or fixed omega, for codons or codon-transltd AAs fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha alpha =.0 * initial or fixed alpha, 0:infinity (constant rate) Malpha = 0 * different alphas for genes ncatg = 4 * # of categories in the dg or AdG models of rates getse = 0 * 0: don't want them, 1: want S.E.s of estimates RateAncestor = 1 * (1/0): rates (alpha>0) or ancestral states (alpha=0) fix_blength = 1 * 0: ignore, -1: random, 1: initial, 2: fixed method = 0 * 0: simultaneous; 1: one branch at a time

58 Modele miejsc } Przeprowadzane przy założeniu stałego ω we wszystkich gałęziach drzewa } Hipoteza zerowa (M1a): dwie klasy kodonów: neutralne (ω=1) i selekcjonowane negatywnie (ω<1) } Hipoteza testowana (M2a): trzy klasy kodonów: neutralne (ω=1), selekcjonowane negatywnie (ω<1) i selekcjonowane pozytywnie (ω>1) } Są też bardziej złożone modele o innej dystrybucji miejsc

59 Modele miejsc seqfile = treefile = outfile = noisy = 9 verbose = 2 runmode = 0 * 0,1,2,3,9: how much rubbish on the screen * 1: detailed output, 0: concise output * 0: user tree; 1: semi-automatic; 2: automatic * 3: StepwiseAddition; (4,5):PerturbationNNI seqtype = 1 * 1:codons; 2:AAs; 3:codons-->AAs CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table clock = 0 * 0: no clock, unrooted tree, 1: clock, rooted tree model = 0 * models for codons: * 0:one, 1:b, 2:2 or more dn/ds ratios for branches NSsites = 0 icode = 0 * dn/ds among sites. 0:no variation, 1:neutral, 2:positive * 0:standard genetic code; 1:mammalian mt; 2-10:see below fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated kappa = 2 * initial or fixed kappa fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate omega = 1 * initial or fixed omega, for codons or codon-transltd AAs fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha alpha =.0 * initial or fixed alpha, 0:infinity (constant rate) Malpha = 0 * different alphas for genes ncatg = 4 * # of categories in the dg or AdG models of rates getse = 0 * 0: don't want them, 1: want S.E.s of estimates RateAncestor = 1 * (1/0): rates (alpha>0) or ancestral states (alpha=0) fix_blength = 1 * 0: ignore, -1: random, 1: initial, 2: fixed method = 0 * 0: simultaneous; 1: one branch at a time

60 Modele gałęzi i miejsc } Zmienna ω w wyróżnionych gałęziach, w gałęziach tych pojawia się dodatkowa klasa kodonów o ω>1 } Trzy klasy kodonów neutralne (ω=1), selekcjonowane negatywnie (ω<1) i selekcjonowane pozytywnie (ω>1) } Hipoteza zerowa: w trzeciej klasie ω=1 (brak selekcji pozytywnej)

61 Modele gałęzi i miejsc seqfile = treefile = outfile = noisy = 9 verbose = 2 runmode = 0 * 0,1,2,3,9: how much rubbish on the screen * 1: detailed output, 0: concise output * 0: user tree; 1: semi-automatic; 2: automatic * 3: StepwiseAddition; (4,5):PerturbationNNI seqtype = 1 * 1:codons; 2:AAs; 3:codons-->AAs CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table clock = 0 * 0: no clock, unrooted tree, 1: clock, rooted tree model = 2 * models for codons: * 0:one, 1:b, 2:2 or more dn/ds ratios for branches NSsites = 2 icode = 0 * dn/ds among sites. 0:no variation, 1:neutral, 2:positive * 0:standard genetic code; 1:mammalian mt; 2-10:see below fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated kappa = 2 * initial or fixed kappa fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate omega = 1 * initial or fixed omega, for codons or codon-transltd AAs fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha alpha =.0 * initial or fixed alpha, 0:infinity (constant rate) Malpha = 0 * different alphas for genes ncatg = 4 * # of categories in the dg or AdG models of rates getse = 0 * 0: don't want them, 1: want S.E.s of estimates RateAncestor = 1 * (1/0): rates (alpha>0) or ancestral states (alpha=0) fix_blength = 1 * 0: ignore, -1: random, 1: initial, 2: fixed method = 0 * 0: simultaneous; 1: one branch at a time

Badanie doboru naturalnego na poziomie molekularnym

Badanie doboru naturalnego na poziomie molekularnym Badanie doboru naturalnego na poziomie molekularnym Podstawy ewolucji molekulanej Jak ewoluują sekwencje Zmiany genetyczne w ewolucji Mutacje tworzą nowe allele genów Inwersje zmieniają układ genów na

Bardziej szczegółowo

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek Podstawy ewolucji molekularnej Ewolucja sekwencji DNA i białek Zmiany genetyczne w ewolucji } Mutacje } tworzą nowe allele genów } Inwersje } zmieniają układ genów na chromosomach } mogą uniemożliwić rekombinację

Bardziej szczegółowo

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek Podstawy ewolucji molekularnej Ewolucja sekwencji DNA i białek Zmiany genetyczne w ewolucji Mutacje tworzą nowe allele genów Inwersje zmieniają układ genów na chromosomach mogą uniemożliwić rekombinację

Bardziej szczegółowo

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek Podstawy ewolucji molekularnej Ewolucja sekwencji DNA i białek Egzamin: 29.01.2018 16:00, sala 9B Pierwsza synteza Ewolucja jako zmiany częstości alleli w populacji Mutacje jako źródło nowych alleli Dobór

Bardziej szczegółowo

Mechanizmy zmienności ewolucyjnej. Podstawy ewolucji molekularnej.

Mechanizmy zmienności ewolucyjnej. Podstawy ewolucji molekularnej. Mechanizmy zmienności ewolucyjnej Podstawy ewolucji molekularnej. Mechanizmy ewolucji } Generujące zmienność } mutacje } rearanżacje genomu } horyzontalny transfer genów } Działające na warianty wytworzone

Bardziej szczegółowo

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek Podstawy ewolucji molekularnej Ewolucja sekwencji DNA i białek Podręczniki Populacja Grupa krzyżujących się ze sobą osobników oraz ich potomstwo Zbiór wszystkich alleli populacji pula genowa Najprostszy

Bardziej szczegółowo

Zmienność ewolucyjna. Ewolucja molekularna

Zmienność ewolucyjna. Ewolucja molekularna Zmienność ewolucyjna Ewolucja molekularna Mechanizmy ewolucji Generujące zmienność mutacje rearanżacje genomu horyzontalny transfer genów! Działające na warianty wytworzone przez zmienność dobór naturalny

Bardziej szczegółowo

Teoria ewolucji. Losy gatunków: specjacja i wymieranie. Podstawy ewolucji molekularnej

Teoria ewolucji. Losy gatunków: specjacja i wymieranie. Podstawy ewolucji molekularnej Teoria ewolucji. Losy gatunków: specjacja i wymieranie. Podstawy ewolucji molekularnej Specjacja } Pojawienie się bariery reprodukcyjnej między populacjami dające początek gatunkom } Specjacja allopatryczna

Bardziej szczegółowo

Nuttall przeprowadził testy precypitacyjne białek surowicy, aby wykazać związek filogenetyczny między różnymi grupami zwierząt.

Nuttall przeprowadził testy precypitacyjne białek surowicy, aby wykazać związek filogenetyczny między różnymi grupami zwierząt. 1904 Nuttall przeprowadził testy precypitacyjne białek surowicy, aby wykazać związek filogenetyczny między różnymi grupami zwierząt. M. Prakash 2007.Encyclopaedia of Gene Evolution Vol. 2, Molecular Genetics,

Bardziej szczegółowo

Zmienność ewolucyjna. Ewolucja molekularna

Zmienność ewolucyjna. Ewolucja molekularna Zmienność ewolucyjna Ewolucja molekularna Mechanizmy ewolucji Generujące zmienność mutacje rearanżacje genomu horyzontalny transfer genów Działające na warianty wytworzone przez zmienność dobór naturalny

Bardziej szczegółowo

Filogenetyka molekularna I

Filogenetyka molekularna I 2 Literatura Krzysztof Spalik, Marcin Piwczyński (2009), Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w badaniach ewolucyjnych, Kosmos 58(3-4): 485-498 Filogenetyka molekularna I John C. Avise

Bardziej szczegółowo

Ekologia molekularna. wykład 6

Ekologia molekularna. wykład 6 Ekologia molekularna wykład 6 Tempo mutacji Tempo błędu polimerazy: 10-4 pomyłka polimerazy 10-8 po naprawie błędów Faktyczne tempo mutacji: 10-9/zasadę/pokolenie W genomie człowieka jest 3 x 109 zasad

Bardziej szczegółowo

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie. Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Ewolucja Znaczenie ogólne: zmiany zachodzące stopniowo w czasie W biologii ewolucja biologiczna W astronomii i kosmologii ewolucja gwiazd i wszechświata

Bardziej szczegółowo

Ewolucja informacji genetycznej

Ewolucja informacji genetycznej 1 Ewolucja informacji genetycznej Czym jest życie? metabolizm + informacja (replikacja) Cząsteczki organiczne mog y powstać w atmosferze pierwotnej Ziemi Oparin, Haldane Miller, 1953 Co by o najpierw?

Bardziej szczegółowo

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja. Dobór i dryf.

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja. Dobór i dryf. Podstawy genetyki populacji Genetyka mendlowska i ewolucja. Dobór i dryf. Dryf genetyczny W populacjach o skończonej liczebności może dochodzić do zmian częstości alleli nawet jeżeli nie działa na nie

Bardziej szczegółowo

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie. Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/

Bardziej szczegółowo

Teoria ewolucji. Podstawy wspólne pochodzenie.

Teoria ewolucji. Podstawy wspólne pochodzenie. Teoria ewolucji. Podstawy wspólne pochodzenie. Ewolucja biologiczna } Znaczenie ogólne: } proces zmian informacji genetycznej (częstości i rodzaju alleli), } które to zmiany są przekazywane z pokolenia

Bardziej szczegółowo

plezjomorfie: podobieństwa dziedziczone po dalszych przodkach (c. atawistyczna)

plezjomorfie: podobieństwa dziedziczone po dalszych przodkach (c. atawistyczna) Podobieństwa pomiędzy organizmami - cechy homologiczne: podobieństwa wynikające z dziedziczenia - apomorfie: podobieństwa dziedziczone po najbliższym przodku lub pojawiająca się de novo (c. ewolucyjnie

Bardziej szczegółowo

Filogenetyka molekularna I. Krzysztof Spalik

Filogenetyka molekularna I. Krzysztof Spalik Filogenetyka molekularna I Krzysztof Spalik Literatura Krzysztof Spalik, Marcin Piwczyński (2009), Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w badaniach ewolucyjnych, Kosmos 58(3-4): 485-498

Bardziej szczegółowo

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski Genomika Porównawcza Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski 1 Plan prezentacji 1. Rodzaje i budowa drzew filogenetycznych 2. Metody ukorzeniania drzewa

Bardziej szczegółowo

Zmienność ewolucyjna. Ewolucja molekularna

Zmienność ewolucyjna. Ewolucja molekularna Zmienność ewolucyjna Ewolucja molekularna Mechanizmy ewolucji Generujące zmienność mutacje rearanżacje genomu horyzontalny transfer genów Działające na warianty wytworzone przez zmienność dobór naturalny

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Filogenetyka molekularna wykorzystuje informację zawartą w sekwencjach aminokwasów lub nukleotydów do kontrukcji drzew

Bardziej szczegółowo

Ewolucja człowieka. Ślady w ziemi i ślady w genach

Ewolucja człowieka. Ślady w ziemi i ślady w genach Ewolucja człowieka Ślady w ziemi i ślady w genach!1 !2 !3 Nie taka prosta historia } mtdna współczesnych Europejczyków różni się od mtdna Europejczyków sprzed 10 000 lat } fala migracji neolitycznej (~

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Choroby genetyczne o złożonym

Bardziej szczegółowo

Filogenetyka molekularna I. Krzysztof Spalik Zakład Filogenetyki Molekularnej i Ewolucji

Filogenetyka molekularna I. Krzysztof Spalik Zakład Filogenetyki Molekularnej i Ewolucji Filogenetyka molekularna I Krzysztof Spalik Zakład Filogenetyki Molekularnej i Ewolucji 3 Literatura Krzysztof Spalik, Marcin Piwczyński (2009), Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w

Bardziej szczegółowo

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja. Dobór i dryf.

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja. Dobór i dryf. Podstawy genetyki populacji Genetyka mendlowska i ewolucja. Dobór i dryf. Dryf genetyczny W populacjach o skończonej liczebności może dochodzić do zmian częstości alleli nawet jeżeli nie działa na nie

Bardziej szczegółowo

Podstawy biologii. Informacja genetyczna. Co to jest ewolucja.

Podstawy biologii. Informacja genetyczna. Co to jest ewolucja. Podstawy biologii Informacja genetyczna. Co to jest ewolucja. Materiał genetyczny Materiałem genetycznym są kwasy nukleinowe Materiałem genetycznym organizmów komórkowych jest kwas deoksyrybonukleinowy

Bardziej szczegółowo

Wykład Bioinformatyka 2012-09-24. Bioinformatyka. Wykład 7. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM. Ewolucyjne podstawy Bioinformatyki

Wykład Bioinformatyka 2012-09-24. Bioinformatyka. Wykład 7. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM. Ewolucyjne podstawy Bioinformatyki Bioinformatyka Wykład 7 E. Banachowicz Zakład Biofizyki Molekularnej IF UAM http://www.amu.edu.pl/~ewas 1 Plan Bioinformatyka Ewolucyjne podstawy Bioinformatyki Filogenetyka Bioinformatyczne narzędzia

Bardziej szczegółowo

Konstruowanie drzew filogenetycznych. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Konstruowanie drzew filogenetycznych. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Konstruowanie drzew filogenetycznych Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Drzewa filogenetyczne ukorzenione i nieukorzenione binarność konstrukcji topologia (sposób rozgałęziana

Bardziej szczegółowo

Mitochondrialna Ewa;

Mitochondrialna Ewa; Mitochondrialna Ewa; jej sprzymierzeńcy i wrogowie Lien Dybczyńska Zakład genetyki, Uniwersytet Warszawski 01.05.2004 Milion lat temu Ale co dalej??? I wtedy wkracza biologia molekularna Analiza różnic

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA

PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA ANALIZA FILOGENETYCZNA 1. Wstęp - filogenetyka 2. Struktura drzewa filogenetycznego 3. Metody konstrukcji drzewa 4. Etapy konstrukcji drzewa filogenetycznego

Bardziej szczegółowo

Ewolucja informacji genetycznej

Ewolucja informacji genetycznej 1 Ewolucja informacji genetycznej Czym jest życie? metabolizm + informacja (replikacja) Cząsteczki organiczne mogły powstać w atmosferze pierwotnej Ziemi Oparin, Haldane Miller, 1953 Co było najpierw?

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Często dopasować chcemy nie dwie sekwencje ale kilkanaście lub więcej 2 Istnieją dokładne algorytmy, lecz są one niewydajne

Bardziej szczegółowo

Podstawy teorii ewolucji. Informacja i ewolucja

Podstawy teorii ewolucji. Informacja i ewolucja Podstawy teorii ewolucji Informacja i ewolucja Podręczniki 2 Dla zainteresowanych http://wps.prenhall.com/esm_freeman_evol_4/ 3 Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego

Bardziej szczegółowo

Powstanie i ewolucja informacji genetycznej

Powstanie i ewolucja informacji genetycznej Powstanie i ewolucja informacji genetycznej Czym jest życie? metabolizm + informacja (replikacja) 2 Cząsteczki organiczne mogły powstać w atmosferze pierwotnej Ziemi Oparin, Haldane Miller, 1953 3 (A)biogeneza

Bardziej szczegółowo

WSTĘP. Copyright 2011, Joanna Szyda

WSTĘP. Copyright 2011, Joanna Szyda BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Równowaga Hardyego-Weinberga,

Bardziej szczegółowo

Podstawy biologii. Informacja genetyczna. Co to jest ewolucja.

Podstawy biologii. Informacja genetyczna. Co to jest ewolucja. Podstawy biologii Informacja genetyczna. Co to jest ewolucja. Zarys biologii molekularnej genu Podstawowe procesy genetyczne Replikacja powielanie informacji Ekspresja wyrażanie (realizowanie funkcji)

Bardziej szczegółowo

Urszula Poziomek, doradca metodyczny w zakresie biologii Materiał dydaktyczny przygotowany na konferencję z cyklu Na miarę Nobla, 14 stycznia 2010 r.

Urszula Poziomek, doradca metodyczny w zakresie biologii Materiał dydaktyczny przygotowany na konferencję z cyklu Na miarę Nobla, 14 stycznia 2010 r. Ćwiczenie 1 1 Wstęp Rozważając możliwe powiązania filogenetyczne gatunków, systematyka porównuje dane molekularne. Najskuteczniejszym sposobem badania i weryfikacji różnych hipotez filogenetycznych jest

Bardziej szczegółowo

Mapowanie genów cz owieka. podstawy

Mapowanie genów cz owieka. podstawy Mapowanie genów czowieka podstawy Sprzężenie Geny leżące na różnych chromosomach spełniają II prawo Mendla Dla 2 genów: 4 równoliczne klasy gamet W. S Klug, M.R Cummings Concepts of Genetics 8 th edition,

Bardziej szczegółowo

Ewolucjonizm NEODARWINIZM. Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach

Ewolucjonizm NEODARWINIZM. Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach Ewolucjonizm NEODARWINIZM Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach Główne paradygmaty biologii Wspólne początki życia Komórka jako podstawowo jednostka funkcjonalna

Bardziej szczegółowo

Porównywanie i dopasowywanie sekwencji

Porównywanie i dopasowywanie sekwencji Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek pojawiła się nowa możliwość śledzenia ewolucji na poziomie molekularnym Ewolucja

Bardziej szczegółowo

Wstęp do Biologii Obliczeniowej

Wstęp do Biologii Obliczeniowej Wstęp do Biologii Obliczeniowej Zagadnienia na kolokwium Bartek Wilczyński 5. czerwca 2018 Sekwencje DNA i grafy Sekwencje w biologii, DNA, RNA, białka, alfabety, transkrypcja DNA RNA, translacja RNA białko,

Bardziej szczegółowo

Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii

Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii 1. Technologia rekombinowanego DNA jest podstawą uzyskiwania genetycznie zmodyfikowanych organizmów 2. Medycyna i ochrona zdrowia

Bardziej szczegółowo

Analizy filogenetyczne

Analizy filogenetyczne BIOINFORMATYKA edycja 2016 / 2017 wykład 6 Analizy filogenetyczne dr Jacek Śmietański jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net Plan wykładu 1. Cele i zastosowania 2. Podstawy ewolucyjne

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Rycina 1. Zasięg i zagęszczenie łosi (liczba osobników/1000 ha) w Polsce w roku 2010 oraz rozmieszczenie 29 analizowanych populacji łosi.

Rycina 1. Zasięg i zagęszczenie łosi (liczba osobników/1000 ha) w Polsce w roku 2010 oraz rozmieszczenie 29 analizowanych populacji łosi. Ryciny 193 Rycina 1. Zasięg i zagęszczenie łosi (liczba osobników/1000 ha) w Polsce w roku 2010 oraz rozmieszczenie 29 analizowanych populacji łosi. Na fioletowo zaznaczone zostały populacje (nr 1 14)

Bardziej szczegółowo

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne Adam Bobrowski, IM PAN Katowice 1 Tematyka cyklu referatów Dryf genetyczny Matematyczne modele równowagi między mutacja

Bardziej szczegółowo

Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej

Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej Seminarium 1 część 1 Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej Genom człowieka Genomem nazywamy całkowitą ilość DNA jaka

Bardziej szczegółowo

Ewolucja człowieka. Ślady w ziemi i ślady w genach

Ewolucja człowieka. Ślady w ziemi i ślady w genach Ewolucja człowieka Ślady w ziemi i ślady w genach 1 Złożone zagadki } } Odnaleziono wiele skamieniałości naczelnych, różne gatunki w tym samym czasie Trudno ustalić relacje między nimi } Przodkowie, czy

Bardziej szczegółowo

Acknowledgement. Drzewa filogenetyczne

Acknowledgement. Drzewa filogenetyczne Wykład 8 Drzewa Filogenetyczne Lokalizacja genów Some figures from: Acknowledgement M. Zvelebil, J.O. Baum, Introduction to Bioinformatics, Garland Science 2008 Tradycyjne drzewa pokrewieństwa Drzewa oparte

Bardziej szczegółowo

Ekologia molekularna. wykład 1

Ekologia molekularna. wykład 1 Ekologia molekularna wykład 1 Dobór i ewolucja Ewolucja = zmienność + dobór 1. Rodzi się więcej osobników niż jest w stanie przeżyć. 2. Osobniki różnią się między sobą (zmienność). Różnice te wpływają

Bardziej szczegółowo

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II 10 października 2013: Elementarz biologii molekularnej www.bioalgorithms.info Wykład nr 2 BIOINFORMATYKA rok II Komórka: strukturalna i funkcjonalne jednostka organizmu żywego Jądro komórkowe: chroniona

Bardziej szczegółowo

Zmienność ewolucyjna. Ewolucja molekularna

Zmienność ewolucyjna. Ewolucja molekularna Zmienność ewolucyjna Ewolucja molekularna Podobieństwo i homologia Homologia: podobieństwo wynikające ze wspólnego pochodzenia ewolucyjnego cecha odziedziczona od wspólnego przodka vs. homoplazja podobieństwo

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 6 ANALIZA FILOGENETYCZNA

PODSTAWY BIOINFORMATYKI 6 ANALIZA FILOGENETYCZNA PODSTAWY BIOINFORMATYKI 6 ANALIZA FILOGENETYCZNA ANALIZA FILOGENETYCZNA 1. Wstęp - filogenetyka 2. Struktura drzewa filogenetycznego 3. Metody konstrukcji drzewa - przykłady 4. Etapy konstrukcji drzewa

Bardziej szczegółowo

Analiza sprzężeń u człowieka. Podstawy

Analiza sprzężeń u człowieka. Podstawy Analiza sprzężeń u człowieka Podstawy Badanie relacji genotyp-fenotyp u człowieka Analiza sprzężeń - poszukiwanie rejonów chromosomu położonych blisko genu determinującego daną cechę Analiza asocjacji

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja.

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja. Podstawy genetyki populacji Genetyka mendlowska i ewolucja. Podręczniki Dla zainteresowanych https://www.pearsonhighered.com/program/herron-evolutionary-analysis-5th-edition/pgm296285.html Ewolucja biologiczna

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Ewolucja człowieka. Ślady w ziemi i ślady w genach

Ewolucja człowieka. Ślady w ziemi i ślady w genach Ewolucja człowieka Ślady w ziemi i ślady w genach Migracje z Afryki Wnioski Model OAR zasadniczo utrzymany, ale nie taki prosty, jak się zdawało Mogło dochodzić do krzyżowania się migrantów z populacjami

Bardziej szczegółowo

Ekologia molekularna. wykład 3

Ekologia molekularna. wykład 3 Ekologia molekularna wykład 3 Dziedziczenie mendlowskie Grzegorz Mendel 1822-1884 Darwin + Mendel = Ronald Fisher 1890-1962 wykład 3/2 Prawo Hardy'ego-Weinberga A A gamety możliwe genotypy potomstwa genotyp

Bardziej szczegółowo

Analizy DNA in silico - czyli czego można szukać i co można znaleźć w sekwencjach nukleotydowych???

Analizy DNA in silico - czyli czego można szukać i co można znaleźć w sekwencjach nukleotydowych??? Analizy DNA in silico - czyli czego można szukać i co można znaleźć w sekwencjach nukleotydowych??? Alfabet kwasów nukleinowych jest stosunkowo ubogi!!! Dla sekwencji DNA (RNA) stosuje się zasadniczo*

Bardziej szczegółowo

Dobór naturalny. Ewolucjonizm i eugenika

Dobór naturalny. Ewolucjonizm i eugenika Dobór naturalny Ewolucjonizm i eugenika Silna i słaba selekcja - symulacje W cieniu eugeniki Początki - XIX w. (Francis Galton) XX w. - eugenika totalitarna Poprawa jakości gatunku ludzkiego poprzez kierowanie

Bardziej szczegółowo

Polimorfizm genu mitochondrialnej polimerazy gamma (pol γ) w populacjach ludzkich Europy

Polimorfizm genu mitochondrialnej polimerazy gamma (pol γ) w populacjach ludzkich Europy Polimorfizm genu mitochondrialnej polimerazy gamma (pol γ) w populacjach ludzkich Europy Praca wykonana pod kierunkiem dr hab. Tomasza Grzybowskiego w Katedrze Medycyny Sądowej w Zakładzie Genetyki Molekularnej

Bardziej szczegółowo

Dopasowanie sekwencji (sequence alignment)

Dopasowanie sekwencji (sequence alignment) Co to jest alignment? Dopasowanie sekwencji (sequence alignment) Alignment jest sposobem dopasowania struktur pierwszorzędowych DNA, RNA lub białek do zidentyfikowanych regionów w celu określenia podobieństwa;

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

Podstawy biologii. Podstawy biologii molekularnej

Podstawy biologii. Podstawy biologii molekularnej Podstawy biologii Podstawy biologii molekularnej Trochę historii - XX wiek Początek - wejście teorii Mendla do dyskursu naukowego Lata 40. - DNA jest nośnikiem genów Lata 50. - wiemy jak wygląda DNA (Franklin,

Bardziej szczegółowo

o cechach dziedziczonych decyduje środowisko, a gatunki mogą łatwo i spontanicznie przechodzić jedne w drugie

o cechach dziedziczonych decyduje środowisko, a gatunki mogą łatwo i spontanicznie przechodzić jedne w drugie Iwan Miczurin (1855-1935) Trofim Denisowicz Łysenko (1898-1976) przy interwencji człowieka możliwe jest zmuszenie każdej formy zwierzęcia lub rośliny do znacznie szybszych zmian, w kierunku pożądanym przez

Bardziej szczegółowo

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;

Bardziej szczegółowo

Analizy DNA in silico - czyli czego można szukać i co można znaleźć w sekwencjach nukleotydowych???

Analizy DNA in silico - czyli czego można szukać i co można znaleźć w sekwencjach nukleotydowych??? Analizy DNA in silico - czyli czego można szukać i co można znaleźć w sekwencjach nukleotydowych??? Alfabet kwasów nukleinowych jest stosunkowo ubogi!!! Dla sekwencji DNA (RNA) stosuje się zasadniczo*

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne

Metody Statystyczne. Metody Statystyczne #7 1 Czy straszenie jest bardziej skuteczne niż zachęcanie? Przykład 5.2. s.197 Grupa straszona: 8,5,8,7 M 1 =7 Grupa zachęcana: 1, 1, 2,4 M 2 =2 Średnia ogólna M=(M1+M2)/2= 4,5 Wnioskowanie statystyczne

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW

PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW DOPASOWYWANIE SEKWENCJI 1. Miary podobieństwa sekwencji aminokwasów 2. Zastosowanie programów: CLUSTAL OMEGA BLAST Copyright 2013, Joanna Szyda

Bardziej szczegółowo

Pamiętając o komplementarności zasad azotowych, dopisz sekwencję nukleotydów brakującej nici DNA. A C C G T G C C A A T C G A...

Pamiętając o komplementarności zasad azotowych, dopisz sekwencję nukleotydów brakującej nici DNA. A C C G T G C C A A T C G A... 1. Zadanie (0 2 p. ) Porównaj mitozę i mejozę, wpisując do tabeli podane określenia oraz cyfry. ta sama co w komórce macierzystej, o połowę mniejsza niż w komórce macierzystej, gamety, komórki budujące

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI Joanna Szyda Magdalena Frąszczak Magda Mielczarek WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka

Bardziej szczegółowo

Analiza sprzężeń u człowieka. Podstawy

Analiza sprzężeń u człowieka. Podstawy Analiza sprzężeń u człowieka Podstawy Geny i chromosomy Allele genów zlokalizowanych na różnych chromosomach segregują niezależnie (II prawo Mendla) Dla 2 genów: 4 równoliczne klasy gamet W. S Klug, M.R

Bardziej szczegółowo

Zadania ze statystyki, cz.6

Zadania ze statystyki, cz.6 Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z

Bardziej szczegółowo

ZARZĄDZANIE POPULACJAMI ZWIERZĄT

ZARZĄDZANIE POPULACJAMI ZWIERZĄT ZARZĄDZANIE POPULACJAMI ZWIERZĄT Ćwiczenia 1 mgr Magda Kaczmarek-Okrój magda_kaczmarek_okroj@sggw.pl 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów

Bardziej szczegółowo

Podstawy genetyki populacji. Populacje o skończonej liczebności. Dryf. Modele wielogenowe.

Podstawy genetyki populacji. Populacje o skończonej liczebności. Dryf. Modele wielogenowe. Podstawy genetyki populacji Populacje o skończonej liczebności. Dryf. Modele wielogenowe. Dryf genetyczny a ewolucja } Dobór naturalny nie jest jedynym mechanizmem kształtującym zmiany ewolucyjne } Losowe

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Podstawy teorii ewolucji. Informacja i ewolucja

Podstawy teorii ewolucji. Informacja i ewolucja Podstawy teorii ewolucji Informacja i ewolucja Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

5. WNIOSKOWANIE PSYCHOMETRYCZNE

5. WNIOSKOWANIE PSYCHOMETRYCZNE 5. WNIOSKOWANIE PSYCHOMETRYCZNE Model klasyczny Gulliksena Wynik otrzymany i prawdziwy Błąd pomiaru Rzetelność pomiaru testem Standardowy błąd pomiaru Błąd estymacji wyniku prawdziwego Teoria Odpowiadania

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Zmienność. środa, 23 listopada 11

Zmienność.  środa, 23 listopada 11 Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one

Bardziej szczegółowo

Analiza sprzężeń u człowieka. Podstawy

Analiza sprzężeń u człowieka. Podstawy Analiza sprzężeń u człowieka Podstawy Geny i chromosomy Allele genów zlokalizowanych na różnych chromosomach segregują niezależnie (II prawo Mendla) Dla 2 genów: 4 równoliczne klasy gamet W. S Klug, M.R

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych ukryte modele Markowa, zastosowania Anna Gambin Instytut Informatyki Uniwersytet Warszawski plan na dziś Ukryte modele Markowa w praktyce modelowania rodzin białek multiuliniowienia

Bardziej szczegółowo

MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA. Biomatematyka Dr Wioleta Drobik-Czwarno

MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA. Biomatematyka Dr Wioleta Drobik-Czwarno MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA Biomatematyka Dr Wioleta Drobik-Czwarno Polecane Łańcuchy Markowa wizualnie: http://setosa.io/ev/markov-chains/ Procesy stochastyczne Procesem stochastycznym

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Porównywanie i dopasowywanie sekwencji

Porównywanie i dopasowywanie sekwencji Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek narodziła się nowa dyscyplina nauki ewolucja molekularna Ewolucja molekularna

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo