Syntaktyczne modelowanie języka

Wielkość: px
Rozpocząć pokaz od strony:

Download "Syntaktyczne modelowanie języka"

Transkrypt

1 Syntaktyczne modelowanie języka Bartosz Ziółko Wykorzystano materiały Dawida Skurzoka, MIT i Wikipedii 304

2 Gramatyka/ modelowanie syntaktyczne Parsery Analizatory morfologiczne / POS tagery n-grams Wygładzanie modeli Filtry Blooma 305

3 Nadmiarowość w językach Konieczna z tego samego powodu co w kodach transmisyjnych Prawdopodobnie stopień nadmiarowości zależy od warunków geograficznych Demo z Mathematica (RedundancyInWrittenLanguage) 306

4 Powody modelowania syntaktycznego Niektóre zdania mogą brzmieć bardzo podobnie: I helped Apple wreck a nice beach. I helped Apple recognise speech. W języku polskim nawet identycznie: może / morze 307

5 Noam Chomsky Gramatyka formalna składa się z: skończonego zbioru symboli końcowych skończonego zbioru symboli niekońcowych skończonego zbioru reguł produkcji na lewo i prawo składających się z sekwencji tych symboli symbol startowy 308

6 Hierarchia Chomskiego 309

7 MIT Regina Barzilay Michael Collins N = noun, V = verb, D = determiner 310

8 311

9 312

10 313

11 Disambiguity in parsing 314

12 Analizator morfologiczny / POS tager Proces zaznaczania słów w tekście jako odpowiadających szczególnym częściom mowy, oparty zarówno na ich definicjach, jak i ich kontekstach. 315

13 Sekwencje słów są przewidywalne Mathematica demo: Nonsense sentence generator 316

14 1-gramy słów (wybrane korpusy) 1) się (2,6%) 2) i (2,4%) 3) w (2,3%) 4) nie (2,1%) 5) na (1,9%) 6) z (1,6 %) 7) do (1,2 %) 8) to (1,2 %) 9) że ) a ) o ) jak ) ale ) po ) co ) jest ) tak ) za ) od ) jego ) go ) już ) tym ) czy

15 2-gramy słów (wybrane korpusy) 1) się w (0,17%) 2) się na (0,14%) 3) się z (0,12%) 4) się do (0,12%) 5) się że (0,08%) 6) że nie (0,07%) 7) w tym (0,07%) 8) nie ma (0,06%) 9) o tym (0,06%) 10) to nie ) się i ) się nie ) i nie ) ale nie ) na to ) że to ) mi się ) nie jest ) a potem ) nigdy nie ) mu się ) po prostu ) w tej ) to co ) w końcu ) nie było ) co się

16 3-gramy słów (wybrane korpusy) 1) w ten sposób (0,015%) 2) na to że (0,012%) 3) w tej chwili (0,012%) 4) w każdym razie (0,011%) 5) po raz pierwszy (0,010%) 6) mi się że (0,009%) 7) sobie sprawę że (0,008%) 8) mam nadzieję że (0,008%) 9) w takim razie (0,008%) 10) zwrócił się do ) wydaje mi się ) od czasu do ) się z nim ) to nie jest ) czasu do czasu ) w tym momencie ) po drugiej stronie ) w ogóle nie

17 Naprawianie n-gram 320

18 Zastosowanie n-gramów N-gramy są najpopularniejszym sposobem modelowania języka w rozpoznawaniu mowy: Z powodów obliczeniowych, zależność jest ograniczana do n słów wstecz. Prawdopodobnie najpopularniejszym jest model trigramowy ponieważ zależność od dwóch poprzednich słów jest bardzo silna, podczas gdy komplikacja modelu jest dość mała a zapotrzebowanie na statystyki realizowalne. 321

19 Siatka słów prezydent wejście strefy rezydent aportuje dwieście to do o trafi szelkę prezydium aprobuje nieście stepy szogun operuje dom schengen 322

20 Siatka słów z zaznaczonym prawidłowym zdaniem prezydent wejście strefy rezydent prezydium aportuje aprobuje dwieście nieście to do o trafi stepy szelkę szogun operuje dom schengen 323

21 Podkreślmy szczególnie prawdopodobne 1- i 2-gramy prezydent wejście strefy rezydent aportuje dwieście to trafi szelkę prezydium aprobuje nieście do o stepy szogun operuje dom schengen 324

22 Ponownie nałóżmy poprawne zdanie prezydent wejście strefy rezydent aportuje dwieście to o trafi szelkę prezydium aprobuje nieście do stepy szogun operuje dom schengen 325

23 Usuńmy mało prawdopodobne 2-gramy prezydent wejście strefy rezydent prezydium aportuje aprobuje dwieście nieście do to o trafi stepy szelkę szogun schengen operuje dom 326

24 i nałóżmy zdanie prezydent wejście strefy rezydent prezydium aportuje aprobuje dwieście nieście do to o trafi stepy szelkę szogun operuje dom schengen 327

25 Zbiory tekstów języka polskiego Źródło MBajty Mil. słów Różnych słów Różnych dwójek Różnych trójek Rzeczpospolita Wikipedia Literatura Transkrypcje Literatura Literatura W Literatura 2 : Słowa występujące więcej niż 10 razy to Dwójki słów występujące więcej niż 10 razy to Trójki słów występujące więcej niż 10 razy to

26 Problemy z n-gramami - Różne pisowanie (np. u - ó), - błędne formaty, - sprawdzanie ze słownikiem, np. myspell?,

27 Histogram n-gramów 330

28 Przykład wyliczeń modelu n-gramowego 331

29 Przykład wyliczeń modelu n-gramowego \begin{equation} E(s,h)=\frac{N(s,h)}{N(h)} \;, \end{equation} 332

30 Przykład wyliczeń modelu n-gramowego 333

31 Przykład wyliczeń modelu n-gramowego 334

32 Algorytm Dijkstry 335

33 Przykład wyliczeń modelu n-gramowego Licząc ścieżkę nie sumujemy dystansów tak jak w telekomunikacji, a mnożymy prawdopodobieństwa (ze względu na regułę Bayesa) lub sumujemy logarytmy! 336

34 Wyszukiwanie najlepszych ścieżek z użyciem 3-gramów. Ala ale ma ładnego kota. Złamała łapie keta Ala ma ładnego kota

35 Klasyczny algorytm Dijkstry (bigramy) koszt = 0.1 koszt = 1. Ala 0.1 ale 1 Złamała 1 ma 0.2 ładnego 0.3 łapie 1.2 kota 0.4 keta

36 Zipf Law Demo Mathematica 339

37 Back-off ), ( ) ( ) ( 0 ), ( ) ( ) ( w h N if h w h w h N if h w h w p N liczba zliczeń słowa z danych statystycznych β bardziej ogólna dystrybucja niż α - czynnik normalizacyjny zapewniający spełnianie przez p(w h) aksjomatu sumowania do jedności, określony jednoznacznie przez α i β: 0 ), ( : 0 ), ( : ˆ) ( ) ( 1 ) ( w h w N w h w N h w h w h jest 3-gramem a jest 2-gramem

38 Metoda Floor ( w h) N( w, h) ( w N h) N liczba słów w danych statystycznych - parametr, często równy liczbie słów w słowniku Metoda przeszacowuje prawdopodobieństwa wydarzeń z małą liczbą zliczeń. 341

39 Przykład ciemny zielony materiał 3-gram C = 0 ciemny zielony 2-gram C > 0 zielony materiał 2-gram C > 0 => wygładzony model ciemny zielony materiał P > 0 ufortyfikowany zamek nierdzewny 3-gram C = 0 ufortyfikowany zamek 2-gram C > 0 zamek nierdzewny 2-gram C > 0 => wygładzony model ufortyfikowany zamek nierdzewny P > 0 342

40 Wygładzanie modeli statystycznych Statystyki wyliczone ze zbiorów danych, opisują ściśle, rzecz biorąc te zbiory a nie rzeczywistość, jak na przykład język jako całokształt. Z tego powodu model n-gramowy można wygładzić w celu uzyskania większej efektywności poprzez zmniejszenie zależności od specyfiki wykorzystanych zbiorów. 343

41 Przykład wygładzania modelu n- gramowego Add-one 344

42 Przykład wygładzania modelu n- gramowego Add-one 345

43 Model interpretacji liniowej z parametrem interpolacyjnym Zdefiniujmy parametr N gdzie 0 1, Wówczas otrzymujemy równanie interpolacyjne Jelinka N( w, h) ( w h) (1 ) ( w hˆ) N Małe zliczenia nie są aż tak bardzo podbijane dzięki interpolacji. 346

44 Wygładzanie Katz a Katz wprowadził ogólną funkcję dyskontującą d : w d( w) i zależną od niej dyskontowaną masę prawdopodobieństwa Q[ d] 1 N W w1 d( w) Równanie wygładzające wygląda N( w, h) d( w) ( w h) Q[ d] ( w h) N 347

45 Rozkład brzegowy n i = P(X = i). n i = P(X = i,y = j). j Rozkład brzegowy podzbioru zmiennych losowych jest rozkładem prawdopodobieństw zmiennych zawartych w tym podzbiorze. 348

46 Przykład wyliczania rozkładu brzegowego Prawdopodobieństwo bycia potrąconym pod warunkiem określonego światła p(w S), gdzie W oznacza wypadek, a S oznacza typ światła na sygnalizatorze. 349

47 Przykład wyliczania rozkładu brzegowego 350

48 Wygładzanie Kneser-Ney z rozkładem brzegowym jako ograniczeniem W metodzie Katza, całkowita zniżka powoduje, że N( w, h) d( w) ( w h) gdzie 0 d 1 N Zdefiniujmy Maximum Likelihood Estimation (MLE) dla rozkładu brzegowego N( w, hˆ) N( hˆ, g) p( w hˆ) i p( g hˆ) N N gdzie połączona liczba wystąpień N ( hˆ, g) jest równa N(g) jeśli hˆ gˆ i 0 w przeciwnym przypadku. Wówczas ( w hˆ) v N( w, hˆ) [ N( hˆ, v) g: gˆ hˆ, N ( g, w) 0 [ N( g, w) d] g: gˆ hˆ, N ( g, v) 0 [ N( g, v) d]] 351

49 Leaving-one-out (również Kneser-Ney) Przygotowujemy model korzystając z danych, tak jakby nie zawierały konkretnego zdarzenia, które wystąpiło tylko raz. W przypadku n-gramów, wyliczamy model, pomijając na przykład jeden trigram, który wystąpił w zbiorach tekstów tylko raz. Następnie wykorzystujemy model, aby estymować prawdopodobieństwo usuniętego zdarzenia. Procedurę powtarzamy wielokrotnie używając rożnych trigramów. Suma logarytmów wszystkich wyliczonych w ten sposób prawdopodobieństw daje nam logarytm podobieństwa leaving-one-out, który następnie służy jak kryterium optymalizacji F ( g, v): N ( g, v) 1 ln[ ( g) ( v gˆ)] const({ ( v gˆ)}). 352

50 Trigramy z Dijkstry Koszt dotarcia do poprzedniego węzła z punku widzenia wyróżnionego węzła Ala 0.1 ale 1 ma ładnego łapie Koszt dotarcia do danego węzła w zależności od następnego węzła następny koszt ładnego 0.2 łapie 1.1

51 Wyróżnione trigramy. Ala ma Ala ma ładnego ma ładnego kota koszt = 0.1 ładnego kota.. Ala ma ładnego kota. koszt = 0.4

52 Wyszukiwanie najlepszych ścieżek. Ala ładnego ma 3-gram koszt. Ala ma 0.1. Ala ładnego 1 następny poprzedni koszt ładnego. 1 ma. 0.1

53 Wyszukiwanie najlepszych ścieżek 3-gram koszt. ale ma. ale ma 1 następny poprzedni ma. 1 koszt

54 Wyszukiwanie najlepszych ścieżek Ala 0.1 ale 1 ma ładnego łapie 3-gram koszt Ala ma ładnego 0.1 ale ma ładnego 0.1 Ala ma łapie 1 ale ma łapie 1 następny poprzedni koszt ładnego łapie Ala = 0.2 ale = 1.1 Ala = 1.1 ale = 2

55 Wyszukiwanie najlepszych ścieżek Ala ma Złamała 1 kota ładnego keta następny poprzedni koszt Ala = 2 kota ma = 0.3 Złamała = 2 Ala = 2 keta ma = 2 Złamała = 2 3-gram koszt Ala ładnego kota 1 Ala ładnego keta 1 ma ładnego kota 0.1 ma ładnego keta 1 Złamała ładnego kota 1 Złamałą ładnego keta 1

56 Wyszukiwanie najlepszych ścieżek ładnego łapie kota. 3-gram koszt ładnego kota. 0.1 łapie kota. 1 następny poprzedni koszt ładnego = 0.4. łapie = 3 dodajemy koszt bigramów dla kropki

57 Wyszukiwanie najlepszych ścieżek. Ala ale ma ładnego kota. Złamała łapie keta 10 węzłów 17 krawędzi 26 możliwych 3-gramów

58 Rzeczywisty przypadek

59 Funkcja haszująca Funkcja haszująca jest każdą, dobrze definiowaną procedurą lub funkcją matematyczną, która zamienia dużą ilość danych, które mogą mieć niestałą długość, na małą reprezentację, często w postaci jednego integera, który może służyć na przykład za indeks. 362

60 Filtr Blooma 363

61 Podsumowanie Hierarchia Chomskyego Parser Tagger N-gram model Stosowanie n-gramów Algorytm Dijkstry Właściwości n-gramów (Zipf, histogram, konieczność wygładzania) Filtr Blooma 364

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego 2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór

Bardziej szczegółowo

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych... Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe

Bardziej szczegółowo

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 05 Biologia i gramatyka Jarosław Miszczak IITiS PAN Gliwice 07/04/2016 1 / 40 1 Nieformalne określenie fraktali. 2 Wymiar pudełkowy/fraktalny. 3 Definicja fraktali.

Bardziej szczegółowo

Co wylicza Jasnopis? Bartosz Broda

Co wylicza Jasnopis? Bartosz Broda Co wylicza Jasnopis? Bartosz Broda Analiza języka polskiego Ekstrakcja tekstu Dokument narzędzie do mierzenia zrozumiałości Analiza morfologiczna Analiza morfosyntaktyczna Indeksy Klasa trudności:

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 08 Sieci bayesowskie

Algorytmy stochastyczne, wykład 08 Sieci bayesowskie Algorytmy stochastyczne, wykład 08 Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-04-10 Prawdopodobieństwo Prawdopodobieństwo Prawdopodobieństwo warunkowe Zmienne

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

11 Probabilistic Context Free Grammars

11 Probabilistic Context Free Grammars 11 Probabilistic Context Free Grammars Ludzie piszą i mówią wiele rzeczy, a ich wypowiedzi mają zawsze jakąś określoną strukture i regularność. Celem jest znalezienie i wyizolowanie tego typu struktur.

Bardziej szczegółowo

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa Lekcja 9. Pierwsze i drugie prawo Kirchhoffa 1. I prawo Kirchhoffa Pierwsze prawo Kirchhoffa mówi, że dla każdego węzła obwodu elektrycznego suma algebraiczna prądów jest równa zeru. i 0 Symbol α odpowiada

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 1

Języki formalne i automaty Ćwiczenia 1 Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...

Bardziej szczegółowo

Analiza leksykalna 1. Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki

Analiza leksykalna 1. Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki Analiza leksykalna 1 Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Kod źródłowy (ciąg znaków) Analizator leksykalny SKANER Ciąg symboli leksykalnych (tokenów)

Bardziej szczegółowo

Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Statystyka opisowa. Wykład I. Elementy statystyki opisowej Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o

Bardziej szczegółowo

Wyniki procentowe poszczególnych uczniów

Wyniki procentowe poszczególnych uczniów K la s a 6 c Próbny sprawdzian w szóstej klasie Klasa 6c Wyniki procentowe poszczególnych uczniów 70% 60% 50% Polska (52%) 40% 30% 20% 10% 0% nr ucznia 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 wynik w % 51

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Planowanie drogi robota, algorytm A*

Planowanie drogi robota, algorytm A* Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Metody probabilistyczne klasyfikatory bayesowskie

Metody probabilistyczne klasyfikatory bayesowskie Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin

Bardziej szczegółowo

Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny

Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu danych

Bardziej szczegółowo

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia

Bardziej szczegółowo

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 7 Modele nieliniowe i funkcja produkcji 1 / 19 Agenda Modele nieliniowe 1 Modele

Bardziej szczegółowo

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład XIV, 24.01.2017 ŁAŃCUCHYMARKOWA CD. KRÓTKIE INFO O RÓŻNYCH WAŻNYCH ROZKŁADACH Plan na dzisiaj Łańcuchy Markowa cd. Różne ważne rozkłady prawdopodobieństwa,

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

Statystyka Astronomiczna

Statystyka Astronomiczna Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości

Bardziej szczegółowo

Projektowanie układów na schemacie

Projektowanie układów na schemacie Projektowanie układów na schemacie Przedstawione poniżej wskazówki mogą być pomocne przy projektowaniu układach na poziomie schematu. Stałe wartości logiczne Aby podłączyć wejście do stałej wartości logicznych

Bardziej szczegółowo

Wyniki procentowe poszczególnych uczniów

Wyniki procentowe poszczególnych uczniów K la s a IA Próbny egzamin gimnazjalny Wyniki procentowe poszczególnych uczniów 0% 80% 70% 60% 50% 40% 30% Polska (41%) % % 0% nr ucznia 1 2 3 4 5 6 7 8 16 18 1 21 22 24 25 26 27 28 wynik w % 45 65 42

Bardziej szczegółowo

Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość

Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

Zadanie analizy leksykalnej

Zadanie analizy leksykalnej Analiza leksykalna 1 Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Przykład: We: COST := ( PRICE + TAX ) * 0.98 Wy: id 1 := ( id 2 + id 3 ) * num 4 Tablica symboli:

Bardziej szczegółowo

AUTOMATYKA INFORMATYKA

AUTOMATYKA INFORMATYKA AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 04 Systemy Lindenmayera Jarosław Miszczak IITiS PAN Gliwice 19/10/2016 1 / 37 1 L-Systemy 2 GroIMP i XL ALife 2 / 37 L-Systemy L-systemy czyli systemy Lindenmayera.

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

HLT_12 Warszawa. Lingwistyka matematyczna w Katedrze Elektroniki AGH

HLT_12 Warszawa. Lingwistyka matematyczna w Katedrze Elektroniki AGH HLT_12 Warszawa Lingwistyka matematyczna w Katedrze Elektroniki AGH 1 Lingwistyka jaka jest każdy widzi Lingwistyka matematyczna: - identyfikacja rozmówcy - przetwarzanie języka naturalnego - przetwarzanie

Bardziej szczegółowo

Gramatyki atrybutywne

Gramatyki atrybutywne Gramatyki atrybutywne, część 1 (gramatyki S-atrybutywne Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyki atrybutywne Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie)

Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie) Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie) Wprowadzenie Haszowanie jest to pewna technika rozwiązywania ogólnego problemu słownika. Przez problem słownika rozumiemy tutaj takie

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji

Bardziej szczegółowo

Analiza semantyczna. Gramatyka atrybutywna

Analiza semantyczna. Gramatyka atrybutywna Analiza semantyczna Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji na temat składni języka podlegającego tłumaczeniu, translator musi posiadać możliwość korzystania z wielu innych informacji

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom podstawowy

Kryteria oceniania z matematyki Klasa III poziom podstawowy Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład

Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Definicje prawdopodobieństwa 1.1 Częstościowa definicja prawdopodobieństwa 1.1.1 Przykład 1.1.2 Rozwiązanie: 1.1.3 Inne rozwiązanie: 1.1.4 Jeszcze inne

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:

Bardziej szczegółowo

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,

Bardziej szczegółowo

Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność Przy rozważaniu wydajności przetwarzania (obliczeń, komunikacji itp.) często pojawia się pojęcie skalowalności

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Analiza leksykalna 1. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki

Analiza leksykalna 1. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki Analiza leksykalna 1 Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Kod źródłowy (ciąg znaków) Analizator leksykalny SKANER Ciąg symboli leksykalnych

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Metody Kompilacji Wykład 7 Analiza Syntaktyczna

Metody Kompilacji Wykład 7 Analiza Syntaktyczna Metody Kompilacji Wykład 7 Analiza Syntaktyczna Parsowanie Parsowanie jest to proces określenia jak ciąg terminali może być generowany przez gramatykę. Włodzimierz Bielecki WI ZUT 2/57 Parsowanie Dla każdej

Bardziej szczegółowo

Opisy efektów kształcenia dla modułu

Opisy efektów kształcenia dla modułu Karta modułu - Technologia mowy 1 / 5 Nazwa modułu: Technologia mowy Rocznik: 2012/2013 Kod: RIA-1-504-s Punkty ECTS: 7 Wydział: Inżynierii Mechanicznej i Robotyki Poziom studiów: Studia I stopnia Specjalność:

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości

Bardziej szczegółowo

Hierarchia Chomsky ego Maszyna Turinga

Hierarchia Chomsky ego Maszyna Turinga Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór

Bardziej szczegółowo

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą

Bardziej szczegółowo

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.

Bardziej szczegółowo

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 7 i funkcja produkcji 1 / 23 Agenda 1 2 3 Jakub Mućk Ekonometria Wykład 7 i funkcja

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.

Bardziej szczegółowo

Kolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I

Kolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I Kolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I Czas trwania kolokwium wynosi 45 minut. Należy rozwiązać dwa z trzech zamieszczonych poniżej zadań. Za każde zadanie można uzyskać maksymalnie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Automatyzacja procesu tworzenia sprzętowego narzędzia służącego do rozwiązywania zagadnienia logarytmu dyskretnego na krzywych eliptycznych

Automatyzacja procesu tworzenia sprzętowego narzędzia służącego do rozwiązywania zagadnienia logarytmu dyskretnego na krzywych eliptycznych Automatyzacja procesu tworzenia sprzętowego narzędzia służącego do rozwiązywania zagadnienia logarytmu dyskretnego na krzywych eliptycznych Autor: Piotr Majkowski Pod opieką: prof. Zbigniew Kotulski Politechnika

Bardziej szczegółowo

WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO

WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo

Hierarchia Chomsky ego

Hierarchia Chomsky ego Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym

Bardziej szczegółowo

Maciej Piotr Jankowski

Maciej Piotr Jankowski Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1. 3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy

Bardziej szczegółowo

5. Wprowadzenie do prawdopodobieństwa Wprowadzenie Wyniki i zdarzenia Różne podejścia do prawdopodobieństwa Zdarzenia wzajemnie wykluczające się i

5. Wprowadzenie do prawdopodobieństwa Wprowadzenie Wyniki i zdarzenia Różne podejścia do prawdopodobieństwa Zdarzenia wzajemnie wykluczające się i Spis treści Przedmowa do wydania polskiego - Tadeusz Tyszka Słowo wstępne - Lawrence D. Phillips Przedmowa 1. : rola i zastosowanie analizy decyzyjnej Decyzje złożone Rola analizy decyzyjnej Zastosowanie

Bardziej szczegółowo

Narzędzia do automatycznego wydobywania kolokacji

Narzędzia do automatycznego wydobywania kolokacji Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo