Modelowanie ryzyka w transporcie
|
|
- Justyna Krzemińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 STOKŁOSA Józef 1 MARCINIAK Andrzej 2 Modelowanie ryzyka w transporcie WSTĘP Definiując wymagania stawiane systemom transportowym wyróżnia się między innymi takie ich cechy jak odporność (robustness) i zwinność (agility) i wymagania te transponuje się na problem zarządzania ryzykiem. Porządkowanie problematyki zarządzania ryzykiem, poprzez jej odpowiednią formalizację, wymaga modelowania ryzyka. Celem pracy jest sformułowanie założeń metodycznych dotyczących problemu modelowania ryzyka, skonstruowanie przykładowych modeli w oparciu o przyjęte założenia metodyczne i walidację ich funkcjonowania w oparciu o symulację komputerową. 1. ZAŁOŻENIA METODYCZNE KONSTRUOWANIA MODELI RYZYKA Podstawowym założeniem metodycznym jest widzenie modelu ryzyka, jako reprezentacji wiedzy o sytuacjach wystąpienia zagrożeń i racjonalnych na nie reakcjach. Pojęcie reprezentacja wiedzy jest tu rozumiane zgodnie z ontologiczną inżynierią wiedzy, to znaczy, jako zapis wiedzy w formalnym i wykonywalnym systemie symbolicznym (języku) [12]. Punktem wyjścia do konstruowania tak rozumianych modeli jest nieformalna konceptualizacja modelowanego problemu, tworzona w języku naturalnym przez ekspertów w danej dziedzinie problemowej. Taka nieformalna konceptualizacja jest następnie poddawana formalizacji przy użyciu narzędzi określanych jako edytory ontologii, np. system Protégé [7]. Produktem jest wówczas kod zapisany w języku OWL (Ontology Web Language) [8]. Wykonanie kodu OWL, np. w systemie Allegro [6], tworzy grafową, semantyczną bazę danych [3] [11], opisującą w tym przypadku rejestrowane wystąpienia zagrożeń, ich kontekst i dynamikę w zależności od podejmowanych działań profilaktycznych i interwencyjnych. Dane te są podstawą do budowy modeli zagrożeń poprzez zastosowanie algorytmów uczenia maszynowego. Natura zagrożeń wymaga włączenia w ich modele czynnika niepewności. Niepewność dotyczy zarówno szczegółowych informacji jak i wyników rozumowania w oparciu o te informacje. W tym celu można użyć prawdopodobieństwa jako miary niepewności. Wówczas zastosowany system reprezentacji wiedzy będzie systemem probabilistycznym, w którym pojęcie "wiedzieć" oznacza tyle, co "wiedzieć z dokładnością rozkładu prawdopodobieństwa". Metodą i technologią konstruowania takich modeli może być technologia sieci probabilistycznych, w szczególności sieci bayesowskich [2]. Otrzymywane w tej technologii modele są formalnymi i wykonywalnymi reprezentacjami wiedzy umożliwiającymi automatyczne wnioskowanie probabilistyczne zarówno predykcyjne jak i diagnostyczne. Komunikacja z taką reprezentacją wiedzy odbywa sie przez zadawanie pytań. 2. ELEMENTARNY MODEL RYZYKA Zgodnie z powszechnie przyjętą konceptualizacją ryzyko związane z określonym zagrożeniem ilościowo wyrażamy za pomocą prawdopodobieństwa wystąpienia zagrożenia i ilościowej miary konsekwencji tego zagrożenia. Tę konceptualizację uzupełniamy o pojęcie czynników wyzwalających lub sprzyjających zagrożeniu oraz pojęcia reprezentujące działania profilaktyczne mające na celu 1 Wyższa Szkoła Ekonomii i Innowacji, Wydział Transportu i Informatyki, Lublin, ul. Projektowa 4. jozef.stoklosa@wsei.lublin.pl 2 Wyższa Szkoła Ekonomii i Innowacji, Wydział Transportu i Informatyki, Lublin, ul. Projektowa 4. andrzej.marciniak@wsei.lublin.pl 6008
2 zmniejszenie prawdopodobieństwa wystąpienia zagrożenia i działania interwencyjne łagodzące skutki wystąpienia zagrożenia. Łuki grafu reprezentują relacje przyczynowe rys.1). Zagrożenie Inicjacja Wystąpienie zagrożenia Profilaktyka Interwencja Konsekwencje Rys.1. Graficzna reprezentacja pojęć i relacji międzypojęciowych użytych do konceptualizacji zagrożeń i związanego z nimi ryzyka Graf przedstawiony na rys.1 definiuje topologię sieci bayesowskiej będącej probabilistycznym modelem ryzyka [9], [10]. Węzły sieci reprezentują wówczas zmienne losowe, a łuki zależności przyczynowo-skutkowe między tymi zmiennymi. Z każdym węzłem związany jest warunkowy rozkład prawdopodobieństwa, a cała sieć opisuje łączny, sfaktoryzowany rozkład prawdopodobieństwa (rys.2). W przedstawionym tu modelu maksymalnie uproszczono zarówno topologię sieci jak i dziedziny zmiennych losowych. W praktycznych zastosowaniach każdy węzeł może być uszczegółowiony poprzez rozwinięcie go w subsieć, a sam moduł może być rozbudowywany poprzez konkatenację, np. w przypadku modelowania procesów lub pól losowych. Topologia wynika tutaj z przyjętej konceptualizacji ryzyka, natomiast warunkowe rozkłady prawdopodobieństwa muszą być wyznaczane i aktualizowane poprzez zastosowanie algorytmów uczenia z wykorzystaniem strumienia danym gromadzonych w celu dokumentowania procesów. Przedstawiony na rys. 2 model wykonano zgodnie z metodyką opracowaną przez Fentona i Neila [2] z wykorzystaniem programu AgenaRisk Lite [4]. Wnioskowanie probabilistyczne sprowadza się tu do wyznaczenia warunkowych rozkładów prawdopodobieństwa nad zmiennymi nieobserwowanymi pod warunkiem, że wartości zmiennych obserwowanych są zadane. Wyniki obserwacji mogą być twardymi (hard evidence) (zdarzenia z prawdopodobieństwem 1) lub miękkimi (soft evidence) faktami. Wnioskowanie może się odbywać zarówno w kierunku relacji przyczynowych jak i w kierunku odwrotnym. Na rys.3 przedstawiono przykład wnioskowania probabilistycznego użytego do porównania dwóch scenariuszy zagrożeń. 6009
3 Rys. 2. Sieć bayesowska reprezentująca minimalny model zagrożenia Scenariusz pierwszy - zagrożenie H1, czynniki sprzyjające - tak, profilaktyka - tak, działania interwencyjne - nie. Scenariusz drugi - zagrożenie H1, czynniki sprzyjające - tak, profilaktyka - nie, działania interwencyjne - nie. Pytamy o prawdopodobieństwo wystąpienia zagrożenia oraz jego skutki dla obu scenariuszy. Otrzymujemy odpowiedź z dokładnością do rozkładu prawdopodobieństwa (rys.3). 6010
4 Rys. 3. Wnioskowanie probabilistyczne 3. PRZYKŁAD: ZAGROŻENIE KOLIZJĄ NA PRZEJEŹDZIE KOLEJOWYM Czynnikami sprzyjającymi kolizji na przejeździe kolejowym typu A są: błąd niezamknięcia rogatek na czas przejazdu pociągu wynikający z: niedyspozycji dróżnika zawinionej lub niezawinionej, niewłaściwego zachowania się kierowców samochodów, błędna informacja przekazana dróżnikowi, niezadziałanie automatycznej sygnalizacji o zbliżającym sie pojeździe szynowym. Występujący w modelu węzeł reprezentujący czynniki sprzyjające jest fuzją wyżej wymienionych błędów. W szczególnym przypadku, gdy dziedziny zmiennych są tu binarne jest losową funkcją boolowską. Rozpatrujemy przykład, w którym działanie profilaktyczne ogranicza się do zmniejszenia liczby przejazdów kolejowych kolizyjnych. Do wyznaczenia apriorycznego prawdopodobieństwa wystąpienia kolizji wykorzystano dane o liczbie takich skrzyżowań i liczbie kolizji w 2011 r. Jako aprioryczny rozkład liczby kolizji przyjęto rozkład dwumianowy. 6011
5 Wówczas aprioryczne prawdopodobieństwo kolizji jest zmienną losową o rozkładzie beta i parametrach α, β. Uwzględnienie tej informacji w rozpatrywanym modelu pokazano na rys.4. Rys.4. Uczenie sieci - wyznaczanie prawdopodobieństwa kolizji Celem wnioskowania jest w tym przykładzie ocena zmniejszenia ryzyka wystąpienia kolizji poprzez zmniejszenie liczby przejazdów kolizyjnych. Wynik takiego wnioskowania pokazano na rys.5. Scenariusz pierwszy: dotyczy aktualnej liczby przejazdów kolizyjnych (n = 16400), a scenariusz dwa zakłada ich redukcję o 10%. 6012
6 Rys.5. Testowanie hipotez jako wnioskowanie probabilistyczne Z porównania scenariuszy wynika, że zmniejszenie liczby przejazdów kolizyjnych może skutkować zmniejszeniem liczby wypadków. Streszczenie Definiując wymagania, stawiane systemom transportowym, wyróżnia się między innymi, takie ich cechy, jak odporność (robustness) i zwinność (agility) i wymagania te transponuje się na problem zarządzania ryzykiem. Porządkowanie problematyki zarządzania ryzykiem, poprzez jej odpowiednią formalizację, wymaga modelowania ryzyka. W artykule przedstawiono metodę modelowania ryzyka w systemach transportowych opartą na technologii sieci bayesowskich i metodologię ontologicznej inżynierii wiedzy. Pokazany przykładowy model ryzyka jest dużym uproszczeniem rzeczywistego problemu. Tym niemniej, uniwersalność i ekspresywność zastosowanego języka modelowania jest oczywista. Risk modeling in transport system Abstract Basic requirements of the transport systems are robustness and agility. The robustness is defined as an ability of a system to resist change without adapting its initial stable configuration. The agility is defined as reliability and flexibility of the transport systems. In the paper a risk modeling in the transport system using bayesian technology and ontology knowledge has been presented. An example of the risk model, which is a simplified representation of real problem has been shown. BIBLIOGRAFIA 1. Christopher M. Bishop, Pattern Recognition and Machine Learning, Information Science and Statistics, Springer Fenton N., Neil M. Risk assessment and decision analysis with bayesian network. CRC Press, Taylor and Francis Group, Graph Databases by Ian Robinson, Jim Webber and Emil Eifrem, O Reily
7 5. de-examples pdf - Neo. Some co de snipp ets, Emil Eifrem, r Pearl J. Causality. Models, reasoning, and inference. Cambridge University Press, Cambridge Pearl J. Probabilistic reasoning in inteligent systems: networks of plausible inference. Morgan Kaufmann Publishers, INnc, Pramod J. Sadalage, Martin Fowler, NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Addison-Wesley Sowa John F., Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks Cole Publishing Co., Pacific Grove, CA,
MODELOWANIE STANÓW CZYNNOŚCIOWYCH W JĘZYKU SIECI BAYESOWSKICH
Inżynieria Rolnicza 7(105)/2008 MODELOWANIE STANÓW CZYNNOŚCIOWYCH W JĘZYKU SIECI BAYESOWSKICH Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. Zastosowanie sieci bayesowskiej
Bardziej szczegółowoPODSTAWOWE ZASADY MODELOWANIA PROCESU PRODUKCJI ROLNICZEJ
Inżynieria Rolnicza 1(126)/2011 PODSTAWOWE ZASADY MODELOWANIA PROCESU PRODUKCJI ROLNICZEJ Piotr Maksym Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W artykule przedstawione
Bardziej szczegółowoMODELOWANIE PROBLEMÓW DECYZYJNYCH W INTEGROWANYM SYSTEMIE PRODUKCJI ROLNICZEJ
Inżynieria Rolnicza 6(131)/2011 MODELOWANIE PROBLEMÓW DECYZYJNYCH W INTEGROWANYM SYSTEMIE PRODUKCJI ROLNICZEJ Hanna Hołaj Rolniczy Zakład Doświadczalny Jastków Sp. z o. o. Andrzej Kusz, Piotr Maksym, Andrzej
Bardziej szczegółowoKONCEPCJA ANKIETOWEGO POMIARU KULTURY BEZPIECZEŃSTWA PRACY
I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 2012: Z. 2(136) T. 1 S. 189-194 ISSN 1429-7264 Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org KONCEPCJA ANKIETOWEGO POMIARU KULTURY BEZPIECZEŃSTWA
Bardziej szczegółowoSYSTEM OCENY RYZYKA W PROCESIE PRODUKCJI WYROBU MEDYCZNEGO
Postępy Nauki i Techniki nr 12, 2012 Grzegorz Bartnik *, Grzegorz Kalbarczyk *, Andrzej Marciniak * SYSTEM OCENY RYZYKA W PROCESIE PRODUKCJI WYROBU MEDYCZNEGO Streszczenie. Ogólne regulacje zawarte w normie
Bardziej szczegółowoMODELOWANIE ŁAŃCUCHÓW PRZYCZYNOWO-SKUTKOWYCH W PROCESACH PROPAGACJI ZAGROŻEŃ I OPARTE O MODEL ZARZĄDZANIE BEZPIECZEŃSTWEM PRODUKTÓW MEDYCZNYCH
ostępy Nauki i Techniki nr 12, 2012 Grzegorz Bartnik *, Andrzej Marciniak * MODELOWANIE ŁAŃCUCHÓW RZYCZYNOWO-SKUTKOWYCH W ROCESACH ROAGACJI ZAGROŻEŃ I OARTE O MODEL ZARZĄDZANIE BEZIECZEŃSTWEM RODUKTÓW
Bardziej szczegółowoMODELOWANIE PROCESU EKSPLOATACJI OBIEKTÓW TECHNICZNYCH ZA POMOCĄ DYNAMICZNYCH SIECI BAYESOWSKICH
InŜynieria Rolnicza 12/2006 Grzegorz Bartnik, Andrzej Kusz, Andrzej W. Marciniak Katedra Podstaw Techniki Akademia Rolnicza w Lublinie MODELOWANIE PROCESU EKSPLOATACJI OBIEKTÓW TECHNICZNYCH ZA POMOCĄ DYNAMICZNYCH
Bardziej szczegółowoJacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Bardziej szczegółowoPROBABILISTYCZNE MODELE ZJAWISK PRZESTRZENNYCH W ROLNICTWIE
Inżynieria Rolnicza 5(114)/2009 PROBABILISTYCZNE MODELE ZJAWISK PRZESTRZENNYCH W ROLNICTWIE Andrzej Marciniak Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. Niepewność, zarówno
Bardziej szczegółowoSieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011
Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011 Sieć Bayesowska służy do przedstawiania zależności pomiędzy zdarzeniami bazując na rachunku prawdopodobieństwa.
Bardziej szczegółowoTomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane
Bardziej szczegółowoWykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym
Wiesława MALSKA Politechnika Rzeszowska, Polska Anna KOZIOROWSKA Uniwersytet Rzeszowski, Polska Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wstęp Wnioskowanie statystyczne
Bardziej szczegółowoOntologiczna inżynieria wiedzy
Nierówności Społeczne a Wzrost Gospodarczy, nr 44 (4/2015), część 1 DOI: 10.15584/nsawg.2015.4.1.8 ISSN 1898-5084 mgr inż. Dariusz Dobrowolski 1 Instytut Informatyki, Wydział Matematyki, Fizyki i Informatyki
Bardziej szczegółowoSystemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
Bardziej szczegółowoAlgorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,
Bardziej szczegółowoIDENTYFIKACJA ATRYBUTÓW JAKO ETAP MODELOWANIA ERGONOMICZNEJ OCENY STANOWISK PRACY
Inżynieria Rolnicza 5(130)/2011 IDENTYFIKACJA ATRYBUTÓW JAKO ETAP MODELOWANIA ERGONOMICZNEJ OCENY STANOWISK PRACY Halina Pawlak, Piotr Maksym Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie
Bardziej szczegółowoWidzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Bardziej szczegółowoZORIENTOWANYCH OBIEKTOWO
MODELOWANIE RYZYKA INWESTYCYJNEGO PRZY UŻYCIU SIECI BAYESA mgr inż. APOLLO Magdalena 1 dr inż. KEMBŁOWSKI Marian W., prof. nadzw. PG 2 Streszczenie ZORIENTOWANYCH OBIEKTOWO Modelowanie problemów decyzyjnych
Bardziej szczegółowoAnaliza zawartości dokumentów za pomocą probabilistycznych modeli graficznych
Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych Probabilistic Topic Models Jakub M. TOMCZAK Politechnika Wrocławska, Instytut Informatyki 30.03.2011, Wrocław Plan 1. Wstęp
Bardziej szczegółowoSzacowanie ryzyka z wykorzystaniem zmiennej losowej o pramatkach rozmytych w oparciu o język BPFPRAL
Szacowanie ryzyka z wykorzystaniem zmiennej losowej o pramatkach rozmytych w oparciu o język BPFPRAL Mgr inż. Michał Bętkowski, dr inż. Andrzej Pownuk Wydział Budownictwa Politechnika Śląska w Gliwicach
Bardziej szczegółowoSystemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Bardziej szczegółowo166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Bardziej szczegółowoPROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU
OPIS PRZEDMIOTU Nazwa przedmiotu Systemy rozproszone Kod przedmiotu Wydział Wydział Matematyki, Fizyki i Techniki Instytut/Katedra Instytut Mechaniki i Informatyki Stosowanej Kierunek Informatyka Specjalizacja/specjalność
Bardziej szczegółowoDr inż. Grzegorz Bartnik Dr inż. Daniel Pieniak Dr hab. n. med. Agata M. Niewczas Dr hab. inż. Andrzej Marciniak
Dr inż. Grzegorz Bartnik Katedra Inżynierii Mechanicznej i Automatyki, Uniwersytet Przyrodniczy w Lublinie, ul. Doświadczalna 50 A, 20-280 Lublin, Dr inż. Daniel Pieniak Szkoła Główna Służby Pożarniczej
Bardziej szczegółowoWYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
Bardziej szczegółowoĆwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,
Bardziej szczegółowoWstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
Bardziej szczegółowoSIECI BAYESOWSKIE JAKO NARZĘDZIE WSPOMAGAJĄCE PROCES PODEJMOWANIA DECYZJI
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: ORGANIZACJA I ZARZĄDZANIE z. 71 Nr kol. 1917 Aleksander KRÓL Politechnika Śląska Wydział Transportu SIECI BAYESOWSKIE JAKO NARZĘDZIE WSPOMAGAJĄCE PROCES
Bardziej szczegółowoOntologie, czyli o inteligentnych danych
1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania
Bardziej szczegółowo2. Empiryczna wersja klasyfikatora bayesowskiego
Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski
Bardziej szczegółowoWYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska
Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):
Bardziej szczegółowoModelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Bardziej szczegółowoZastosowanie symulacji Monte Carlo do zarządzania ryzykiem przedsięwzięcia z wykorzystaniem metod sieciowych PERT i CPM
SZKOŁA GŁÓWNA HANDLOWA w Warszawie STUDIUM MAGISTERSKIE Kierunek: Metody ilościowe w ekonomii i systemy informacyjne Karol Walędzik Nr albumu: 26353 Zastosowanie symulacji Monte Carlo do zarządzania ryzykiem
Bardziej szczegółowoAproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Bardziej szczegółowoKierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Bardziej szczegółowoKierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Bardziej szczegółowoKierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Bardziej szczegółowoMODELOWANIE SYSTEMU OCENY WARUNKÓW PRACY OPERATORÓW STEROWNI
Inżynieria Rolnicza 7(105)/2008 MODELOWANIE SYSTEMU OCENY WARUNKÓW PRACY OPERATORÓW STEROWNI Agnieszka Buczaj Zakład Fizycznych Szkodliwości Zawodowych, Instytut Medycyny Wsi w Lublinie Halina Pawlak Katedra
Bardziej szczegółowoSpacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Bardziej szczegółowoWprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Bardziej szczegółowoEksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Bardziej szczegółowoInteligentne Multimedialne Systemy Uczące
Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr
Bardziej szczegółowoPRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ
53/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN 1642-5308 PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ J. STRZAŁKO
Bardziej szczegółowo2
1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem
Bardziej szczegółowoBADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH
BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej
Bardziej szczegółowo2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują):
OPISU MODUŁU KSZTAŁCENIA (SYLABUS) I. Informacje ogólne 1) Nazwa modułu : MATEMATYCZNE PODSTAWY KOGNITYWISTYKI 2) Kod modułu : 08-KODL-MPK 3) Rodzaj modułu : OBOWIĄZKOWY 4) Kierunek studiów: KOGNITYWISTYKA
Bardziej szczegółowoSystemy ekspertowe - wiedza niepewna
Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,
Bardziej szczegółowoMODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH
Budownictwo o Zoptymalizowanym Potencjale Energetycznym 2(18) 2016, s. 55-60 DOI: 10.17512/bozpe.2016.2.08 Maciej MAJOR, Mariusz KOSIŃ Politechnika Częstochowska MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH
Bardziej szczegółowoMATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH
MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.
Bardziej szczegółowoIdentyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem.
Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Andrzej Podszywałow Własność przemysłowa w innowacyjnej gospodarce. Zarządzanie ryzykiem, strategia zarządzania własnością intelektualną
Bardziej szczegółowoKierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
Bardziej szczegółowo6.4 Podstawowe metody statystyczne
156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione
Bardziej szczegółowoWeryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Bardziej szczegółowoInnowacja pedagogiczna na zajęciach komputerowych w klasach 4e, 4f, 4g. Nazwa innowacji Programowy Zawrót Głowy
Szkoła Podstawowa nr 13 im. Arkadego Fiedlera w Gorzowie Wlkp. rok szkolny 2016-2017 Innowacja pedagogiczna na zajęciach komputerowych w klasach 4e, 4f, 4g Nazwa innowacji Programowy Zawrót Głowy Autor
Bardziej szczegółowokomputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW
Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,
Bardziej szczegółowoAUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
Bardziej szczegółowoIMPLEMENTACJA PROCEDURY OBLICZENIOWEJ W SIECI BAYESOWSKIEJ NA PRZYKŁADZIE WYZNACZANIA JEDNOSTKOWYCH KOSZTÓW EKSPLOATACJI
Prof. dr hab. inż. Andrzej Kusz Zakład Modelowania i Systemów Informacyjnych Katedra Podstaw Techniki, UP w Lublinie, ul. Doświadczalna 50A, 20-680 Lublin, E-mail: andrzej.kusz@up.lublin.pl Dr hab. inż.
Bardziej szczegółowoNumeryczna symulacja rozpływu płynu w węźle
231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,
Bardziej szczegółowoMaszyny wektorów podpierajacych w regresji rangowej
Maszyny wektorów podpierajacych w regresji rangowej Uniwersytet Mikołaja Kopernika Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie X X R d, Y R Z = (X, Y ), Z = (X, Y ) - niezależne
Bardziej szczegółowoTutorial prowadzi przez kolejne etapy tworzenia projektu począwszy od zdefiniowania przypadków użycia, a skończywszy na konfiguracji i uruchomieniu.
AGH, EAIE, Informatyka Winda - tutorial Systemy czasu rzeczywistego Mirosław Jedynak, Adam Łączyński Spis treści 1 Wstęp... 2 2 Przypadki użycia (Use Case)... 2 3 Diagramy modelu (Object Model Diagram)...
Bardziej szczegółowoOkreślenie maksymalnego kosztu naprawy pojazdu
MACIEJCZYK Andrzej 1 ZDZIENNICKI Zbigniew 2 Określenie maksymalnego kosztu naprawy pojazdu Kryterium naprawy pojazdu, aktualna wartość pojazdu, kwantyle i kwantyle warunkowe, skumulowana intensywność uszkodzeń
Bardziej szczegółowow analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Bardziej szczegółowoProces badawczy schemat i zasady realizacji
Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 14 grudnia 2014 Metodologia i metoda badawcza Metodologia Zadania metodologii Metodologia nauka
Bardziej szczegółowoWIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW
Uniwersytet Ekonomiczny we Wrocławiu WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Wprowadzenie Wrażliwość wyników analizy wielokryterialnej na zmiany wag kryteriów, przy
Bardziej szczegółowoZastosowanie rozmytych map kognitywnych do badania scenariuszy rozwoju jednostek naukowo-dydaktycznych
Konferencja Systemy Czasu Rzeczywistego 2012 Kraków, 10-12 września 2012 Zastosowanie rozmytych map kognitywnych do badania scenariuszy rozwoju jednostek naukowo-dydaktycznych Piotr Szwed AGH University
Bardziej szczegółowoPolitechnika Krakowska im. Tadeusza Kościuszki KARTA PRZEDMIOTU
Politechnika Krakowska im. Tadeusza Kościuszki KARTA obowiązuje słuchaczy rozpoczynających studia podyplomowe w roku akademickim 018/019 Nazwa studiów podyplomowych Budowa i eksploatacja pojazdów szynowych
Bardziej szczegółowoSYMULACJA RYZYKA CZASOWO-KOSZTOWEGO PRZEDSIĘWZIĘĆ NA TLE METODY PERT/COST
Dr inż. Tomasz WIATR Politechnika Poznańska SYMULACJA RYZYKA CZASOWO-KOSZTOWEGO PRZEDSIĘWZIĘĆ NA TLE METODY PERT/COST Słowa kluczowe: PERT/cost, symulacja Monte Carlo, Pertmaster Streszczenie Referat stanowi
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Bardziej szczegółowoInformatyka studia stacjonarne pierwszego stopnia
#382 #379 Internetowy system obsługi usterek w sieciach handlowych (The internet systems of detection of defects in trade networks) Celem pracy jest napisanie aplikacji w języku Java EE. Główne zadania
Bardziej szczegółowoLiczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. laboratoria 30 zaliczenie z oceną
Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Stacjonarne
Bardziej szczegółowoProgramowanie komputerów
Programowanie komputerów Wykład 1-2. Podstawowe pojęcia Plan wykładu Omówienie programu wykładów, laboratoriów oraz egzaminu Etapy rozwiązywania problemów dr Helena Dudycz Katedra Technologii Informacyjnych
Bardziej szczegółowoZastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH
Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład
Bardziej szczegółowoMODELOWANIE HAMULCA TARCZOWEGO SAMOCHODU OSOBOWEGO Z WYKORZYSTANIEM ZINTEGROWANYCH SYSTEMÓW KOMPUTEROWYCH CAD/CAE
Marta KORDOWSKA, Zbigniew BUDNIAK, Wojciech MUSIAŁ MODELOWANIE HAMULCA TARCZOWEGO SAMOCHODU OSOBOWEGO Z WYKORZYSTANIEM ZINTEGROWANYCH SYSTEMÓW KOMPUTEROWYCH CAD/CAE Streszczenie W artykule omówiona została
Bardziej szczegółowoSystemy zarządzania bezpieczeństwem informacji: co to jest, po co je budować i dlaczego w urzędach administracji publicznej
Systemy zarządzania bezpieczeństwem informacji: co to jest, po co je budować i dlaczego w urzędach administracji publicznej Wiesław Paluszyński Prezes zarządu TI Consulting Plan prezentacji Zdefiniujmy
Bardziej szczegółowoModelowanie i analiza systemów informatycznych
Modelowanie i analiza systemów informatycznych MBSE/SysML Wykład 11 SYSMOD Wykorzystane materiały Budapest University of Technology and Economics, Department of Measurement and InformaJon Systems: The
Bardziej szczegółowoWybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej
Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w
Bardziej szczegółowoEFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia drugiego stopnia ogólnoakademicki magister inżynier 1. Umiejscowienie
Bardziej szczegółowoRozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny
Bardziej szczegółowoDr inż. Grzegorz Bartnik
AUTOREFERAT PRZEDSTAWIAJĄCY OPIS DOROBKU I OSIĄGNIĘĆ NAUKOWYCH Dr inż. Grzegorz Bartnik Uniwersytet Przyrodniczy w Lublinie Wydział Inżynierii Produkcji Katedra Inżynierii Mechanicznej i Automatyki ul.
Bardziej szczegółowoPODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Bardziej szczegółowoKomputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki
Bardziej szczegółowoKierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
Bardziej szczegółowoOpisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining
Bardziej szczegółowoRozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający
Bardziej szczegółowoZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 37, s. 141-146, Gliwice 2009 ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN KRZYSZTOF HERBUŚ, JERZY ŚWIDER Instytut Automatyzacji Procesów
Bardziej szczegółowoSCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Bardziej szczegółowoStatystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
Bardziej szczegółowoInformatyka II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Kierunkowy (podstawowy / kierunkowy / inny HES)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Modelowanie Dynamiczne Procesów Biznesowych Dynamic Modeling of Business
Bardziej szczegółowoZ-LOGN1-006 Statystyka Statistics
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN-006 Statystyka Statistics Obowiązuje od roku akademickiego 0/0 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Bardziej szczegółowoProces badawczy schemat i zasady realizacji
Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 23 października 2016 Metodologia i metoda naukowa 1 Metodologia Metodologia nauka o metodach nauki
Bardziej szczegółowoWYKŁAD 2. Problem regresji - modele liniowe
Wrocław University of Technology WYKŁAD 2 Problem regresji - modele liniowe Maciej Zięba Politechnika Wrocławska Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami
Bardziej szczegółowozna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
Bardziej szczegółowoWspółczesna problematyka klasyfikacji Informatyki
Współczesna problematyka klasyfikacji Informatyki Nazwa pojawiła się na przełomie lat 50-60-tych i przyjęła się na dobre w Europie Jedna z definicji (z Wikipedii): Informatyka dziedzina nauki i techniki
Bardziej szczegółowoModelowanie i symulacja II Modelling and Simulation II. Automatyka i Robotyka II stopień ogólno akademicki studia stacjonarne
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Modelowanie i symulacja II Modelling and Simulation II A. USYTUOWANIE
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Automatyki Kazimierz Kosmowski k.kosmowski@ely.pg.gda.pl Opracowanie metod analizy i narzędzi do komputerowo wspomaganego zarządzania bezpieczeństwem
Bardziej szczegółowoOpenAI Gym. Adam Szczepaniak, Kamil Walkowiak
OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie
Bardziej szczegółowoAgata Boratyńska Statystyka aktuarialna... 1
Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej
Bardziej szczegółowoCLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Bardziej szczegółowoRozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Bardziej szczegółowoWYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach
Bardziej szczegółowo