Dodatkowe wymiary. Elementy fizyki czastek elementarnych. Wykład XII. Dodatkowe wymiary Jak dobrze znamy grawitacje Grawitacja w świecie czastek
|
|
- Sebastian Sobczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Dodatkowe wymiary Wykład XII Dodatkowe wymiary Jak dobrze znamy grawitacje Grawitacja w świecie czastek Elementy fizyki czastek elementarnych Perspektywy dodatkowych wymiarów Przyszłość fizyki czastek Liniowy kolajder fotonowy
2 Dodatkowe wymiary Skala Plancka Problem hierarchii w Modelu Standardowym: skala unifikacji (skala łamania symetrii EW) Grawitacja: unifikacja dopiero przy skali co odpowiada skali odległości Jednak skala tylko przy 3 wymiarach przestrzennych! musi być tak duża A.F.Żarnecki Wykład XII 1
3 Dodatkowe wymiary Jak dobrze znamy wymiar świata w którym żyjemy? Czy moga być więcej niż 3 wymiary przestrzenne?! NIE - jeśli tylko nieskończone wymiary... TAK - jeśli dopuścimy wymiary skończone! Przykład I Gdy rozpatrujemy ruch wagonika kolejki linowej przyjmujemy, że lina ma tylko jeden wymiar : Ale dla mrówki, która idzie po tej linie jest to świat dwuwymiarowy: x R y x jest współrzędna cykliczna. Druga współrzędna zauważamy dopiero gdy przygladamy się z rozdzielczościa A.F.Żarnecki Wykład XII 2
4 Dodatkowe wymiary Przykład II Elektron w bardzo cienkiej warstwie metalu: y x d e Ale jeśli w tej samej warstwie metalu znajdzie się wysoko-energetyczny elektron ( ) z y x λ d e Jeśli długość fali elektronu ruch dwuwymiarowy. Wzbudzenie w kierunku prostopadłym nie jest dostępne energetycznie. (kwantowy efekt Halla). λ jego ruch musimy opisywać w trzech wymiarach... A.F.Żarnecki Wykład XII 3
5 Dodatkowe wymiary Grawitacja Przyjmijmy, że nasz świat jet wymiarowy ( dodatkowych wymiarów przestrzennych). Jak będzie wtedy wygladała grawitacja? m r Pole powierzchni kuli w wymiarach: Siła grawitacyjna, z Prawa Gaussa: Takie podejście jest słuszne tylko dla, gdy testujemy grawitację na bardzo małych odległościach: R m r gdzie jest efektywna skala Plancka w wymiarach A.F.Żarnecki Wykład XII 4
6 Dodatkowe wymiary Grawitacja Gdy badamy oddziaływania na dużych odległościach : r R m R Pole powierzchni walca w Na dużych odległościach widoczne sa tylko 3 wymiary odtwarzamy klasyczna grawitację Newtona... Skala unifikacji grawitacji jest teraz wymiarach: Siła grawitacyjna, z Prawa Gaussa: 1 TeV, wszystko zależy od i rozwiazanie problemu hierarchii może byċ nawet rzędu A.F.Żarnecki Wykład XII 5
7 Dodatkowe wymiary Unifikacja Gdy skala energii przekracza stałych sprzężenia przyspiesza : ewolucja możliwa jest unifikacja wszystkich oddziaływań na dużo niższych skalach! Przyjmujac 1 TeV: Jakie sa ograniczenia doświadczalne? A.F.Żarnecki Wykład XII 6
8 Prawo Newtona Przez 20 lat zastanawiał się nad spadajacym jabłkiem... W 1687 roku przedstawił prawo powszechnego ci ażenia: Grawitacja Doświadczenie Cavendisha (1798) z zależności typu Keppler a... wynikaja prawa Pierwszy pomiar w laboratorium waga skręceń Cavendish a potwierdzenie prawa Newtona A.F.Żarnecki Wykład XII 7
9 Grawitacja Ograniczenia doświadczalne Wygodna parametryzacja odstępstw od prawa Newtona (dla potencjału grawitacyjnego) Wyniki dostępne w 1996 roku (górne ograniczenia na ) - skala odległości - względne odchylenie ( łamanie ) Najdokładniej przetestowany układ: Ziemia-Księżyc A.F.Żarnecki Wykład XII 8
10 Grawitacja Pomiary laboratoryjne W ostatnich latach przeprowadzono szereg bardzo precyzyjnych pomiarów oddziaływań grawitacyjnych na odległościach mm. Planowane eksperymenty. sa kolejne Zwykłe dodatkowe wymiary Istniejace i oczekiwane (z kolejnych pomiarów) ograniczenia na parametr : A.F.Żarnecki Wykład XII 9
11 Grawitacja Ograniczenia astrofizyczne wykluczone już z obserwacji Układu Słonecznego ( TeV wymaga m) Bardzo silne ograniczenia astrofizyczne i kosmologiczne: emisja grawitonów przy zapadaniu się supernowych neutrin z SN1987A 0.7 promieniowanie 30 TeV, z rozpadu grawitonów temperatura powierzchni gwiazd neutronowych też praktycznie wykluczona m 450 TeV, 3 nm 1700 TeV, 0.2 nm Ograniczenia astrofizyczne i kosmologiczne dużo słabsze obszar zainteresowań fizyki czastek A.F.Żarnecki Wykład XII 10
12 Model Precyzyjne pomiary fizyki czastek wykluczaja istnienie zwykłych (otwartych dla wszystkich czastek) dodatkowych wymiarów. Musimy wprowadzić pewne modyfikacje: Model ADD Arkhani-Hamed, Dimopoulos and Dvali (1998) Czastki Modelu Standardowego żyja w 1+3 wymiarach. Dodatkowe wymiary dostępne sa tylko dla grawitonów Grawitacja dalej jest słaba ( ) Ale w 1+3 wymiarach grawiton widoczny jest jako szereg stanów o masach: dużo dostępnych stanów Kolejne stany wzbudzone odpowiadaja kwantyzacji pędu w dodatkowych wymiarach: bardzo małe wzmocnienie grawitacji ( ) A.F.Żarnecki Wykład XII 11
13 Grawitacja słaba, bo pole ucieka w dodatkowe wymiary... A.F.Żarnecki Wykład XII 12
14 Wymiana grawitonów Przy skalach Poszukiwania wymiana grawitonów może być porównywalna z wymian a i. LEP: wkład do produkcji par czastek : wkład do produkcji par leptonów (proces Drell a-yan a) Dodatkowy wkład od gluonów!!! (nieobecny w SM) A.F.Żarnecki Wykład XII 13
15 Poszukiwania Wymiana grawitonów Przykładowe wyniki współpracy L3: Wyniki eksperymentów przy Tevatronie: dσ dmdy (pb/gev) y < CDF 0.5 TeV 0.75 TeV 1 TeV 1.25 TeV 1.5 TeV dσ_ dm (pb/gev) M (GeV) D0/ 0.5 TeV 0.75 TeV 1 TeV 1.25 TeV 1.5 TeV M (GeV) Dobra zgodność z SM TeV brak odchyleń 1.0 TeV NC DIS w HERA 0.8 TeV A.F.Żarnecki Wykład XII 14
16 Poszukiwania Produkcja grawitonów Emisja grawitonu w dodatkowe wymiary brakujaca energia i pęd (jak przy emisji ) Porównanie przekrojów czynnych dla sygnału i tła: 7.5 e + e > γg ( cosθ γ <0.9) e + e > γg ( cosθ γ <0.8) e + e > γνν ( cosθ γ <0.9) e + e > γνν ( cosθ γ <0.8) Poszukiwanie w LEP: σ (pb) E >10 GeV γ M = 2.5 TeV S Brak odchyleń E CM (GeV) Potrzebne wyższe energie!... A.F.Żarnecki Wykład XII 15
17 Model Model R-S Randal, Sundrum (1999) Tylko jeden dodatkowy wymiar, ale bardziej skomplikowana metryka. Grawitacja silna na równoległej ścianie, jest tłumiona (poprzez metrykę) w naszym świecie ( ścianie ) Model przewiduje dyskretne widmo (stanów wzbudzonych) grawitonów. Kolejne stany odległe sa o: poszukiwanie produkcji stanów rezonansowych Obecne eksperymenty - zbyt małe energie musimy poczekać na LHC... A.F.Żarnecki Wykład XII 16
18 Perspektywy Poszukiwanie rezonansów (R-S model) Przekrój czynny na proces Drell a-yan a w LHC, przyjmujac 1 TeV i 1.5 TeV Wymiana grawinonu daje charakterystyczny rozkład katowy (wymiana obiektu o spinie 2): masa niezmiennicza z= A.F.Żarnecki Wykład XII 17
19 Perspektywy Produkcja czarnych dziur Gdy dostępna energia przekroczy się produkcja czarnych dziur! możliwa staje Przekrój czynny na produkcję czarnej dziury: czarna dziura obiekt zwiazany grawitacyjnie i j r (s) h szybko rośnie z energia. Może być bardzo duży!!! 3-brane Promień Schwarzschielda dla masy : W LHC ( TeV; ): fabryka czarnych dziur A.F.Żarnecki Wykład XII 18
20 W USA były pomysły zamknięcia RHICu, żeby nie wyprodukował czarnej dziury! Trzeba było wszystko tłumaczyć... A.F.Żarnecki Wykład XII 19
21 Perspektywy Produkcja czarnych dziur Czarna dziura paruje emitujac wysokoenergetyczne czastki: 3-brane Black hole izotropowo Sygnatura: wzrost przekroju czynnego dla dużych mas zwiększona produkcja wysokoenergetycznych leptonów i fotonów ( 100 GeV) Średni czas życia czarnej dziury Część energii ucieka w dodatkowe wymiary (grawitony), ale większość powinna być widoczna. kolejny stan, którego możemy poszukiwać ale w szczególnych przypadkach możiwe też stany metastabilne... A.F.Żarnecki Wykład XII 20
22 Perspektywy Kosmologia Dodatkowe wymiary mogłyby także wytłumaczyć obecność ciemnej materii we Wszechświecie. Ciemna materia mogłyby być stany czastek, czyli energia wzbudzone schowana w dodatkowych wymiarach. Przewidywana gęstość ciemnej materii pochodzacej od stanów wzbudzonych fotonów, w funkcji ich masy Porównujac z obserwacjami: Overclosure Limit Ωh Ωh 2 = 0.16 ± m KK (TeV) A.F.Żarnecki Wykład XII 21
23 Podsumowanie Dodatkowe wymiary zostały już... opatentowane! Jeśli myślisz, że grawitacja jest słaba... prawdopodobnie spędzasz za dużo czasu w laboratorium! A.F.Żarnecki Wykład XII 22
24 Przyszłość fizyki czastek LHC to już w zasadzie rzeczywistość - pierwsze dane za 3 lata... Kolejnym krokiem będzie kolajder liniowy (LC) międzynarodowy konsenzus środowiska fizyki wysokich energii wyrażony w stanowisku wielu instytucji i ciał doradczych (ACFA, ECFA, ICFA, HEPAP...) the highest priority for a new machine for particle physics is a linear electron-positron collider with an initial energy of 500 GeV, extendible up to about 1 TeV, with a significant period of concurrent running with LHC budowa uwzględniona (jako przedsięwzięcie o najwyższym priorytecie w średniej skali czasowej) w planach US DOE Office of Science koszt G$!!! musi to być ogólnoświatowa inwestycja nie wiemy jeszcze gdzie będzie budowany (DESY, USA, Japonia) nie wiemy jeszcze w jakiej technologii ( ciepłe lub nadprzewodzace wnęki) decyzja do końca 2004!!! poczatek budowy 2009 w2005 powinny zaczać się formować zespoły badawcze!!! A.F.Żarnecki Wykład XII 23
25 P.Burrows LCWS 2004 A.F.Żarnecki Wykład XII 24
26 Rozpraszanie Comptona Photon Collider Klasycznie : foton rozpraszajac się na elektronie przekazuje mu część swojej energii: Photon Collider γ e e γ Możemy jednak przejść do układu odniesienia, w którym : e elektron może przekazać fotonowi większość swojej energii! (PC) Możliwość zderzania fotonów jest opcja we wszystkich projektach Wykorzystujac niezwykle silny laser możemy uzyskać prawie pełna zamianę wiazki elektronowej w fotonowa... Fotony przejmuja nie tylko energię (maksimum przy ok. 80% energii wiazki), ale i kierunek wiazki elektronów (rozmycie k możemy doprowadzić do zderzeń atowe a ze świetlności ) e γ. γ A.F.Żarnecki Wykład XII 25
27 Projekt NLC : 250 GeV 200 GeV A.F.Żarnecki Wykład XII 26
28 Fizyka W zderzeniach wszystkie czastki naładowane ( czyste oddziaływanie elektromagnetyczne), ale nie tylko... możemy produkować Photon Collider Wyjatkowa w zderzeniach jest możliwość rezonansowej produkcji bozonu Higgsa: Ponieważ foton nie sprzęga się bezpośrednio do Higgsa, tylko przez pętle, proces jest czuły na WSZYSTKIE czastki naładowane niezwykle czuły na nowa fizykę W innych procesach wkłady pętlowe szybko maleja ze wzrostem masy czastek... Ale sprzężenie Higgsa jest proporcjonalne do masy! wkłady skończone nawet w granicy A.F.Żarnecki Wykład XII 27
29 Photon Collider Fizyka Jedyny kolajder, który może sięgnać skali unifikacji Wyniki symulacji prowadzonych w Warszawie: Number of events/2gev e e beams with s ee = 210 GeV m h =120 GeV L γγ (W γγ >80GeV)= 84 fb -1 NZK. Higgs signal NLO Background: bb (g) J z =0 bb (g) J z =2 cc (g) J z =0 cc (g) J z = For comparison: LO Background W corr (GeV) # events 300 simulation m h =300 GeV Parameterization: NZK. m h =300 GeV 200 no Higgs M llqq [GeV] A.F.Żarnecki Wykład XII 28
30 Photon Collider Komplementarność do LHC i LC Pomiar sprzężeń bozonu Higgsa do i w LHC, LC i kolajderze fotonowym (PLC) χ H t 2 NZK. LHC i LC nie moga jednoznacznie wyznaczyć sprzężeń (względnego znaku i ) Kolajder fotonowy może okazać się niezbędny do weryfikacji przyjętego modelu teoretrycznego % CL LHC LC PLC Γ γγ PLC Φ γγ PLC h bb excl χ H V A.F.Żarnecki Wykład XII 29
31 CLIC Kolajder następnej generacji Wiazka prowadzaca wytwarza pole elektryczne (falę EM), które przyspiesza druga wiazke: wneka hamujaca Wnęka hamujaca Wiazka prowadzaca Wiazka przyspieszana Wnęka przyspieszajaca Transformator, sprawność 18% wneka przyspieszajaca wiazka prowadzaca - duży prad, mała energia wiazka przyspieszana - mały prad duża energia Obecnie przygotowywane sa testy kolejnego (3) prototypu Ostateczny projekt, uruchomienie (???) A.F.Żarnecki Wykład XII 30
32 VLHC Pomysł zbudować jak największy tunel (w granicach rozsadku) wstawić tani akcelerator modernizować akcelerator do wyższych energii w miarę rozwoju nowych technologii E.Fermi, 1954: koszta rozłożone na wiele lat cały czas w czołówce energii Obecnie rozważana budowa tunelu o obwodzie 233 km w ośrodku FNAL pod Chicago Etap I : pole B T 40 TeV Docelowo : pole B T 200 TeV A.F.Żarnecki Wykład XII 31
33 VLHC Propozycja Oba detektory koło siebie (w Fermilabie) Magnes dipolowy Najprostsza (najtańsza) możliwa konstrukcja dla etapu I: Pojedyńczy prosty przewodnik I= ka T B Etap I : połowa infrastruktury A.F.Żarnecki Wykład XII 32
34 Zderzenia Pierwsze pomysły: 1960 Zalety mniejsze promieniowanie hamowania dużo mniejszy pierścień (koszt!!!) wyższe energie (!) Fermilab LHC (14 TeV p p) VLHC (60 TeV p p) mniejsze rozmycie energii wiazki rezonansowa produkcja Higgsa fabryka neutrin NLC FMC (0.5 TeV µ + µ ) NMC (4 TeV µ + µ ) ( TeV e + e ) Czy to możliwe? 10 Km Czy potrafimy zbudować akcelerator przeciwbieżnych wiazek? A.F.Żarnecki Wykład XII 33
35 Problem Teoretycznie potrafilibyśmy zbudować akcelerator już dziś. Problem: świetlność Zderzenia produkowane w rozpadach miony maja różne pędy rozmycie wiazki Wymagania intensywne źródło mionów rozpady s - szybko rozpadaja się produkowanych w zderzeniach szybkie chłodzenie do -tarcza konieczne dla uzyskania dobrze skolimowanej wiazki szybkie przyspieszanie aby zminimalizować liczbę rozpadów 1.5 x protons / year 1.5 x muons / year Muon Collider Schematic Muon Collider Up to 2 x 2 TeV 16 GeV/c Proton Accelerator Pion Production Target and Capture Solenoid Pion Decay Channel Muon Ionization Cooling Channel 100 MeV/c muons Muon Accelerators 10 GeV muons Up to 2 TeV/c muons µ + µ Intense K Physics Stopped/Low Energy Muons Neutrinos from muon storage rings Intense High Energy Muon & Neutrino Beams Higgs, t t, WW,... April 29,1999 Rajendran Raja, Sitges, Barcelona April 28-May A.F.Żarnecki Wykład XII 34 5
36 Zderzenia Chłodzenie jonizacyjne Pomysł: Skrinsky i Parkhomchuk, Ionization Cooling przechodzac przez warstwy absorbera mion traci energię na jonizację zmniejszenie wszystkich składowych pędu µ we wnękach przyspieszajacych mion odzyskuje stracona energię tylko podłużna składowa pędu rf de dx de dx de dx rf rf rf Efekt sumaryczny: zmniejszenie pędów poprzecznych wiazki ogniskowanie lepsze wyższa świetlność Nie musimy spowalniać mionów do mniej rozpadów A.F.Żarnecki Wykład XII 35
37 Zderzenia Fabryki neutrin Rozpady mionów kraż acych w pierścieniu akumulacyjnym intensywne źródło neutrin Proste odcinki pierścienia laser neutrinowy b. dobra kolimacja wysoka intensywność wysoka energia nowe era w badaniach neutrin Dużo łatwiejsze do zbudowania niż akcelerator (collider) A.F.Żarnecki Wykład XII 36
38 Ostateczny projekt: 2007 (?) Budowa:???? A.F.Żarnecki Wykład XII 37
Perspektywy fizyki czastek elementarnych
Perspektywy fizyki czastek elementarnych Wykład XIII Nowe projekty akceleratorowe: CLIC ( VLHC ( Photon Collider zderzenia ) Elementy fizyki czastek elementarnych ) fabryki neutrin Astro-cz astki?!...
Dodatkowe wymiary. Elementy fizyki czastek elementarnych. Wykład XIV
Dodatkowe wymiary Wykład XIV Dodatkowe wymiary Jak dobrze znamy grawitacje Grawitacja w świecie czastek Perspektywy Elementy fizyki czastek elementarnych Dodatkowe wymiary Skala Plancka Problem hierarchii
Dodatkowe wymiary. Elementy fizyki czastek elementarnych. Wykład XI
Dodatkowe wymiary Wykład XI Dodatkowe wymiary Jak dobrze znamy grawitacje Grawitacja w świecie czastek Perspektywy Elementy fizyki czastek elementarnych Dodatkowe wymiary Skala Plancka Problem hierarchii
Rozszerzenia Modelu Standardowego
Rozszerzenia Modelu Standardowego Wykład XIII Mały Higgs Elementy fizyki czastek elementarnych Dodatkowe wymiary Jak dobrze znamy grawitacje Grawitacja w świecie czastek Nowe oddziaływania W W Rozszerzenia
Poszukiwany: bozon Higgsa
Poszukiwany: bozon Higgsa Higgs widoczny w świetle kolajdera liniowego Fizyka Czastek i Oddziaływań Fundamentalnych: TESLA & ZEUS Poszukiwane: czastki sypersymetryczne (SUSY) Fizyka Czastek i Oddziaływań
Perspektywy fizyki czastek elementarnych
Perspektywy fizyki czastek elementarnych Wykład XII LHC Elementy fizyki czastek elementarnych ILC Photon Collider, CLIC Neutrina akceleratory µ ± i fabryki neutrin Astro-czastki... Cele eksperymentów w
Oddziaływania grawitacyjne. Efekt Dopplera. Photon Collider. Efekt Comptona. Odkrycie fotonu. Wykład XIX: Fizyka I (B+C) Foton
Wykład XIX: Odkrycie fotonu Efekt Comptona Photon Collider Efekt Dopplera Oddziaływania grawitacyjne Foton Fizyka I (B+C) A.F.Żarnecki Wykład XIX Doświadczenia wskazały, że energia uwalnianych elektronów
LHC i po co nam On. Piotr Traczyk CERN
LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC
WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 1 Maria Krawczyk, Wydział Fizyki UW 2.12. 2009 Współczesne eksperymenty-wprowadzenie Detektory Akceleratory Zderzacze LHC Mapa drogowa Tevatron-
WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Współczesne eksperymenty Wprowadzenie Akceleratory Zderzacze Detektory LHC Mapa drogowa Współczesne
LHC: program fizyczny
LHC: program fizyczny Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 2 Program fizyczny LHC Model Standardowy i Cząstka Higgsa Poza Model Standardowy:
Na tropach czastki Higgsa
Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005 A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki
Perspektywy fizyki czastek elementarnych
Perspektywy fizyki czastek elementarnych Wykład XIV LHC Elementy fizyki czastek elementarnych ILC Photon Collider, CLIC Neutrina akceleratory µ ± i fabryki neutrin Astro-czastki... Cele eksperymentów w
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak
Bozon Higgsa oraz SUSY
Bozon Higgsa oraz SUSY Bozon Higgsa Poszukiwania bozonu Higgsa w LEP i Tevatronie - otrzymane ograniczenia na masę H Plany poszukiwań w LHC Supersymetria (SUSY) Zagadkowe wyniki CDF Masy cząstek cząstki
Elementy fizyki czastek elementarnych
Źródła czastek Elementy fizyki czastek elementarnych Wykład II Naturalne źródła czastek Źródła promieniotwórcze Promieniowanie kosmiczne Akceleratory czastek Akceleratory elektrostatyczne, liniowe i kołowe
Zderzenia relatywistyczne
Zderzenia relatywistyczne Wstęp do Fizyki I (B+C) Wykład XVII: Energia progowa Rozpady czastek Neutrina Fotony Energia progowa Masa niezmiennicza Niezmiennik transformacji Lorenza, (nie zależy od wyboru
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39
Skad się bierze masa Festiwal Nauki Wydział Fizyki U.W. 25 września 2005 dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Skad się bierze masa Festiwal Nauki,
Wykład XIII: Rozszerzenia SM, J. Gluza
Skala X, skala Plancka Dla MS biegnące stałe sprzężenia przecinają się w okolicy 10^15 GeV, Grawitacja dołącza się przy około 10^19 GeV, gdy oddizaływanie grawitacyjne jest porównywalne z masą spoczynkową
Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
Compact Muon Solenoid
Compact Muon Solenoid (po co i jak) Piotr Traczyk CERN Compact ATLAS CMS 2 Muon Detektor CMS był projektowany pod kątem optymalnej detekcji mionów Miony stanowią stosunkowo czysty sygnał Pojawiają się
Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa
Czego oczekujemy od LHC? Piotr Traczyk IPJ Warszawa Plan 1)Dwa słowa o LHC 2)Eksperymenty i program fizyczny 3)Kilka wybranych tematów - szczegółowo 2 LHC Large Hadron Collider UWAGA! Start jeszcze w tym
Wszechświat czastek elementarnych
Wszechświat czastek elementarnych Wykład 8: Współczesne eksperymenty prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych Wykład
Obserwacja Nowej Cząstki o Masie 125 GeV
Obserwacja Nowej Cząstki o Masie 125 GeV Eksperyment CMS, CERN 4 lipca 2012 Streszczenie Na wspólnym seminarium w CERN i na konferencji ICHEP 2012 [1] odbywającej się w Melbourne, naukowcy pracujący przy
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012
Wszechświat cząstek elementarnych WYKŁAD 8sem.letni.2011-12 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siły Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Elementy fizyki czastek elementarnych
Elementy fizyki czastek elementarnych dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Plan wykładu: Świat czastek elementarnych czastki, jednostki, kinematyka relatywistyczna Akceleratory
Sylwa czyli silva rerum na temat fizyki cz astek elementarnych
Sylwa czyli silva rerum na temat fizyki cz astek elementarnych Barbara Badełek Uniwersytet Warszawski i Uniwersytet Uppsalski Nauczyciele fizyki w CERN 20 26 maja 2007 B. Badełek (Warsaw and Uppsala) Silva
Elementy fizyki czastek elementarnych
Elementy fizyki czastek elementarnych dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Plan wykładu: Świat czastek elementarnych czastki, jednostki, kinematyka relatywistyczna Akceleratory
WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe
Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV
Struktura protonu Wykład IV akcelerator HERA Elementy fizyki czastek elementarnych rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury równania ewolucji QCD struktura fotonu % & lub NC DIS Deep
Eksperyment CMS w oczekiwaniu na wiązki: plany poszukiwania Nowej Fizyki. Część 1
Eksperyment CMS w oczekiwaniu na wiązki: plany poszukiwania Nowej Fizyki Część 1 Piotr Traczyk Warszawa, Plan Akcelerator LHC Detektor CMS Nowa fizyka w CMS organizacja pracy Wybrane analizy - szczegóły
WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Bozon Higgsa prawda czy kolejny fakt prasowy?
Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami
Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne
Neutrina Wykład VII Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrino elektronowe Zaproponowane
Wszechświat czastek elementarnych
Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek
Jak to działa: poszukiwanie bozonu Higgsa w eksperymencie CMS. Tomasz Früboes
Plan wystąpienia: 1.Wprowadzenie 2.Jak szukamy Higgsa na przykładzie kanału H ZZ 4l? 3.Poszukiwanie bozonu Higgsa w kanale ττ μτjet 4.Właściwości nowej cząstki Częste skróty: LHC Large Hadron Collider
Struktura porotonu cd.
Struktura porotonu cd. Funkcje struktury Łamanie skalowania QCD Spinowa struktura protonu Ewa Rondio, 2 kwietnia 2007 wykład 7 informacja Termin egzaminu 21 czerwca, godz.9.00 Wiemy już jak wygląda nukleon???
Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda
Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3
Wszechświat czastek elementarnych
Wszechświat czastek elementarnych Wykład 6: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych Wykład 6: 27 marca 2013 p.1/43
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład V. spin protonu struktura fotonu
Struktura protonu Wykład V równania ewolucji QCD spin protonu struktura fotonu Elementy fizyki czastek elementarnych Funkcja struktury Różniczkowy przekrój czynny na NC DIS elektron proton: d 2 σ dx dq
Wszechświat czastek elementarnych
Wszechświat czastek elementarnych Wykład 7: Współczesne eksperymenty prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych Wykład
Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe
Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Uniwersytet Warszawski - Wydział Fizyki opiekun: dr Artur Kalinowski 1 Plan prezentacji Eksperyment CMS Układ wyzwalania Metoda
Wszechświata. Piotr Traczyk. IPJ Warszawa
Ciemna Strona Wszechświata Piotr Traczyk IPJ Warszawa Plan 1)Ciemna strona Wszechświata 2)Z czego składa się ciemna materia 3)Poszukiwanie ciemnej materii 2 Ciemna Strona Wszechświata 3 Z czego składa
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Jak działają detektory. Julia Hoffman
Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady
Neutrina (2) Elementy fizyki czastek elementarnych. Wykład IX
Neutrina (2) Wykład IX Elementy fizyki czastek elementarnych Oscylacje neutrin atmosferycznych i słonecznych Eksperyment K2K Eksperyment Minos Eksperyment Kamland Perspektywy badań neutrin Neutrina atmosferyczne
Elementy fizyki czastek elementarnych
Elementy fizyki czastek elementarnych dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Plan wykładu: Świat czastek elementarnych czastki, jednostki, kinematyka relatywistyczna Akceleratory
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV. rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury.
Struktura protonu Wykład IV akcelerator HERA Elementy fizyki czastek elementarnych rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury równania ewolucji QCD struktura fotonu NC DIS Deep Inelastic
VI. 6 Rozpraszanie głębokonieelastyczne i kwarki
r. akad. 005/ 006 VI. 6 Rozpraszanie głębokonieelastyczne i kwarki 1. Fale materii. Rozpraszanie cząstek wysokich energii mikroskopią na bardzo małych odległościach.. Akceleratory elektronów i protonów.
Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?
Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm
Fizyka cząstek elementarnych
Wykład III Metody doświadczalne fizyki cząstek elementarnych I Źródła cząstek elementarnych Elektrony, protony i neutrony tworzą otaczającą nas materię. Aby eksperymentować z elektronami wystarczy zjonizować
Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23
Metamorfozy neutrin Katarzyna Grzelak Zakład Czastek i Oddziaływań Fundamentalnych IFD UW Sympozjum IFD 2008 6.12.2008 K.Grzelak (UW ZCiOF) 1 / 23 PLAN Wprowadzenie Oscylacje neutrin Eksperyment MINOS
Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne
Neutrina Wykład VII Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrino elektronowe Zaproponowane
Szczególna teoria względności
Szczególna teoria względności Wykład VI: energia progowa foton rozpraszanie Comptona efekt Doplera prof. dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Czarne Dziury w Laboratorium?
Wykład habilitacyjny 1 Czarne Dziury w Laboratorium? WIESŁAW PŁACZEK Instytut Informatyki Uniwersytetu Jagiellońskiego Plan: Co to s a czarne dziury? Problem hierarchii i dodatkowe wymiary przestrzenne.
Fizyka do przodu w zderzeniach proton-proton
Fizyka do przodu w zderzeniach proton-proton Leszek Adamczyk (KOiDC WFiIS AGH) Seminarium WFiIS March 9, 2018 Fizyka do przodu w oddziaływaniach proton-proton Fizyka do przodu: procesy dla których obszar
Fizyka cząstek elementarnych warsztaty popularnonaukowe
Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński
Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład XI. Co to jest ładunek?... Biegnaca stała sprzężenia i renormalizacja w QED Pomiar
Wielka Unifikacja Wykład XI Co to jest ładunek?... Elementy fizyki czastek elementarnych Biegnaca stała sprzężenia i renormalizacja w QED Pomiar Biegnaca stała sprzężenia QCD Unifikacja SU(5) Leptokwarki
Fizyka cząstek 5: Co dalej? Brakujące wątki Perspektywy Astrocząstki
Fizyka cząstek 5: Co dalej? Brakujące wątki Perspektywy Astrocząstki Brakujące ogniwo Przypomnienie: brakujący bozon Higgsa! Oczekiwania: nietrwały, sprzężenie najsilniejsze do najcięższych cząstek. Ważny
Cząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Wszechświat cząstek elementarnych WYKŁAD 5
Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III
Struktura protonu Elementy fizyki czastek elementarnych Wykład III kinematyka rozpraszania doświadczenie Rutherforda rozpraszanie nieelastyczne partony i kwarki struktura protonu Kinematyka Rozpraszanie
Supersymetria. Elementy fizyki czastek elementarnych. Wykład XII
Supersymetria Wykład XII Elementy fizyki czastek elementarnych Problemy Modelu Standardowego Supersymetria Widmo czastek Przewidywania Obecne wyniki Przyszłe poszukiwania Model Standardowy Przypomnienie
Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.
1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne
Neutrina. Wstęp do Fizyki I (B+C) Wykład XXII:
Neutrina Wstęp do Fizyki I (B+C) Wykład XXII: Budowa materii - przypomnienie Neutrina atmosferyczne Neutrina słoneczne Model bryłowy neutrin Oscylacje neutrin i Budowa materii Świat codzienny zbudowany
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV
Struktura protonu Wykład IV akcelerator HERA Elementy fizyki czastek elementarnych rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury równania ewolucji QCD struktura fotonu NC DIS Deep Inelastic
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC
V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC 1 V.1 WYNIKI LEP 2 e + e - Z 0 Calkowity przekroj czynny 3 4 r. akad. 2008/2009 s Q N 3 4 s M s N Q I M 12 s ) M (s s s 2 f C 2 Z C f f
Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ
Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań
Model Standardowy. Elementy fizyki czastek elementarnych. Wykład VI
Model Standardowy Wykład VI elementy teorii kwantowej symetrie a prawa zachowania spontaniczne łamanie symetrii model Weinberga-Salama testy Modelu Standardowego poszukiwanie bozonu Higgsa Elementy fizyki
Salam,Weinberg (W/Z) t Hooft, Veltman 1999 (renomalizowalność( renomalizowalność)
Teoria cząstek elementarnych 23.IV.08 1948 nowa faza mechaniki kwantowej precyzyjne pomiary wymagały precyzyjnych obliczeń metoda Feynmana Diagramy Feynmana i reguły Feynmana dziś uniwersalne narzędzie
Rozszyfrowywanie struktury protonu
Rozszyfrowywanie struktury protonu Metody pomiaru struktury obiektów złożonych v Rozpraszanie elektronów na nukleonie czy na jego składnikach v Składniki punktowe wewnątrz nukleonu to kwarki v Definicja
Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14
Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Supersymetria. Elementy fizyki czastek elementarnych. Wykład XII
Supersymetria Wykład XII Problemy Modelu Standardowego Supersymetria Widmo czastek Przewidywania Obecne wyniki Przyszłe poszukiwania Mały Higgs Elementy fizyki czastek elementarnych Model Standardowy Przypomnienie
Mechanika. Fizyka I (B+C) Wykład I: dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Fizyka I (B+C) Mechanika Wykład I: Informacje ogólne Wprowadzenie Co to jest fizyka? Czym zajmuje się fizyka? dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki
WYKŁAD Wszechświat cząstek elementarnych. 24.III.2010 Maria Krawczyk, Wydział Fizyki UW. Masa W
Wszechświat cząstek elementarnych WYKŁAD 6 24 24.III.2010 Maria Krawczyk, Wydział Fizyki UW Oddziaływania kolorowe i biegnąca stała sprzężenia α s Oddziaływania słabe Masa W Stałe sprzężenia Siła elementarnego
Boska cząstka odkryta?
FOTON 118, Jesień 2012 27 Boska cząstka odkryta? Krzysztof Fiałkowski Instytut Fizyki UJ 4 lipca 2012 roku w wielkiej sali seminaryjnej CERNu w Genewie odbyło się nadzwyczajne seminarium. Organizatorzy
Źródła cząstek. Naturalne: Sztuczne. Promieniowanie kosmiczne Różne źródła neutrin. Akceleratory Reaktory. D. Kiełczewska wykład 2
Źródła cząstek Naturalne: Promieniowanie kosmiczne Różne źródła neutrin Sztuczne Akceleratory Reaktory Promieniowanie kosmiczne Na początku XX wieku Theodore Wulf umieścił na szczycie wieży Eiffla detektory
Już wiemy. Wykład IV J. Gluza
Już wiemy Oddziaływania: QED, QCD, słabe Ładunek kolor, potencjały w QED i QCD Stała struktury subtelnej zależy od odległości od ładunku: wielkie osiągnięcie fizyki oddziaływań elementarnych (tzw. running)
1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7.
Weronika Biela 1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Obliczenie przekroju czynnego 8. Porównanie
Wszechświat czastek elementarnych Detekcja czastek
Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki
Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 7. prof. dr hab. Aleksander Filip Żarnecki
Źródła czastek prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Wykład 7 Wprowadzenie Naturalne źródła czastek Źródła promieniotwórcze, promieniowanie kosmiczne Akceleratory czastek
JÜLICH ELECTRIC DIPOLE INVESTIGATIONS MEASUREMENT WITH STORAGE RING
JÜLICH ELECTRIC DIPOLE INVESTIGATIONS MEASUREMENT WITH STORAGE RING testowe pomiary i demonstracja iż proponowana metoda pracuje są wykonywane na działającym akceleratorze COSY pierwszy pomiar z precyzją
Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych
Jak działają detektory Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych LHC# Wiązka to pociąg ok. 2800 paczek protonowych Każda paczka składa się. z ok. 100 mln protonów 160km/h
Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków
Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu
czastki elementarne Czastki elementarne
czastki elementarne "zwykła" materia, w warunkach które znamy na Ziemi, które panuja w ekstremalnych warunkach na Słońcu: protony, neutrony, elektrony. mówiliśmy również o neutrinach - czastki, które nie
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Zderzenia relatywistyczna
Zderzenia relatywistyczna Dynamika relatywistyczna Zasady zachowania Relatywistyczne wyrażenie na pęd cząstki: gdzie Relatywistyczne wyrażenia na energię cząstki: energia kinetyczna: energia spoczynkowa:
Model Standardowy budowy Wszechświata
Model Standardowy budowy Wszechświata 1) Jakie są podstawowe cegiełki, z których zbudowany jest Wszechświat? 2) Czy znamy prawa rządzące Wszechświatem? 3) W jaki sposób zdobywamy wiedzę o funkcjonowaniu
Wszechświat cząstek elementarnych
Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad.. 2010/11 http://www www.fuw.edu.pl/~
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
Marek Kowalski
Jak zbudować eksperyment ALICE? (A Large Ion Collider Experiment) Jeszcze raz diagram fazowy Interesuje nas ten obszar Trzeba rozpędzić dwa ciężkie jądra (Pb) i zderzyć je ze sobą Zderzenie powinno być
Reakcje jądrowe. kanał wyjściowy
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Podstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej
Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS
Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS Artur Kalinowski Wydział Fizyki Uniwersytet Warszawski Warszawa, 7 grudnia 2012 DETEKTOR CMS DETEKTOR CMS Masa całkowita : 14