Inżynieria Biomedyczna. Wykład IV Elementy termochemii czyli o efektach cieplnych reakcji
|
|
- Nina Wójtowicz
- 7 lat temu
- Przeglądów:
Transkrypt
1 Inżynieria Biomedyczna Wykład IV Elementy termochemii czyli o efektach cieplnych reakcji
2 Plan Terminologia i jednostki energii Pojemność cieplna Reaktywność chemiczna I prawo termodynamiki Entalpia Prawo Hessa Prawo Kirchhoffa Kalorymetria
3 Energia: Terminologia zdolność do wykonywania pracy w lub przekazywania ciepła q Energia wewnętrzna U-część energii układu zależna tylko od jego stanu wewnętrznego, stanowi ona sumę energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych układu oraz energii ruchu cieplnego cząsteczek Ruch postępowy Ruch obrotowy Ruch wibracyjny Oddziaływanie wewnątrzcząsteczkowe Oddziaływanie międzycząsteczkowe
4 Terminologia cd Układ - część przyrody (wszechświata), którego zachowanie badamy Otoczenie - część przyrody (wszechświata) w której dokonujemy obserwacji Wszechświat = układ + otoczenie Układy termodynamiczne OTWARTY ZAMKNIĘTY IZOLOWANY materia ciepło ciepło ciepło ciepło
5
6 CIEPŁO I PRACA W INTERPRETACJI MOLEKULARNEJ OTOCZENIE OTOCZENIE Energia jako ciepło Energia jako praca UKŁAD UKŁAD CIEPŁO JEST FORMĄ PRZEKAZYWANIA ENERGII, KTÓRA POLEGA NA CHAOTYCZNYM RUCHU CZASTECZEK (RUCHU TERMICZNYM). PRACA JEST PRZEKAZEM ENERGII ZWIĄZANYM Z UPRZĄDKOWANYM RUCHEM CZĄSTECZEK
7 ZMIENNE STANU UKŁADU (PARAMETRY STANU) są to wielkości fizyczne (m, V, T, p, c), które w sposób jednoznaczny opisują własności układu. PARAMETRY STANU INTENSYWNE nie zależą od masy (wielkości) układu: T, p, c, EKSTENSYWNE zależą od masy (wielkości) układu: m, V, n, E
8 FUNKCJA STANU wielkość fizyczna, której wartość zależy wyłącznie od stanu w jakim układ się znajduje, nie zaś od drogi, po której ten stan został osiągnięty. TERMODYNAMICZNE FUNKCJE STANU energia wewnętrzna U entalpia H entropia S energia swobodna F entalpia swobodna G
9 Jednostki Energii Dżul - (symbol J) w układzie SI jednostka pracy, energii oraz ciepła. 1J- praca wykonana przez siłę 1N przy przesunięciu punktu przyłożenia siły o 1 metr w kierunku równoległym do kierunku działania siły. 1 dżul = 1 N 1 metr 1 J = 1N m Kaloria Dawniej definiowana jako ilość ciepła potrzebna do podgrzania, pod ciśnieniem 1 atmosfery, 1 g czystej chemicznie wody o 1 od temperatury 14,5 C do 15,5 C. W 1929 roku wprowadzono kalorię międzynarodową. 1 cal = 4,1868 J Istnieje jeszcze kaloria termochemiczna: 1 cal = 4,184 J
10 Reaktywność chemiczna 1. Co jest siłą napędową reakcji chemicznych? 2. Czy reakcja chemiczna zachodzi z zauważalną szybkością? Odpowiedź na pierwsze pytanie daje TERMODYNAMIKA, na drugie KINETYKA Sposób przekazania energii pozwala na przewidywanie reaktywności Ogólnie, reakcje przenoszące energię do otoczenia są reakcjami, które faworyzują tworzenie produktów Jak możemy opisać transfer ciepła w procesach chemicznych?
11 Transfer ciepła w procesach fizyko-chemicznych Pod ciśnieniem atmosferycznym CO 2 przechodzi ze stanu stałego do gazowego (proces sublimacji) z pominięciem fazy ciekłej w temperaturze -78,5 C. CO 2 (ciało stałe, -78,5 o C) CO 2 (gaz, -78,5 o C) Ciepło przepływa do UKŁADU (stałe CO 2 ) z OTOCZENIA w procesie ENDOTERMICZNYM CIEPŁO q UKŁAD OTOCZENIE 1. Jeżeli rozprężany gaz jest w układzie otwartym przeniesiona energia pojawia się tylko jako ciepło (wzrost temperatury CO 2(gaz) ) 2. Jeżeli rozprężany gaz jest w układzie zamkniętym przeniesiona energia pojawia się jako PRACA ROZPRĘŻANIA w=-p V
12 Ciepło jest przekazywane q = U - w Energia jest zmieniana I PRAWO TERMODYNAMIKI Praca jest wykonana przez układ Ciepło q i praca w przyjmują wartości dodatnie jeżeli są przekazywane z OTOCZENIA do UKŁADU lub U = q + w Ciepło otoczenie układ q ukł >0 Energia jest zachowana Praca w ukł >
13 I prawo termodynamiki Zmiana energii wewnętrznej układu jest sumą pracy w wykonanej na układzie (lub przez układ) oraz ciepła q wymienionego przez układ z otoczeniem Zmiana energii wewnętrznej przy przejściu układu od stanu 1 (V 1, T 1 ) do stanu 2 (V 2, T 2 ) nie zależy od drogi po której przejście nastąpiło Stan 2 U I U II Gdyby U I < U II to przechodząc od I II I uzyskiwalibyśmy energię z niczego!!! Stan 1 U I = U II Nie pozwala na to zasada zachowania energii
14 Praca objętościowa w 1 pdv 2 v V Wykonana praca; pole pod krzywą p W 1 2 (droga zielona) > W 1 2 (droga czerwona) 3. Wykonana praca zależy od drogi przemiany V 1 V 2 V 4. Praca nie jest funkcją stanu!!!
15 ENTALPIA H Większość reakcji zachodzi przy stałym ciśnieniu p Ciepło przekazane przy stałym ciśnieniu nazywa się q p U = q + w= q - p V q p = H = U -w = U + p V = (U+pV) Gdzie H-entalpia Definicja entalpii H=U+pV H - ciepło przekazywane przy p=const H =zmiana ciepła danego układu H=H kon -H pocz
16 Entalpia H = U + pv H = U + p V U = H p V Na +H 2 O (aq) = NaOH (aq) +H 2(g) Ciężarek Tłok w= -p V V Ciepło=-368.6kJ Przed Po
17 Proces: Endo - Egzotermiczny otoczenie otoczenie Ciepło q ukł >0 układ Ciepło q ukł <0 układ Endotermiczny Egzotermiczny
18 Entalpia H ENTALPIA Entalpia H H=H kon -H pocz Jeżeli H kon <H pocz to H<0 Proces jest egzotermiczny Substraty EGZOTERMICZNY Jeżeli H kon >H pocz to H>0 Proces jest endotermiczny ENDOTERMICZNY Produkty Produkty Substraty
19 ENTALPIA Entalpia reakcji H 2 (gaz) +1/2O 2(gaz ) H 2 O (gaz) + ciepło Reakcja egzotermiczna ciepło jest produkowane, H=-242J H 2 (gaz) +1/2O 2(gaz ) Zmiana entalpii reakcji odwrotnej jest, co do wartości taka sama jak reakcji pierwotnej, tylko przeciwnego znaku H=242J H=-242J H 2 O (gaz) H 2 O (gaz) + ciepło H 2 (gaz) +1/2O 2(gaz) Reakcja endotermiczna ciepło jest substratem, H=242J
20 Dlaczego ciepło jest oddawane lub absorbowane? Zerwanie wiązań wymaga dostarczenia energii Tworzeniu wiązań towarzyszy oddawanie energii H = H zerwanie wiązań + H tworzenie wiązań H > 0 H < 0 Energia dysocjacji np. H-H H + H H = D H-H = +436 kj/mol
21 Oblicz H reakcji: ½ N 2(g) + 3 / 2 H 2(g) NH 3(g) 1. ½ N 2(g) N (g) (1) H = ½ (D N-N ) 2. 3 / 2 H 2(g) 3 H (g) (2) H = 3 / 2 (D H-H ) 3. N (g) + 3 H (g) NH 3(g) (3) H = - 3 (D N-H ) Równania = ½ N 2(g) + 3 / 2 H 2(g) NH 3(g) H = - 3(D N-H ) + ½ (D N-N ) + 3 / 2 (D H-H ) = - 3(389kJ/mol) + ½ (946kJ/mol) + 3 / 2 (436kJ/mol) = - 40 kj/mol
22 Pojemność cieplna C Różniczkowa ilość ciepła zaabsorbowanego przez układ (dq), niezbędna do zmiany temperatury układu jest proporcjonalna do tej zmiany temperatury (dt) dq CdT T f Δq C T dt Ti Współczynnik proporcjonalności C jest zwany pojemnością cieplną układu Jeśli pojemność cieplna nie zależy od temperatury to: q = C T C= q/ T
23 Ciepło właściwe i ciepło molowe Pojemność cieplna układu jest proporcjonalna do ilości materii w układzie i jej rodzaju Ciepło właściwe, C wł (specific heat capacity) pojemność cieplna na gram substancji (J/K g) Ciepło molowe właściwe, C mol (molar heat capacity) pojemność cieplna na mol substancji (J/K mol)
24 Sposoby wyznaczenia H Zastosowanie prawa Hessa Zastosowanie entalpii tworzenia Pomiar w laboratorium - kalorymetria
25 Prawo Hessa substraty produkty + H reakcji Zmiana entalpii reakcji nie zależy od tego czy reakcja przebiega w jednym czy też w kilku aktach Entalpia jest funkcją stanu!
26 Otrzymanie cząsteczki gazowego wodoru H 2 z ciekłej wody wymaga 2 etapów H 2 O (liq) + 44kJ H 2 O (gaz) H 2 O (gaz) + 242kJ H 2(gaz) +1/2O 2(gaz) H 2 O (liq) + 286kJ H 2(gaz) +1/2O 2(gaz) To jest przykład stosowania prawa Hessa Jeżeli reakcja jest sumą 2 lub więcej procesów to zmiana entalpii H tej reakcji jest sumą zmian entalpii poszczególnych etapów
27 Prawo Hessa przykład (2) Oblicz H reakcji Wiedząc że S (s) +3/2O 2(gaz) SO 3 (gaz) S (s) +O 2(gaz) SO 2 (gaz) H 1 =-320.5kJ SO 2(gaz) +1/2O 2(gaz) SO 3 (gaz) H 2 =-75.2kJ S (s) +3/2O 2(gaz) SO 3 (gaz) H 3 =-395.7kJ Dodanie H n danej reakcji pozwala otrzymać szukane H reakcji H= H 1 + H 2 =-395.7kJ
28 Energia S ciało stałe +O 2 H1 = kj +3/2O 2 H 3 = kj SO 3 gaz SO 2 gaz +1/2O 2 H 2 =-75.2 kj H 3 = kj H (1+2) = = Σ H wzdłuż jednej drogi = Σ H wzdłuż innej drogi
29 Σ H wzdłuż jednej drogi = Σ H wzdłuż innej drogi Jest to prawda ponieważ H jest FUNKCJĄ STANU Zależy tylko od stanu układu a nie jaką drogą doszliśmy do tego Inne funkcje stanu: V, p,t, U. i stan naszego konta w banku W przeciwieństwie do V, T, p nie możemy zmierzyć absolutnej wartości H. Jedynie H
30 Entalpia a energia wewnętrzna Entalpia i energia wewnętrzna są funkcjami stanu Entalpia opisuje przemiany energetyczne układu w warunkach stałego ciśnienia Energia wewnętrzna opisuje przemiany energetyczne układu w warunkach stałej objętości H=q p, p=const U=q v, V=const
31 Wartości STANDARDOWE ENTALPII Większość wartości H zapisuje się jako H o o oznacza że pomiaru dokonano w warunkach standardowych p=1 atm (1013hPa) Koncentracja 1 mol/dm 3 Zazwyczaj 25 o C (T=298 K) Dodatnie wartości H o =0 tworzenia pierwiastków Ujemne wartości
32 H o f= standardowa molowa entalpia tworzenia Zmiana entalpii odpowiadająca 1 molowi związku tworzonego z pierwiastków w warunkach standardowych Zgodnie z definicją, H o f=0 dla pierwiastków w ich stanach standardowych H 2(gaz) + 1/2O 2(gaz) H 2 O (gaz) H o f= kj/mol
33 Stosowanie wartości standardowych entalpii Jak obliczyć H o reakcji? pierwiastki H o s H o p substraty produkty H o reakcji Jeżeli znamy WSZYSTKIE entalpie tworzenia H o reakcji = Σm H o (produktów) -Σn H o (substratów)
34 Przykład Oblicz ciepło spalania etanolu dla reakcji: C 2 H 5 OH (gaz) + 7/2O 2(gaz) 2CO 2(gaz) + 3H 2 O (gaz) H o = Σm H o (produktów) -Σn H o (substratów) H o ={2 H o f(co 2 )+3 H o f(h 2 O)}-{7/2 H o f(o 2 ) + H o f(c 2 H 5 OH)} = {2( kj) +3( kj)-{7/2(0 kj)+(-235.1kj)} H o = kj na mol etanolu
35 krzepnięcie resublimacja Energia skraplanie Entalpia przemian fazowych PARA H parowania H sublimacji CIECZ CIAŁO STAŁE H topnienia Entalpia jest funkcją stanu H parowania = - H skraplania H topnienia= - H krzepnięcia, H sublimacji= - H resublimacji
36 Substancja Wzór Temp. Topnienia K H o Topnienia kj/mol Temp. Wrzenia K H o Parowania kj/mol Hel He Amoniak NH Woda H 2 O Etanol C 2 H 5 OH Metan CH Rtęć Hg
37 Obliczanie zmian energii wewnętrznej U i entalpii H przy zmianach temperatury układu T H CpdT Cp(T2 T 1) T 2 1 T U CVdT CV (T2 T 1) Równania słuszne jeżeli w przedziale temperatur T 1 do T 2 nie zachodzą żadne przemiany fazowe, z którymi związane są efekty cieplne (np. topnienie, przemiana polimorficzna) T 2 1 S S A S B T 1 T A T B T 2 ΔH T A C dt + ΔH C dt ΔH p (S) S S + + A p(sa ) SA S + B T 1 T T B A T T 2 B C p(s B ) dt
38 Jaka ilość ciepła jest potrzebna aby przeprowadzić 10.0g lodu w temperaturze o C do pary wodnej w temperaturze o C? q = H lód + H topienia + H wody + H parowania Właściwa pojemność cieplna C p dla wody: Lód: 2.09 J(gK) -1 Ciecz 4.18 J(gK) -1 Para 2.03 J(gK) -1 + H para q = H lód + H topienia + H wody + H parowania + H para q = (10.0g 2.09J (gk) -1 15K) + (10.0g 333J/g) + (10.0g 4.18J (gk) K) + (10.0g 2260J/g) + (10.0g 2.03J (gk) K) Ciepło przemiany: Lód/Ciecz Ciecz/Para q = ( X X X )J = 23.3 kj 333 J/g 2260 J/g
39 Zależność entalpii reakcji od temperatury Dla reakcji aa + bb dd + ee w temperaturze T molowa entalpia reakcji ( H r ) T ( H r ) T = H o r + C p T gdzie: C p = nc p,n - mc p,m = {dc p,n (D) +ec p,n (E)} {ac p,m (A) +bc p,m (B)} H r o entalpia reakcji w warunkach standardowych Prawo Kirchhoffa umożliwia obliczanie entalpii reakcji w jednej temperaturze, znając entalpię tej reakcji w innej temperaturze i molowe pojemności cieplne reagentów. Stosowalność prawa Kirchhoffa: założenie stałości pojemności cieplnych w rozważnym zakresie temperatur wymaga ograniczenia zmiany temperatury do ok. 100K
40 calor (łac)=ciepło Kalorymetria Dział chemii zajmujący się rozwijaniem technik pomiaru CIEPŁA, które powstaje w wyniku reakcji chemicznych oraz procesów fizycznych Pomiar ciepła przemiany układu pomiar zmian jego temperatury, nie istnieją w praktyce układy w pełni ADIABATYCZNE, czyli nie wymieniające ciepła z otoczeniem. Dodatkowo efekt cieplny wielu przemian jest trudny do zmierzenia, gdyż mogą mu towarzyszyć procesy uboczne, które same pochłaniają lub wytwarzają energię termiczną. Kalorymetr-urządzenie do pomiaru efektów cieplnych,
41 Pomiar zmiany energii wewnętrznej U-bomba kalorymetryczna Pojemność cieplna kalorymetru Ciepło potrzebne do wywołania przyrostu temperatury o 1 o termometr mieszadło Przewody zapłonu Próbka o masie=1.000g wytwarza 11.0 kj ciepła. Temperatura kalorymetru i 3000 g wody podniosła się o o C. Jaka ilość ciepła została pobrana przez kalorymetr? woda Atmosfera tlenu q kalorymetru = q reakcji - q wody q= 11.0 kj - ((3.00kg)(0.629K)(4.177kJ (kgk) -1 ) = 3.1 kj Próbka q m C Ciepło właściwe wody wynosi J/g K wł ΔT
42 Pomiar ciepła przy V=const Wyznaczanie ciepła spalania metanu: 0.800g CH 4 spalono w stałej objętości w nadmiarze tlenu wewnątrz kalorymetru zawierającego g wody. Temperatura wody wzrosła o 3.3 o C. Ciepło właściwe wody wynosi J/g K. Oblicz ciepło spalania metanu. Ciepło pochłonięte przez wodę q m C wł ΔT q (J) g 4.177J (g K) 3.3K Ciepło wydzielone przy spaleniu 1 g CH J Ciepło wydzielone przy spaleniu 1 mola CH 4 q mol q q CH4 CH4 M 900kJ/mol m q CH4 CH J/g J/g 16g/mol J/mo l
43 Coffee cup kalorymetr Warunki izobaryczne (pod stałym ciśnieniem) q(układ)=-q(otoczenia) q(układ)=-q(woda)-q(kalorymetr) q(woda)=c H2O xm H2O x T q(układ) = H 2 styropianowe kubki Przykład: Temperatura 50cm 3 1M roztworu NaOH wynosi 25.3 o C. Po dodaniu 50cm 3 1M roztworu HCOOH o temperaturze 25.3 o C temperatura wzrosła do 31.8 o C. NaOH + HCOOH NaHCOO + H 2 O Gęstość roztworu po wykonaniu doświadczenia wynosi 1g/cm 3. OTOCZENIE: kalorymetr + woda w obu oryginalnych roztworach UKŁAD: substraty i produkty reakcji q(wody)=4.184j/(g K} x100gx( o C) q(wody)=2.7kj H?, Wartość i znak? Liczba moli n=0.05 Układ jest rozpuszczony w wodzie
44 Pomiar ciepła przy p=const Wyznaczanie ciepła reakcji spalania węgla C (diamond) + O 2(g) CO 2(g) jeżeli nastąpiła zmiana temperatury T i = o C, T f = o C, dla 0.250g węgla, i m = 1560g H 2 O q = m c T = 1560 g x J(g K) -1 x (1.26)K= = 8.22 x 10 3 J= 8.22 kj H / na 1 mol ( g) = =(8.22 kj/0.25 g) x ( g/mol) = -395 kj/mol
Jak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie
Bardziej szczegółowoInżynieria Biomedyczna. Wykład IV i V
Inżynieria Biomedyczna Wykład IV i V Energia: Terminologia zdolność do wykonywania pracy w lub przekazywania ciepła q Energia wewnętrzna U-część energii układu zależna tylko od jego stanu wewnętrznego,
Bardziej szczegółowoTermochemia elementy termodynamiki
Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.
Bardziej szczegółowoJak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie siła/powierzchnia
Bardziej szczegółowoWYKŁAD 3 TERMOCHEMIA
WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian
Bardziej szczegółowoĆwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
Bardziej szczegółowoFizyka Termodynamika Chemia reakcje chemiczne
Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych
Bardziej szczegółowoZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa
Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem
Bardziej szczegółowo(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego
Bardziej szczegółowoZadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001
Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001 I zasada termodynamiki - pojęcia podstawowe C2.4 Próbka zawierająca
Bardziej szczegółowoTERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.
1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w
Bardziej szczegółowoTERMODYNAMIKA I TERMOCHEMIA
TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami
Bardziej szczegółowoĆwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne
Bardziej szczegółowoI piętro p. 131 A, 138
CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I piętro p. 131 A, 138 WYKŁAD - 4 RÓWNOWAGA Termochemia i termodynamika funkcje termodynamiczne, prawa termodynamiki,
Bardziej szczegółowoDRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Bardziej szczegółowoWarunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Bardziej szczegółowoTemperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
Bardziej szczegółowo1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA
. PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:
Bardziej szczegółowoZasady termodynamiki
Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest
Bardziej szczegółowoTermochemia efekty energetyczne reakcji
Termochemia efekty energetyczne reakcji 1. Podstawowe pojęcia termodynamiki chemicznej a) Układ i otoczenie Układ, to wyodrębniony obszar materii, oddzielony od otoczenia wyraźnymi granicami (np. reagenty
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
Bardziej szczegółowoProjekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Bardziej szczegółowoDRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Bardziej szczegółowoWykład 10 Równowaga chemiczna
Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości
Bardziej szczegółowo3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:
Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do
Bardziej szczegółowoKryteria samorzutności procesów fizyko-chemicznych
Kryteria samorzutności procesów fizyko-chemicznych 2.5.1. Samorzutność i równowaga 2.5.2. Sens i pojęcie entalpii swobodnej 2.5.3. Sens i pojęcie energii swobodnej 2.5.4. Obliczanie zmian entalpii oraz
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Bardziej szczegółowoTermodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej
Bardziej szczegółowoPodstawowe pojęcia 1
Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko
Bardziej szczegółowoWYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
Bardziej szczegółowoChemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Bardziej szczegółowoTERMOCHEMIA SPALANIA
TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie
Bardziej szczegółowoElementy termodynamiki chemicznej. Entalpia:
Elementy termodynamiki chemicznej 1 - układ fizyczny otwarty (możliwa wymiana energii i materii z otoczeniem), zamknięty (możliwa tylko wymiana energii), izolowany wielkości ekstensywne zależne od ilości
Bardziej szczegółowoOdwracalność przemiany chemicznej
Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt
Bardziej szczegółowoMateriał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych
Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych I. Reakcje egzoenergetyczne i endoenergetyczne 1. Układ i otoczenie Układ - ogół substancji
Bardziej szczegółowoWykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Bardziej szczegółowoWykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
Bardziej szczegółowoPodstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Bardziej szczegółowoRównowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny
Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają
Bardziej szczegółowoPrawo Hessa. Efekt cieplny reakcji chemicznej lub procesu fizykochemicznego
Tomasz Lubera Prawo Hessa Efekt cieplny reakcji chemicznej lub procesu fizykochemicznego prowadzonego: Izobarycznie Q p = ΔH Izochorycznie Q V = ΔU nie zależy od drogi przemiany a jedynie od stanu początkowego
Bardziej szczegółowoTERMOCHEMIA SPALANIA
TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie
Bardziej szczegółowoI. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i
I. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i chemicznych) Termodynamika chemiczna - nauka zajmująca
Bardziej szczegółowoPodstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Bardziej szczegółowoElementy termodynamiki chemicznej. Entalpia:
Elementy termodynamiki chemicznej 1 - układ fizyczny otwarty (możliwa wymiana energii i materii z otoczeniem), zamknięty (możliwa tylko wymiana energii), izolowany wielkości ekstensywne zależne od ilości
Bardziej szczegółowoUkład termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Bardziej szczegółowoTERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
Bardziej szczegółowoInżynieria Biomedyczna Wykład V
Inżynieria Biomedyczna Wykład V 1 Plan Reakcje samorzutne Entropia II zasada termodynamiki Entalpia i energia swobodna Kryteria samorzutności Termodynamika a stała równowagi K r 2 Woda zawsze spływa w
Bardziej szczegółowoWNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG
WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG Imię i nazwisko: Klasa i szkoła*: Adres e-mail: Nr telefonu: Czy uczeń jest już uczestnikiem projektu? (odp. otoczyć kółkiem) Ocena
Bardziej szczegółowoĆwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
Bardziej szczegółowo1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Bardziej szczegółowoKontakt,informacja i konsultacje
Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna
Bardziej szczegółoworelacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
Bardziej szczegółowoCIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak
CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak 1 Temperatura 2 Temperatura jest wielkością charakteryzującą stopień nagrzania danego ciała. 3 Temperaturę ciała można określić jako
Bardziej szczegółowo13 TERMODYNAMIKA. Sprawdzono w roku 2015 przez A. Chomickiego
13 TERMODYNAMIKA Zagadnienia teoretyczne Układ i otoczenie. Wielkości intensywne i ekstensywne. Pojęcie energii, ciepła, pracy, temperatury. Zasady termodynamiki (pierwsza, druga, trzecia). Funkcje termodynamiczne
Bardziej szczegółowoWykład 5. Kalorymetria i przejścia fazowe
Wykład 5 Kalorymetria Ciepło przemian fazowych Bilans cieplny Proces kwazistatyczny Procesy odwracalne i nieodwracalne Praca Energia wewnętrzna Podstawowe przemiany gazowe W. Dominik Wydział Fizyki UW
Bardziej szczegółowoMateriały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część IV - Elementy termodynamiki i kinetyki chemicznej
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część IV - Elementy termodynamiki i kinetyki chemicznej Wydział Chemii UAM Poznań 2011 POJĘCIA CIA PODSTAWOWE UKŁAD AD pewna część
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,
Bardziej szczegółowoZadanie 1. Zadanie: Odpowiedź: ΔU = 2, J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
Bardziej szczegółowoZadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
Bardziej szczegółowoGAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
Bardziej szczegółowoWykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
Bardziej szczegółowo13 TERMODYNAMIKA. Sprawdzono w roku 2017 przez A. Chomickiego
13 TERMODYNAMIKA Zagadnienia teoretyczne Układ i otoczenie. Wielkości intensywne i ekstensywne. Pojęcie energii, ciepła, pracy, temperatury. Zasady termodynamiki (pierwsza, druga, trzecia). Funkcje termodynamiczne
Bardziej szczegółowoAKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie OLIMPIADA O DIAMENTOWY INDEKS AGH 2017/18 CHEMIA - ETAP I
Związki manganu i manganometria AKADEMIA GÓRNICZO-HUTNICZA 1. Spośród podanych grup wybierz tą, w której wszystkie związki lub jony można oznaczyć metodą manganometryczną: Odp. C 2 O 4 2-, H 2 O 2, Sn
Bardziej szczegółowokryterium samorzutności, pojęcie równowagi chemicznej, stała równowagi, pojęcie trwałości i nietrwałości,
CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietro p. 131 A http://www.chemia.uj.edu.pl/kotarba/ WYKŁAD - 3 RÓWNOWAGA Termochemia i termodynamika funkcje
Bardziej szczegółowo13. TERMODYNAMIKA WYZNACZANIE ENTALPII REAKCJI ZOBOJĘTNIANIA MOCNEJ ZASADY MOCNYMI KWASAMI I ENTALPII PROCESU ROZPUSZCZANIA SOLI
Wykonanie ćwiczenia 13. TERMODYNAMIKA WYZNACZANIE ENTALPII REAKCJI ZOBOJĘTNIANIA MOCNEJ ZASADY MOCNYMI KWASAMI I ENTALPII PROCESU ROZPUSZCZANIA SOLI Zadania do wykonania: 1. Wykonać pomiar temperatury
Bardziej szczegółowoKinetyka reakcji chemicznych. Dr Mariola Samsonowicz
Kinetyka reakcji chemicznych Dr Mariola Samsonowicz 1 Czym zajmuje się kinetyka chemiczna? Badaniem szybkości reakcji chemicznych poprzez analizę eksperymentalną i teoretyczną. Zdefiniowanie równania kinetycznego
Bardziej szczegółowoEntropia - obliczanie. Podsumowanie
Chem. Fiz. CH II/4 Entropia - obliczanie. Podsumowanie 2 ) ( 2 V d C S S S 2 ) ( 2 P d C S S S S k S p S 2 2 ln ln V V R C S V + 2 2 ln ln P P R C S P w izobarze: Funkcja stanu! w izochorze: dla gazu doskonałego:
Bardziej szczegółowoCHEMIA NIEORGANICZNA. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietrop. 131 A. WYKŁAD -3
CHEMIA NIEORGANICZNA Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietrop. 131 A http://www.chemia.uj.edu.pl/kotarba/ WYKŁAD -3 RÓWNOWAGA Termochemia i termodynamika funkcje termodynamiczne,
Bardziej szczegółowoCIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
Bardziej szczegółowoCIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak
CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak 1 Temperatura 2 Temperatura jest wielkością charakteryzującą stopień nagrzania danego ciała. 3 Temperaturę ciała można określić jako
Bardziej szczegółowoTERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska
1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,
Bardziej szczegółowoc. Oblicz wydajność reakcji rozkładu 200 g nitrogliceryny, jeśli otrzymano w niej 6,55 g tlenu.
Zadanie 1. Nitrogliceryna (C 3H 5N 3O 9) jest środkiem wybuchowym. Jej rozkład można opisać następującym schematem: 4 C 3 H 5 N 3 O 9 (c) 6 N 2 (g) + 12 CO 2 (g) + 10 H 2 O (g) + 1 O 2 (g) H rozkładu =
Bardziej szczegółowoPrzemiany energii w zjawiskach cieplnych. 1/18
Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez
Bardziej szczegółowoInżynieria procesów przetwórstwa węgla, zima 15/16
Inżynieria procesów przetwórstwa węgla, zima 15/16 Ćwiczenia 1 7.10.2015 1. Załóżmy, że balon ma kształt sfery o promieniu 3m. a. Jaka ilość wodoru potrzebna jest do jego wypełnienia, aby na poziomie morza
Bardziej szczegółowoTermodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
Bardziej szczegółowoTermodynamiczny opis przejść fazowych pierwszego rodzaju
Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.
Bardziej szczegółowoTermodynamika 25/10/2017. Definicje. Układ i otoczenie
Definicje Termodynamika Termodynamika dział fizyki zajmujący się badaniem energetycznych efektów wszelkich przemian fizycznych i chemicznych, które wpływają na zmiany energii wewnętrznej analizowanych
Bardziej szczegółowoTermodynamika materiałów
Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele
Bardziej szczegółowoKiedy przebiegają reakcje?
Kiedy przebiegają reakcje? Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. CH 4(g) + 2O 2(g) substraty 2(g) egzotermiczna
Bardziej szczegółowoa. Dobierz współczynniki w powyższym schemacie tak, aby stał się równaniem reakcji chemicznej.
Zadanie 1. Nitrogliceryna (C 3 H 5 N 3 O 9 ) jest środkiem wybuchowym. Jej rozkład można opisać następującym schematem: C 3 H 5 N 3 O 9 (c) N 2 (g) + CO 2 (g) + H 2 O (g) + O 2 (g) H rozkładu = - 385 kj/mol
Bardziej szczegółowoCIEPŁO O ZNANE CZY NIEZNANE?
CIEPŁO O ZNANE CZY NIEZNANE? prof. dr hab. Małgorzata Jóźwiak 1 Temperatura 2 Temperatura jest wielkości cią charakteryzującą stopień nagrzania danego ciała. a. 3 Temperaturę ciała można określić jako
Bardziej szczegółowoPodstawy termodynamiki.
Podstawy termodynamiki. Termodynamika opisuje ogólne prawa przemian energetycznych w układach makroskopowych. Określa kierunki procesów zachodzących w przyrodzie w sposób samorzutny, jak i stanów końcowych,
Bardziej szczegółowoFizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO
Bardziej szczegółowoJak mierzyć i jak liczyć efekty cieplne reakcji? Energia. Zdolność do wykonywania pracy lub produkowania ciepła
Jak miezyć i jak liczyć efekty cieplne eakcji? Enegia Zdolność do wykonywania pacy lub podukowania ciepła Paca objętościowa paca = siła odległość 06_73 P = F A W = F h N m = J P = F A Aea = A ciśnienie
Bardziej szczegółowoCIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego
CIEPŁO, PALIWA, SPALANIE CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego WYMIANA CIEPŁA. Zmiana energii wewnętrznej
Bardziej szczegółowoĆwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej
Ćwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej Cel ćwiczenia Zapoznanie się z metodą wyznaczania ciepła spalania w warunkach stałej objętości.
Bardziej szczegółowoKiedy przebiegają reakcje?
Kiedy przebiegają reakcje? Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. Termodynamika dziedzina termodynamiki
Bardziej szczegółowo1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru
1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru Wzór związku chemicznego podaje jakościowy jego skład z jakich pierwiastków jest zbudowany oraz liczbę atomów poszczególnych pierwiastków
Bardziej szczegółowoWNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG
WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG Imię i nazwisko: Klasa i szkoła*: Adres e-mail: Nr telefonu: Czy uczeń jest już uczestnikiem projektu Zdolni z Pomorza - Uniwersytet
Bardziej szczegółowo3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii
Bardziej szczegółowoJednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m
TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość
Bardziej szczegółowoWykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
Bardziej szczegółowoStany skupienia materii
Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -
Bardziej szczegółowoprof. dr hab. Małgorzata Jóźwiak
Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga
Bardziej szczegółowodr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I
Podstawowe prawa i pojęcia chemiczne. Fizyczne prawa gazowe. Zad. 1. Ile cząsteczek wody znajduje się w 0,12 mola uwodnionego azotanu(v) ceru Ce(NO 3 ) 2 6H 2 O? Zad. 2. W wyniku reakcji 40,12 g rtęci
Bardziej szczegółowoVIII Podkarpacki Konkurs Chemiczny 2015/2016
III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem
Bardziej szczegółowoWykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Bardziej szczegółowoautor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt
Bardziej szczegółowoChemia - laboratorium
Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 013/14 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii
Bardziej szczegółowoPraca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna
Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na
Bardziej szczegółowo