Rzędy wielkości energii przejść elektronowych i rotacyjnowibracyjnych. w atomach i cząsteczkach

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rzędy wielkości energii przejść elektronowych i rotacyjnowibracyjnych. w atomach i cząsteczkach"

Transkrypt

1 Wykład 4 Widmo elektromagnetyczne i promieniowanie ciała doskonale czarnego Rzędy wielkości energii przejść elektronowych i rotacyjnowibracyjnych w atomach i cząsteczkach Boltzmannowski rozkład obsadzeń spontaniczna Absorpcja, widma absorpcyjne Światło oświetlające Ziemię Promieniowanie ciała doskonale czarnego, rozkład Plancka Promieniowanie reliktowe wymuszona Einsteinowskie wspólczynniki Widmo elektromagnetyczne Proces widzenia u człowieka i zwierząt Rzędy wielkości energii przejść elektronowych i rotacyjno-wibracyjnych w atomach i cząsteczkach: Obraz dyskretnych poziomów energetycznych: Cząsteczka dwuatomowa: dodatkowe stopnie swobody krzywa potencjału reprezentująca elektronowy stan podstawowy odległość między jądrami odległość równowagowa Atom: stany wzbudzone ~( ) Hz stan podstawowy + oscylacje: ~( )Hz rotacja: ~ Oscylacje atomowe i cząsteczkowe obrazu klasycznego odpowiadają przejściom między poziomami energetycznymi w opisie kwantowym. Atom oscylujący z czestością ν. E = hν Stan wzbudzony Stan podstawowy Atom oscylujący między stanem wzbudzonym i podstawowym. Rzędy wielkości energii przejść elektronowych i rotacyjno-wibracyjnych w atomach i cząsteczkach: Obraz dyskretnych poziomów energetycznych: Cząsteczka dwuatomowa: dodatkowe stopnie swobody oscylacyjne (podczerwień) poziomy oscylacyjne odległość między jądrami rotacyjne (mikrofale) elektronowe (optyczne lub uv) oscylacyjne (podczerwień) Dodatkowo widmo komplikuje się wskutek sprzęŝenia spin-orbita, obecności spinu jądrowego etc. Atom: ~( ) Hz stan podstawowy + rotacyjne (mikrofale) Elektronowy stan wzbudzony dysocjacji Elektronowy stan podstawowy oscylacje: ~( )Hz rotacja: ~ odległość między jądrami 1 2

2 Rzędy wielkości energii przejść elektronowych i rotacyjno-wibracyjnych w atomach i cząsteczkach: między stanami elektronowymi: DuŜa częstość: ~ cykli na sekundę. Rzędy wielkości energii przejść elektronowych i rotacyjno-wibracyjnych w atomach i cząsteczkach: Przykład: cząsteczka Na 2 i atom Na: oscylacyjno-rotacyjne (z dala od granicy dysocjacji) Pośrednie częstości: ~ cykli na sekundę. 488nm Ar + Poziomy energetyczne atomu sodu Powrót do stanu podstawowego odbywać się moŝe w szeregu krokach: Energy Absorpcja: Przykład: Infra-red widzialne podczerwone W jakich stanach energetycznych rezydują cząsteczki? Boltzmannowski rozkład obsadzeń. niska T W nieobecności zderzeń, cząsteczki obsadzają stan o najmniejszej moŝliwej energii Cząsteczki wysoka T Zderzenia mogą przerzucić cząsteczki do stanów o wyŝszej energii. Im wyŝsza temperatura, tym częściej się to zdarza. [ ] N exp E / k T i i B Cząsteczki Promieniowanie wyemitowane moŝe mieć róŝne długości fal Microwave W równowadze, stosunek obsadzeń dwóch stanów wynosi: / = exp( E/k B T ), gdzie: E = E 2 E 1 = hν Stany o wyŝszej energii są więc mniej obsadzone niŝ stan odstawowy. 3 4

3 W jakich stanach energetycznych rezydują cząsteczki? Boltzmannowski rozkład obsadzeń. - sposób obsadzania poziomów energetycznych w stanie równowagi termicznej. E 3 E 2 N 3 N i jest gęstością liczby cząsteczek (liczby cząsteczek na m 3 ) w stanie energetycznym i, Ni exp [ Ei / kbt ] T jest temperaturą, k B jest stałą Boltzmann a. Atomy znajdujące się w stanie wzbudzonym spontanicznie emitują fotony. Kiedy atom lub cząsteczka powraca do stanu o niŝszej energii, emitowany jest foton. τ ~10-8 s Stan wzbudzony Stan podstawowy E 1 Stan podstawowy Gęstość obsadzeń Gdy E 2 E 1 >> k B T obsadzony jest praktycznie jedynie stan podstawowy Cząsteczki pozostają w stanie wzbudzonym zazwyczaj nie dłuŝej niŝ kilka nanosekund. Z powrotem do stanu wzbudzonego wiąŝe się zjawisko fluorescencji, bądź (dla dłuŝszych czasów Ŝycia w stanie wzbudzonym) fosforescencji. Rozkład Boltzmanna JeŜeli poziomy i i j są zdegenerowane (dla danej energii istnieje g i poziomów o tej samej energii obsadzenia) wówczas prawdopodobieństwa obsadzenia rosną proporcjonalnie do stopnia degeneracji: Uwzględniając moŝliwość obsadzenia wszystkich stanów otrzymamy: gdzie: N liczba wszystkich obiektów (cząsteczek) suma stanów uwzględniająca degenerację Atomy emitują światło o charakterystycznych, dobrze rozdzielonych częstościach. Częstość (energia) Widma emisyjne wzbudzonych atomów. KaŜda z linii emisyjnych odpowiada róŝnicy energii poziomów energetycznych stanów elektronowych. Atomy mają względnie proste widma, które odpowiadają prostym schematom poziomów energetycznych 5 6

4 Zderzenia poszerzają zakres częstości emitowanego światła. Zderzenia gwałtownie zmieniają fazę emitowanej fali; widmo emisji atomu jest poszerzone wskutek zderzeń. zderzenie Światło oświetlające Ziemię wyzwalana w gwiazdach w reakcjach syntezy jądrowej jest emitowana w postaci promieniowania elektromagnetycznego, równieŝ pod postacią światła widzialnego. NajbliŜszą nam gwiazdą jest Słońce. Temperatura we wnętrzu Słońca sięga T = (13,7 16,0) * 10 6 K E nowe częstości w emisji czas Widzialne widmo Słońca W obrazie kwanowo-mechanicznym, poziom wzbudzony atomu emitującego falę ulega przesunięciu w trakcie zderzenia; Poziomy energetyczne zbioru emitujących atomów ulegają więc poszerzeniu zderzeniowemu. Rozkład widmowy promieniowania słonecznego w górnych warstwach atmosfery oraz na poziomie morza dla kąta zenitalnego ~ 48 0 Światło takie (mimo prąŝków absorpcyjnych) widzimy jako światło (prawie) białe Widma absorpcyjne: przejście ze stanu o niŝszej energii (podstawowego) do stanu o wyŝszej energii (wzbudzonego). Absorpcja: Stan wzbudzony Stan podstawowy Ciągłe widmo emisyjne Dyskretne widmo emisyjne Dyskretne widmo absorpcyjne Promieniowanie UV- wróg czy przyjaciel? Schematy podziału promieniowania UV: techniczny: daleki ultrafiolet - długość fali nm bliski ultrafiolet - długość fali nm ze względu na działanie na człowieka: UV-C - długość fali nm UV-B - długość fali nm UV-A - długość fali nm Ultrafiolet ma właściwości bakteriobójcze: sterylizacja urzadzeń. Działanie promieniowania UV na skórę Widmo emisyjne ciągłe Widmo absorpcyjne wodoru Linie Fraunhofera w widmie słonecznym (u góry) oraz w widmie odległej galaktyki (u dołu). Obserwowane przesunięcie linii Fraunhofera w widmie galaktyki wywołane jest zjawiskiem Dopplera. Mutacja DNA wskutek promieniowania UV 7 8

5 O szkodliwości promieniowania UV: Widmo promieniowania ciała doskonale czarnego Im wyŝsza temperatura T tym; intensywniejsza emisja krótsza długość fali maksimim emisji (prawo Wiena): λ max ~ 1/T prawo Wiena Ozonosfera jest warstwą bardzo waŝną dla Ŝycia na Ziemi. Chroni przed promieniowaniem ultrafioletowym (jest produkowana przez promieniowanie UV), które jest szkodliwe dla organizmów Ŝywych. Dzięki niej jest moŝliwe Ŝycie na lądzie. Cały ozon z ozonosfery, w warunkach normalnych (1013 hpa, 0 C) utworzyłby na poziomie morza warstwę grubości zaledwie ok. 3 mm. Dziura ozonowa nad Antarktydą! JuŜ mniej modna(?) Rozkład Plancka radiancja spektralna [W m-3 sr-1] radiancja spektralna częstotliwościowa w kierunku prostopadłym do emitującej powierzchni [ Wm -2 sr -1 Hz -1 ] - moc przypadająca na promieniowanie mieszczące się w zakresie częstotliwości od ν do ν+dν, na jednostkę powierzchni na jednostkę kąta bryłowego, Promieniowanie ciała doskonale czarnego Ciało doskonale czarne pojęcie dla określenia ciała pochłaniającego całkowicie padające na nie promieniowanie elektromagnetyczne, niezaleŝnie od temperatury tego ciała, kąta padania i widma padającego promieniowania. Wnęka symulująca ciało doskonale czarne Rozkład Plancka (1900r.) a prawa Wienna i prawo Rayleigha-Jeansa 1-sze prawo Wienna długość fali o maksymalnej mocy promieniowania (w metrach) T temperatura ciała doskonale czarnego (w kelvinach), stała Wiena k atastrofa w nadfiolecie! Promieniowanie wpadające do wnęki odbija się wielokrotnie od jej ścian i jest (całkowicie pochłaniane, natomiast parametry promieniowania wychodzącego z jej wnętrza zaleŝą tylko od temperatury wewnątrz wnęki. Promieniowanie ciała doskonale czarnego promieniowanie będące w równowadze termodynamicznej ze ściankami: wynika z kombinacji emisji spontanicznej, emisji wymuszonej i absorpcji w danej temperaturze. C 1i C 2 stałe wyznaczane doświadczalnie 2-gie prawo Wienna prawo Rayleigha-Jeansa Rozkład Plancka: Porównanie prawa Rayleigha-Jeansa, rozkładu Wiena i prawa Plancka dla ciała o temperaturze 8 mk. 9 10

6 Narodziny mechaniki kwantowej (14.XI.1900r.) Nowa stała fizyczna (stała Plancka h) okazała się kluczowym parametrem występującym w wielu równaniach opisujących zjawiska w skali atomowej. Późniejsze prace doprowadziły do sformułowania nowej statystyki Bosego-Einsteina, z której moŝna było wyprowadzić rozkład Plancka. Wypełniające cały Wszechświat promieniowanie tła pozostałe po Wielkim Wybuchu ma widmo takie samo jak promieniowanie ciała doskonale czarnego o temperaturze 2,7 K. Uzyskana krzywa jest wynikiem pomiarów i całkowicie zgadza się z obliczeniami opartymi o rozkład Plancka oraz teorię Wielkiego Wybuchu. Kolor temperatury Promieniowanie reliktowe Rozkład Plancka Porcje promieniowania nazwano fotonami, a porcje energii jaką moŝe pochłonąć lub jaką moŝe przekazać układ w pojedynczym akcie oddziaływania z innym układem nadano nazwę kwantów. Właściwość oscylatorów: polega na przyjmowaniu tylko wybranych porcji energii (kwantów) kwantyzacją poziomów energetycznych. emitowana przez ciało doskonale czarne ma strukturę nieciągłą i moŝe być wysyłana tylko określonymi porcjami. T = 2,7 K Fluktuacje gęstości promieniowania tła dla promieniowania mikrofalowego; (maksimum widma); satelita WMAP Postęp w badaniach nad promieniowaniem reliktowym (wzrost rozdzielczości kątowej): 1. wyniki badań Penziasa i Wilsona 2. dane zebrane przez sondę COBE 3. mapa wykonana przez sondę WMAP Kolor temperatury Widmo świecenia wielu obiektów jest często charakteryzowane przez ich temperaturę, nawet gdy nie są one dokładnie ciałem doskonale czarnym. W astronomii widmo świecenia pozwala wyznaczyć efektywną temperaturę powierzchniową gwiazdy i związać ją z barwą gwiazdy. Zadania: 1. Porównaj energię wzbudzenia 1szego wzbudzonego stanu elektronowego w atomach sodu z energią kt. Jak duŝe jest obsadzenie 1szego stanu wzbudzonego w atomach sodu w temperaturze pokojowej? Co moŝna powiedzieć o obsadzeniu stanu rotacyjno-oscylacyjnego w cząsteczkach sodu, który jest 10 razy bliŝszy najniŝszemu stanowi struktury rotacyjno-wibracyjnej elektronowego stanu podstawowego? 2. Jakiej barwy jest wnętrze Ziemi (gdybyśmy zdołali tam zajrzeć)? Panuje tam temperatura około 6000ºK. nm Świecenie lampy sodowej Poziomy energetyczne atomu sodu 11 12

7 Einstein pokazał, Ŝe prócz emisji spontanicznej i absorpcji istnieje równieŝ emisja wymuszona. Einsteinowskie współczynniki A i B a promieniowanie ciała doskonale czarnego (B 12 I ) / (A + B 21 I ) = exp[- E/k B T ] Absorpcja wymuszona spontaniczna lub: I = A / { B 12 exp[ E/k B T] B 21 } Równanie to powinno być spełnione dla kaŝdej z T, a więc i dla T. Gdy T, exp[ E/k B T ] 1. Jeśli T, to Einstein oczekiwał, Ŝe I równieŝ (jak we wzorze Plancka). Będzie tak, gdy mianownik zdąŝa do zera, co jest spełnione dla: B 12 = B 21 B Tak więc: I = [A 21 /B] / {exp[hν/k B T ] 1}, gdyŝ E = hν A kbt Rozwijając exp[hν/k B T ] w szereg mamy: Iν = B hν Ponadto, dla niskich częstości powinno obowiązywać doświadczalnie sprawdzone prawo Rayleigha-Jeansa: I ν =8πν 2 k B T/c 3. Stąd: 3 8πhν 8πhν 1 A oraz: lub: 21 = B I 3 12 ν = 3 / k T c e h ν B c 1 (intensywność) (czestotliwościowa gęstość energii) Wyprowadzenie wzoru Plancka przez Einsteina - przykład połączenia optyki, termodynamiki i fizyki statystycznej. Einstein rozwaŝał (1917r.) prędkość przejść między stanami energetycznymi (np. stanów 1 i 2) atomów oddziaływujących ze światłem o irradiencji (natęŝeniu) I: Jeśli: prędkość emisji spontanicznej: d /dt = A 21 Widmo elektromagnetyczne: energie fotonów, częstotliwości i długości fal to: prędkość absorpcji: d /dt = B 12 I prędkość emisji wymuszonej: d /dt = B 21 I Absorpcja spontaniczna by mogło dojść do równowagi termodynamicznej w obecności pochłanianych i emitowanych fotonów: Rozwiązując względem / : B 12 I = A 21 + B 21 I wymuszona wykorzystując rozkład Maxwell a-boltzmanna (B 12 I ) / (A + B 21 I ) = / = exp[ E/k B T ] 1nm = 10 9 m, 1THz = Hz 13 14

8 Widmo absorpcyjne powietrza Absorpcja tkanki ludzkiej dla róŝnych długości fal Powietrze składa się z cząsteczek, które nie absorbują w obszarze widzialnym, ale mogą absorbować w innych obszarach widma: ZauwaŜmy, Ŝe oś pionowa jest w skali logarytmicznej! Głębokość wnikania (1/α) 650 nm 1.3µm Długość fali λ Absorpcja wody dla róŝnych długości fal Głębokość wnikania (1/α) 1 km 1 m 1 mm 1 µm Radio Microwave IR UV X-ray 1 km 1 m 1 mm 1 µm 1 nm Długość fali λ Widmo widzialne ZauwaŜmy, Ŝe oś pionowa jest w skali logarytmicznej! Woda jest przejrzysta dla światła widzialnego, ale nie dla innych obszarów widma! Zmiana głębokości wnikania o dziesiątki rzędów wielkości! Siatkówka oka ludzkiego Siatkówka jest stosem kilku warstw neuronalnych. W skład siatkówki wchodzą komórki receptorowe: czopki i pręciki. Pręciki są wraŝliwe na natęŝenie światła, pozwalają na widzenie czarno-białe, jest ich duŝo w częściach peryferyjnych siatkówki. Czopki skupiają się w centralnej części siatkówki (w plamce Ŝółtej 180,000 /mm 2) i odpowiadają za widzenie barwne. Zawierają trzy barwniki wraŝliwe na światło niebieskie, zielone i czerwone. Preciki Czopki Siatkówkę z mózgiem łączy nerw wzrokowy. Interpretacja sygnałów pochodzących z oka moŝliwa jest dzięki ich sprawnemu działaniu. Gdy mózg błędnie interpretuje obraz, podlegamy złudzeniom optycznym

9 Ludzki aparat widzenia nie jest zbyt wraŝliwy spektralnie. Na przykład: oba kolory o widmach Ŝółtych widziane będą na Ŝółto (mimo dość róŝnej zawartości spektralnej), podobnie jak złoŝenie koloru zielonego i pomarańczowego! Synteza addytywna i substraktywna barw wraŝenie widzenia dowolnej barwy moŝna wywołać przez zmieszanie w ustalonych proporcjach trzech barw: czerwonej, zielonej i niebieskiej (właściwość fizjologiczna). Efekt ten jest szeroko wykorzystywany w wielu urządzeniach (np. telewizory, monitory komputerowe, aparaty cyfrowe, skanery, drukarki). 17

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

ZJAWISKA KWANTOWO-OPTYCZNE

ZJAWISKA KWANTOWO-OPTYCZNE ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Widmo promieniowania

Widmo promieniowania Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,

Bardziej szczegółowo

Efekt cieplarniany i warstwa ozonowa

Efekt cieplarniany i warstwa ozonowa Efekt cieplarniany i warstwa ozonowa Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało pochłaniające całkowicie każde promieniowanie, które padnie na jego powierzchnię, niezależnie od

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 3 17 października 2016 A.F.Żarnecki

Bardziej szczegółowo

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -1

Wykład 18: Elementy fizyki współczesnej -1 Wykład 18: Elementy fizyki współczesnej -1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego

Bardziej szczegółowo

Techniczne podstawy promienników

Techniczne podstawy promienników Techniczne podstawy promienników podczerwieni Technical Information,, 17.02.2009, Seite/Page 1 Podstawy techniczne Rozdz. 1 1 Rozdział 1 Zasady promieniowania podczerwonego - Podstawy fizyczne - Widmo,

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej Diagnostyka plazmy - spektroskopia molekularna Ewa Pawelec wykład dla pracowni specjalistycznej Plazma Różne rodzaje plazmy: http://www.ipp.cas.cz/mi/index.html http://www.pro-fusiononline.com/welding/plasma.htm

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego.

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Zmienne pole magnetyczne wytwarza zmienne pole elektryczne i odwrotnie zmienne pole elektryczne jest źródłem zmiennego pola magnetycznego

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

1.3. Poziom ekspozycji na promieniowanie nielaserowe wyznacza się zgodnie z wzorami przedstawionymi w tabeli 1, przy uwzględnieniu:

1.3. Poziom ekspozycji na promieniowanie nielaserowe wyznacza się zgodnie z wzorami przedstawionymi w tabeli 1, przy uwzględnieniu: Załącznik do rozporządzenia Ministra Pracy i Polityki Społecznej z dnia 27 maja 2010 r. Wyznaczanie poziomu ekspozycji na promieniowanie optyczne 1. Promieniowanie nielaserowe 1.1. Skutki oddziaływania

Bardziej szczegółowo

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO

WYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO ĆWICZENIE 107 WYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO Cel ćwiczenia: pomiary zdolności emisyjnej ciała jako funkcji jego temperatury, wyznaczenie stałej

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

POLICJA KUJAWSKO-POMORSKA WYBRANE ZJAWISKA OPTYKI W BADANIACH KRYMINALISTYCZNYCH

POLICJA KUJAWSKO-POMORSKA WYBRANE ZJAWISKA OPTYKI W BADANIACH KRYMINALISTYCZNYCH POLICJA KUJAWSKO-POMORSKA Źródło: http://www.kujawsko-pomorska.policja.gov.pl/kb/dzialania-policji/kryminalistyka/aktualnosci/arciwmlb/2545,wybrane-zjawi SKA-OPTYKI-W-BADANIACH-KRYMINALISTYCZNYCH.html

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie

Bardziej szczegółowo

Wprowadzenie do technologii HDR

Wprowadzenie do technologii HDR Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii

Bardziej szczegółowo

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji

Bardziej szczegółowo

ĆWICZENIE 44 BADANIE DYSPERSJI. I. Wprowadzenie teoretyczne.

ĆWICZENIE 44 BADANIE DYSPERSJI. I. Wprowadzenie teoretyczne. ĆWICZENIE 44 BADANIE DYSPERSJI I. Wprowadzenie teoretyczne. Światło białe przechodząc przez ośrodek o współczynniku załamania n> na granicy ośrodka optycznie rzadszego i gęstszego ulega załamaniu. Jeżeli

Bardziej szczegółowo

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7 Dzień dobry BARWA ŚWIATŁA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki Co to jest światło? Światło to promieniowanie elektromagnetyczne w zakresie

Bardziej szczegółowo

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy) POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu.

SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu. SRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUA A 1. Uzupełnij tekst. Wpisz w lukę odpowiedni wyraz. Energia, jaką w wyniku zajścia zjawiska fotoelektrycznego uzyskuje elektron wybity z powierzchni metalu,

Bardziej szczegółowo

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS PROMIENIOWANIE ELEKTROMAGNETYCZNE Promieniowanie X Ultrafiolet Ultrafiolet

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

Lekcja 81. Temat: Widma fal.

Lekcja 81. Temat: Widma fal. Temat: Widma fal. Lekcja 81 WIDMO FAL ELEKTROMAGNETCZNYCH Fale elektromagnetyczne można podzielić ze względu na częstotliwość lub długość, taki podział nazywa się widmem fal elektromagnetycznych. Obejmuje

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

P (r,, ) - kąt zenitalny czyli miarę kąta między wektorem OP a osią OZ.

P (r,, ) - kąt zenitalny czyli miarę kąta między wektorem OP a osią OZ. P (r,, ) Dowolnemu punktowi P przypisujemy jego współrzędne sferyczne: r - promień wodzący czyli odległość punktu P od początku układu O - kąt azymutalny czyli miarę kąta między rzutem prostokątnym wektora

Bardziej szczegółowo

ZDALNA REJESTRACJA POWIERZCHNI ZIEMI

ZDALNA REJESTRACJA POWIERZCHNI ZIEMI Zdalne metody (teledetekcję) moŝna w szerokim pojęciu zdefiniować jako gromadzenie informacji o obiekcie bez fizycznego kontaktu z nim (Mularz, 2004). Zdalne metody (teledetekcję) moŝna w szerokim pojęciu

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Wykład 7 Kwantowe własności promieniowania

Wykład 7 Kwantowe własności promieniowania Wykład 7 Kwantowe własności promieniowania zdolność absorpcyjna, zdolność emisyjna, prawo Kirchhoffa, prawo Stefana-Boltzmana, prawo Wiena, postulaty Plancka, zjawisko fotoelektryczne, efekt Comptona W7.

Bardziej szczegółowo

BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO

BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO ZADANIE 9 BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO Wstęp KaŜde ciało o temperaturze wyŝszej niŝ K promieniuje energię w postaci fal elektromagnetycznych. Widmowa zdolność emisyjną ciała o temperaturze

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego 1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)

Bardziej szczegółowo

Metody badania kosmosu

Metody badania kosmosu Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

WYZNACZENIE STAŁEJ PLANCKA NA PODSTAWIE CHARAKTERYSTYKI DIODY ELEKTROLUMINESCENCYJNEJ

WYZNACZENIE STAŁEJ PLANCKA NA PODSTAWIE CHARAKTERYSTYKI DIODY ELEKTROLUMINESCENCYJNEJ ĆWICZENIE 48 WYZNACZENIE STAŁEJ PLANCKA NA PODSTAWIE CHARAKTERYSTYKI DIODY ELEKTROLUMINESCENCYJNEJ Cel ćwiczenia: Wyznaczenie stałej Plancka na podstawie pomiaru charakterystyki prądowonapięciowej diody

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Kolorowy Wszechświat część I

Kolorowy Wszechświat część I Kolorowy Wszechświat część I Bartłomiej Zakrzewski Spoglądając w pogodną noc na niebo, łatwo możemy dostrzec, że gwiazdy (przynajmniej te najjaśniejsze) różnią się między sobą kolorami. Wśród nich znajdziemy

Bardziej szczegółowo

Temat: Promieniowanie atomu wodoru (teoria)

Temat: Promieniowanie atomu wodoru (teoria) Temat: Promieniowanie atomu wodoru (teoria) Zgodnie z drugim postulatem Bohra elektron poruszając się po dozwolonej orbicie nie wypromieniowuje energii. Promieniowanie zostaje wyemitowane, gdy elektron

Bardziej szczegółowo

Emisja spontaniczna i wymuszona

Emisja spontaniczna i wymuszona Fluorescencja Plan wykładu 1) Absorpcja, emisja wymuszona i emisja spontaniczna 2) Przesunięcie Stokesa 3) Prawo lustrzanego odbicia 4) Znaczniki fluorescencyjne 5) Fotowybielanie Emisja spontaniczna i

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

Pracownia fizyczna dla szkół

Pracownia fizyczna dla szkół Imię i Nazwisko Widma świecenia pierwiastków opracowanie: Zofia Piłat Cel doświadczenia Celem doświadczenia jest zaobserwowanie widm świecących gazów atomowych i zidentyfikowanie do jakich pierwiastków

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Fizyka środowiska Moduł 1. Promieniowanie słoneczne i atmosfera Ziemi Instytut Fizyki PŁ 2018 Fotografia z:

Fizyka środowiska Moduł 1. Promieniowanie słoneczne i atmosfera Ziemi Instytut Fizyki PŁ 2018 Fotografia z: Fizyka środowiska Moduł 1. Promieniowanie słoneczne i atmosfera Ziemi Instytut Fizyki PŁ 018 Fotografia z: http://oze.gep.com.pl/energia-sloneczna/ 1.1. Opis ilości promieniowania Strumień promieniowania

Bardziej szczegółowo

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018 Optyka Wykład XII Krzysztof Golec-Biernat Dyfrakcja. Laser Uniwersytet Rzeszowski, 17 stycznia 2018 Wykład XII Krzysztof Golec-Biernat Optyka 1 / 23 Plan Dyfrakcja na jednej i dwóch szczelinach Dyfrakcja

Bardziej szczegółowo

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych

Bardziej szczegółowo

Teoria światła i barwy

Teoria światła i barwy Teoria światła i barwy Powstanie wrażenia barwy Światło może docierać do oka bezpośrednio ze źródła światła lub po odbiciu od obiektu. Z oka do mózgu Na siatkówce tworzony pomniejszony i odwrócony obraz

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I GRAWITACJA opowiedzieć o odkryciach Kopernika, Keplera i Newtona, opisać ruchy

Bardziej szczegółowo

Rysunek 3-19 Model ciała doskonale czarnego

Rysunek 3-19 Model ciała doskonale czarnego 3.4. Początki teorii kwantów narodziny fizyki kwantowej Od czasów sformułowania przez Isaaca Newtona zasad mechaniki klasycznej teoria ta stała się podstawą wszystkich nowopowstałych atomistycznych modeli

Bardziej szczegółowo

Pod wpływem enzymów forma trans- retinalu powraca do formy cis- i powoli, w ciemności, przez łączenie się z opsyną, następuje resynteza rodopsyny.

Pod wpływem enzymów forma trans- retinalu powraca do formy cis- i powoli, w ciemności, przez łączenie się z opsyną, następuje resynteza rodopsyny. Barwa, kolor, choć z pozoru cecha rzeczywista materii (przyzwyczailiśmy się, że wszystko ma swój kolor) w rzeczywistości jest cechą subiektywną. Barwa nie istnieje w rzeczywistości a jedynie powstaje wrażenie

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek

Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek Elementy optyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy optyki kwantowej Ciało doskonale czarne Rozkład

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona Fizyka kwantowa - po co? Jeśli chcemy badać zjawiska, które zachodzą w skali mikro -

Bardziej szczegółowo

Wzbudzony stan energetyczny atomu

Wzbudzony stan energetyczny atomu LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana

Bardziej szczegółowo

WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA

WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA ĆWICZENIE 32 WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA Cel ćwiczenia: Wyznaczenie stałej Stefana-Boltzmanna metodami jednakowej temperatury i jednakowej mocy. Zagadnienia: ciało doskonale czarne, zdolność

Bardziej szczegółowo