Inżynieria Biomedyczna. Wykład IV i V

Wielkość: px
Rozpocząć pokaz od strony:

Download "Inżynieria Biomedyczna. Wykład IV i V"

Transkrypt

1 Inżynieria Biomedyczna Wykład IV i V

2 Energia: Terminologia zdolność do wykonywania pracy w lub przekazywania ciepła q Energia wewnętrzna U-część energii układu zależna tylko od jego stanu wewnętrznego, stanowi ona sumę energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych układu oraz energii ruchu cieplnego cząsteczek Ruch postępowy Ruch obrotowy Ruch wibracyjny Oddziaływanie wewnątrzcząsteczkowe Oddziaływanie międzycząsteczkowe

3 Terminologia cd Układ - część przyrody (wszechświata), którego zachowanie badamy Otoczenie - część przyrody (wszechświata) w której dokonujemy obserwacji Wszechświat = układ + otoczenie Układy termodynamiczne OTWARTY ZAMKNIĘTY IZOLOWANY materia ciepło ciepło ciepło ciepło

4

5 CIEPŁO I PRACA W INTERPRETACJI MOLEKULARNEJ OTOCZENIE OTOCZENIE Energia jako ciepło Energia jako praca UKŁAD UKŁAD CIEPŁO JEST FORMĄ PRZEKAZYWANIA ENERGII, KTÓRA POLEGA NA CHAOTYCZNYM RUCHU CZASTECZEK (RUCHU TERMICZNYM). PRACA JEST PRZEKAZEM ENERGII ZWIĄZANYM Z UPRZĄDKOWANYM RUCHEM CZĄSTECZEK

6 ZMIENNE STANU UKŁADU (PARAMETRY STANU) są to wielkości fizyczne (m, V, T, p, c), które w sposób jednoznaczny opisują własności układu. PARAMETRY STANU INTENSYWNE nie zależą od masy (wielkości) układu: T, p, c, EKSTENSYWNE zależą od masy (wielkości) układu: m, V, n, E

7 FUNKCJA STANU wielkość fizyczna, której wartość zależy wyłącznie od stanu w jakim układ się znajduje, nie zaś od drogi, po której ten stan został osiągnięty. TERMODYNAMICZNE FUNKCJE STANU energia wewnętrzna U entalpia H entropia S energia swobodna F entalpia swobodna G

8 Jednostki Energii Dżul - (symbol J) w układzie SI jednostka pracy, energii oraz ciepła. 1J- praca wykonana przez siłę 1N przy przesunięciu punktu przyłożenia siły o 1 metr w kierunku równoległym do kierunku działania siły. 1 dżul = 1 N 1 metr 1 J = 1N m Kaloria Dawniej definiowana jako ilość ciepła potrzebna do podgrzania, pod ciśnieniem 1 atmosfery, 1 g czystej chemicznie wody o 1 od temperatury 14,5 C do 15,5 C. W 1929 roku wprowadzono kalorię międzynarodową. 1 cal = 4,1868 J Istnieje jeszcze kaloria termochemiczna: 1 cal = 4,184 J

9 Reaktywność chemiczna 1. Co jest siłą napędową reakcji chemicznych? 2. Czy reakcja chemiczna zachodzi z zauważalną szybkością? Odpowiedź na pierwsze pytanie daje TERMODYNAMIKA, na drugie KINETYKA Sposób przekazania energii pozwala na przewidywanie reaktywności Ogólnie, reakcje przenoszące energię do otoczenia są reakcjami, które faworyzują tworzenie produktów Jak możemy opisać transfer ciepła w procesach chemicznych?

10 Transfer ciepła w procesach fizyko-chemicznych Pod ciśnieniem atmosferycznym CO 2 przechodzi ze stanu stałego do gazowego (proces sublimacji) z pominięciem fazy ciekłej w temperaturze -78,5 C. CO 2 (ciało stałe, -78,5 o C) CO 2 (gaz, -78,5 o C) Ciepło przepływa do UKŁADU (stałe CO 2 ) z OTOCZENIA w procesie ENDOTERMICZNYM CIEPŁO q UKŁAD OTOCZENIE 1. Jeżeli rozprężany gaz jest w układzie otwartym przeniesiona energia pojawia się tylko jako ciepło (wzrost temperatury CO 2(gaz) ) 2. Jeżeli rozprężany gaz jest w układzie zamkniętym przeniesiona energia pojawia się jako PRACA ROZPRĘŻANIA w=-p V

11 Ciepło jest przekazywane q = U - w Energia jest zmieniana I PRAWO TERMODYNAMIKI Praca jest wykonana przez układ Ciepło q i praca w przyjmują wartości dodatnie jeżeli są przekazywane z OTOCZENIA do UKŁADU lub U = q + w Ciepło otoczenie układ q ukł >0 Energia jest zachowana Praca w ukł >

12 I prawo termodynamiki Zmiana energii wewnętrznej układu jest sumą pracy w wykonanej na układzie (lub przez układ) oraz ciepła q wymienionego przez układ z otoczeniem Zmiana energii wewnętrznej przy przejściu układu od stanu 1 (V 1, T 1 ) do stanu 2 (V 2, T 2 ) nie zależy od drogi po której przejście nastąpiło Stan 2 U I U II Gdyby U I < U II to przechodząc od I II I uzyskiwalibyśmy energię z niczego!!! Stan 1 U I = U II Nie pozwala na to zasada zachowania energii

13 Praca objętościowa w 1 pdv 2 v V Wykonana praca; pole pod krzywą p W 1 2 (droga zielona) > W 1 2 (droga czerwona) 3. Wykonana praca zależy od drogi przemiany V 1 V 2 V 4. Praca nie jest funkcją stanu!!!

14 ENTALPIA H Większość reakcji zachodzi przy stałym ciśnieniu p Ciepło przekazane przy stałym ciśnieniu nazywa się q p U = q + w= q - p V q p = H = U -w = U + p V = (U+pV) Gdzie H-entalpia Definicja entalpii H=U+pV H - ciepło przekazywane przy p=const H =zmiana ciepła danego układu H=H kon -H pocz

15 Entalpia H = U + pv H = U + p V U = H p V Na +H 2 O (aq) = NaOH (aq) +H 2(g) Ciężarek Tłok w= -p V V Ciepło=-368.6kJ Przed Po

16 Proces: Endo - Egzotermiczny otoczenie otoczenie Ciepło q ukł >0 układ Ciepło q ukł <0 układ Endotermiczny Egzotermiczny

17 Entalpia H ENTALPIA Entalpia H H=H kon -H pocz Jeżeli H kon <H pocz to H<0 Proces jest egzotermiczny EGZOTERMICZNY Jeżeli H kon >H pocz to H>0 Proces jest endotermiczny ENDOTERMICZNY Substraty Produkty Produkty Substraty

18 ENTALPIA Entalpia reakcji H 2 (gaz) +1/2O 2(gaz ) H 2 O (gaz) H<0 Reakcja egzotermiczna ciepło jest produkowane, H=-242J H 2 (gaz) +1/2O 2(gaz ) Zmiana entalpii reakcji odwrotnej jest, co do wartości taka sama jak reakcji pierwotnej, tylko przeciwnego znaku H=242J H=-242J H 2 O (gaz) H 2 (gaz) +1/2O 2(gaz) H>0 Reakcja endotermiczna ciepło jest substratem, H=242J H 2 O (gaz)

19 Dlaczego ciepło jest oddawane lub absorbowane? Zerwanie wiązań wymaga dostarczenia energii Tworzeniu wiązań towarzyszy oddawanie energii H = H zerwanie wiązań + H tworzenie wiązań H > 0 H < 0 Energia dysocjacji np. H-H H + H H = D H-H = +436 kj/mol

20 Oblicz H reakcji: ½ N 2(g) + 3 / 2 H 2(g) NH 3(g) 1. ½ N 2(g) N (g) (1) H = ½ (D N-N ) 2. 3 / 2 H 2(g) 3 H (g) (2) H = 3 / 2 (D H-H ) 3. N (g) + 3 H (g) NH 3(g) (3) H = - 3 (D N-H ) Równania = ½ N 2(g) + 3 / 2 H 2(g) NH 3(g) H = - 3(D N-H ) + ½ (D N-N ) + 3 / 2 (D H-H ) = - 3(389kJ/mol) + ½ (946kJ/mol) + 3 / 2 (436kJ/mol) = - 40 kj/mol

21 Pojemność cieplna C Różniczkowa ilość ciepła zaabsorbowanego przez układ (dq), niezbędna do zmiany temperatury układu jest proporcjonalna do tej zmiany temperatury (dt) dq CdT Δq T f C T dt Ti Współczynnik proporcjonalności C jest zwany pojemnością cieplną układu Jeśli pojemność cieplna nie zależy od temperatury to: q = C T C= q/ T

22 Ciepło właściwe i ciepło molowe Pojemność cieplna układu jest proporcjonalna do ilości materii w układzie i jej rodzaju Ciepło właściwe, C wł (specific heat capacity) pojemność cieplna na gram substancji (J/K g) Ciepło molowe właściwe, C mol (molar heat capacity) pojemność cieplna na mol substancji (J/K mol)

23 Sposoby wyznaczenia H Zastosowanie prawa Hessa Zastosowanie entalpii tworzenia Pomiar w laboratorium - kalorymetria

24 Prawo Hessa substraty produkty H reakcji Zmiana entalpii reakcji nie zależy od tego czy reakcja przebiega w jednym czy też w kilku aktach Entalpia jest funkcją stanu!

25 Otrzymanie cząsteczki gazowego wodoru H 2 z ciekłej wody wymaga 2 etapów H 2 O (liq) H 2 O (gaz) H=+44kJ H 2 O (gaz) H 2(gaz) +1/2O 2(gaz) H 2 O (liq) H 2(gaz) +1/2O 2(gaz) H=+242kJ H=+286kJ To jest przykład stosowania prawa Hessa Jeżeli reakcja jest sumą 2 lub więcej procesów to zmiana entalpii H tej reakcji jest sumą zmian entalpii poszczególnych etapów

26 Prawo Hessa przykład (2) Oblicz H reakcji Wiedząc że S (s) +3/2O 2(gaz) SO 3 (gaz) S (s) +O 2(gaz) SO 2 (gaz) H 1 =-320.5kJ SO 2(gaz) +1/2O 2(gaz) SO 3 (gaz) H 2 =-75.2kJ S (s) +3/2O 2(gaz) SO 3 (gaz) H 3 =-395.7kJ Dodanie H n danej reakcji pozwala otrzymać szukane H reakcji H= H 1 + H 2 =-395.7kJ

27 Energia S ciało stałe +O 2 H1 = kj +3/2O 2 H 3 = kj SO 3 gaz SO 2 gaz +1/2O 2 H 2 =-75.2 kj H 3 = kj H (1+2) = = Σ H wzdłuż jednej drogi = Σ H wzdłuż innej drogi

28 Σ H wzdłuż jednej drogi = Σ H wzdłuż innej drogi Jest to prawda ponieważ H jest FUNKCJĄ STANU Zależy tylko od stanu układu a nie jaką drogą doszliśmy do tego Inne funkcje stanu: V, p,t, U. i stan naszego konta w banku W przeciwieństwie do V, T, p nie możemy zmierzyć absolutnej wartości H. Jedynie H

29 Entalpia a energia wewnętrzna Entalpia i energia wewnętrzna są funkcjami stanu Entalpia opisuje przemiany energetyczne układu w warunkach stałego ciśnienia Energia wewnętrzna opisuje przemiany energetyczne układu w warunkach stałej objętości H=q p, p=const U=q v, V=const

30 Wartości STANDARDOWE ENTALPII Większość wartości H zapisuje się jako H o o oznacza że pomiaru dokonano w warunkach standardowych p=1 atm (1013hPa) Koncentracja 1 mol/dm 3 Zazwyczaj 25 o C (T=298 K) Dodatnie wartości H o =0 tworzenia pierwiastków Ujemne wartości

31 H o f= standardowa molowa entalpia tworzenia Zmiana entalpii odpowiadająca 1 molowi związku tworzonego z pierwiastków w warunkach standardowych Zgodnie z definicją, H o f=0 dla pierwiastków w ich stanach standardowych H 2(gaz) + 1/2O 2(gaz) H 2 O (gaz) H o f= kj/mol

32 Stosowanie wartości standardowych entalpii Jak obliczyć H o reakcji? pierwiastki H o s H o p substraty produkty H o reakcji Jeżeli znamy WSZYSTKIE entalpie tworzenia H o reakcji = Σm H o (produktów) -Σn H o (substratów)

33 Przykład Oblicz ciepło spalania etanolu dla reakcji: C 2 H 5 OH (gaz) + 7/2O 2(gaz) 2CO 2(gaz) + 3H 2 O (gaz) H o = Σm H o (produktów) -Σn H o (substratów) H o ={2 H o f(co 2 )+3 H o f(h 2 O)}-{7/2 H o f(o 2 ) + H o f(c 2 H 5 OH)} = {2( kj) +3( kj)-{7/2(0 kj)+(-235.1kj)} H o = kj na mol etanolu

34 krzepnięcie resublimacja Energia skraplanie Entalpia przemian fazowych PARA H parowania H sublimacji CIECZ CIAŁO STAŁE H topnienia Entalpia jest funkcją stanu H parowania = - H skraplania H topnienia= - H krzepnięcia, H sublimacji = - H resublimacji

35 Substancja Wzór Temp. Topnienia K H o Topnienia kj/mol Temp. Wrzenia K H o Parowania kj/mol Hel He Amoniak NH Woda H 2 O Etanol C 2 H 5 OH Metan CH Rtęć Hg

36 Obliczanie zmian energii wewnętrznej U i entalpii H przy zmianach temperatury układu T H CpdT Cp(T2 T 1) T 2 1 T U CVdT CV (T2 T 1) Równania słuszne jeżeli w przedziale temperatur T 1 do T 2 nie zachodzą żadne przemiany fazowe, z którymi związane są efekty cieplne (np. topnienie, przemiana polimorficzna) T 2 1 S S A S B T 1 T A T B T 2 ΔH T A C dt + ΔH C dt ΔH p (S) S S + + A p(sa ) SA S + B T 1 T T B A T T 2 B C p(s B ) dt

37 Jaka ilość ciepła jest potrzebna aby przeprowadzić 10.0g lodu w temperaturze o C do pary wodnej w temperaturze o C? q = H lód + H topienia + H wody + H parowania Właściwa pojemność cieplna C p dla wody: Lód: 2.09 J(gK) -1 Ciecz 4.18 J(gK) -1 Para 2.03 J(gK) -1 + H para q = H lód + H topienia + H wody + H parowania + H para q = (10.0g 2.09J (gk) -1 15K) + (10.0g 333J/g) + (10.0g 4.18J (gk) K) + (10.0g 2260J/g) + (10.0g 2.03J (gk) K) Ciepło przemiany: Lód/Ciecz Ciecz/Para q = ( X X X )J = 23.3 kj 333 J/g 2260 J/g

38 Zależność entalpii reakcji od temperatury Dla reakcji aa + bb dd + ee w temperaturze T molowa entalpia reakcji ( H r ) T ( H r ) T = H o r + C p T gdzie: C p = nc p,n - mc p,m = {dc p,n (D) +ec p,n (E)} {ac p,m (A) +bc p,m (B)} H ro entalpia reakcji w warunkach standardowych Prawo Kirchhoffa umożliwia obliczanie entalpii reakcji w jednej temperaturze, znając entalpię tej reakcji w innej temperaturze i molowe pojemności cieplne reagentów. Stosowalność prawa Kirchhoffa: założenie stałości pojemności cieplnych w rozważnym zakresie temperatur wymaga ograniczenia zmiany temperatury do ok. 100K

39 Woda zawsze spływa w dół Balon wznosi się Ciepło 40przepływa od ciała cieplejszego do zimnego

40 Procesy samorzutne Proces samorzutny - nie wymaga akcji z zewnątrz UKŁAD Przykłady: Topnienie lodu w RT Rozpuszczanie cukru w gorącej kawie Na (s) + H 2 O (l) Na + (aq) + OH - (aq) + H 2(g) Proces niesamorzutny - wymaga ingerencji z zewnątrz UKŁAD np. ciepło 2 Fe (l) + Al 2 O 3(s) 2 Al (s) + Fe 2 O 3(s) Wrzenie wody pod ciśnieniem 1 atm, 50 o C H 2 O (l) H 2(g) + ½ O 2(g),25 o C

41 A co z reakcjami odwrotnymi? Woda zamarza w temperaturze pokojowej? (topienie lodu) Wytrącanie cukru w zimnej kawie (rozpuszczanie cukru) Na + (aq) + OH - (aq) + H 2(g) Na (s) + H 2 O (l)? OGÓLNIE (reakcja odwrotna zachodzi) Jeżeli proces jest samorzutny, proces odwrotny nie jest samorzutny Procesy niesamorzutne są możliwe jeżeli do układu dostarczymy energię

42 Procesy odwracalne i nieodwracalne Zjawiska w przyrodzie biegną w określonym kierunku: fakt doświadczalny PROCESY NIEODWRACALNE: Nie można ich cofnąć Zarówno po procesie nieodwracalnym jak i po zabiegach czynionych dla ich cofnięcia pozostaje ślad w przyrodzie Wszystkie samorzutne procesy zachodzące w przyrodzie są nieodwracalne

43 Procesy odwracalne i nieodwracalne Procesy nieodwracalne związane z przepływem ciepła można podzielić na: Przewodzenie ciepła Powstawanie ciepła przez tarcie Procesy dyfuzyjne Procesy nieodwracalne zachodzą pod działaniem bodźców (bodźce termodynamiczne) Różnica temperatur Różnica ciśnień (ogólniej sił) Różnica stężeń Gdy siła napędowa (różnica np. temperatur) staję się słabsza to szybkość procesu jest coraz mniejsza 44

44 Zagadnienie rozprężania i sprężania gazu a więc ruch tłoka, gdy po obu jego stronach istnieją różne ciśnienia v p G v p z p=p z -p G p>0 sprężanie p<0 rozprężanie lim(v) Δp 0 lim(v) Δp dp >0 dp <0 W granicy proces biegnie nieskończenie wolno i nieskończenie mała zmiana bodźca jest potrzebna aby go odwrócić Proces biegnący nieskończenie wolno przebiega przez szereg STANÓW RÓWNOWAGI

45 Procesy kwazystatyczne Jeżeli wartość bodźca dąży do zera to szybkość procesu także dąży do zera Proces nieodwracalny przechodzi w proces odwracalny Granicznie odwracalne procesy dla których bodźce dążą do zera nazywamy procesami KWAZYSTATYCZNYMI

46 Procesy kwazystatyczne W procesie kwazystatycznym istnieje (stale) równowaga w układzie oraz pomiędzy układem i otoczeniem. Bodźce termodynamiczne są równe zeru.... Aby jednak otoczenie było w równowadze z układem, musi mieć ono taką samą temperaturę jak układ, oraz takie samo ciśnienie i takie samo stężenie. Zatem, stan otoczenia musi być ściśle dopasowany do stanu układu

47 Definicja: ds Układ T w q el dq odwr T Otoczenie T n Entropia S Funkcja stanu S nazywana jest entropią Zmiana entropii układu S ukł otocz T Zmiana entropii otoczenia q w el S Zmiana całkowita q el T el S cał Sukł + Sotocz + Tw n q q el T n

48 Zmiana entropii układu i otoczenia Entropia całkowita: W przemianie nieodwracalnej entropia przyrody rośnie W przemianie odwracalnej pozostaje stała. Nie może natomiast nigdy maleć, bo to oznaczałoby cofnięcie przyrody do stanu początkowego po zajściu procesu nieodwracalnego, co - jak wiemy - jest niemożliwe. S 0 > dla przemiany nieodwracalnej T w >T n (z dokładnością do nieskończenie małej wielkości) = dla stanu równowagi T w =T n

49 Entropia Pojęcie wprowadzone przez Clausiusa (1852) Ekstensywna funkcja termodynamiczna Entropia jest miarą stopnia nieuporządkowania układu Określa kierunek przebiegu reakcji samorzutnych. II ZASADA TERMODYNAMIKI Podczas procesów samorzutnych entropia układu izolowanego wzrasta, natomiast w stanie równowagi pozostaje bez zmian

50 ENTROPIA S k ln(w) k = R/N A -stała Boltzmanna W-prawdopodobieństwo termodynamiczne W = liczba mikrostanów układu, przy pomocy których można zrealizować rozpatrywany makrostan układu S>0 czyli S 2 >S 1 gdy W 2 >W 1 S Stan makro Stan mikro B C A D A C D B C D A B C B A D 51 C D B A B D A C

51 ENTROPIA S Każda substancja w danej temperaturze i fazie ma dokładnie zdefiniowaną entropię W temperaturze 298K entropia określona jest S o Jednostka [J K -1 mol -1 ] Większa wartość S o, większy stopień nieuporządkowania Dla każdego procesu: S o = ΣnS o (prod)- ΣmS o (subst) Gdzie n oznacza sumę współczynników stechiometrycznych produktów a m sumę współczynników stechiometrycznych substratów 52

52 H 2 O (s) H 2 O (l) porządek Małe W Małe S Mniejszy porządek Duże W Duże S

53 Czy rozpuszczenie kryształu NaCl w wodzie zmienia entropię układu? W trakcie rozpuszczenia wszystkie wiązania jonowe ulegają rozerwaniu. Solwatacja jonów zmienia porządek, zwiększając objętość dostępną dla jonów-znaczny wzrost entropii

54 Reakcje, którym towarzyszy wzrost ilości moli Ba(OH) 2 8 H 2 O (s) + 2 NH 4 NO 3(s) Ba(NO 3 ) 2(aq) + 2 NH 3(aq) + 10 H 2 O (l) H = kj 3 mole 13 moli S > 0 Reakcja samorzutna = uwalnianie ciepła do układu? NIE ZAWSZE!!! Reakcja samorzutna = uwalnianie energii? ZAWSZE!!!

55 Entropia Entropia a temperatura Entropia substancji rośnie ze wzrostem temperatury Wzrost temperatury: gaz Większy nieporządek Większe S Większe W ciecz c.stałe Temperatura (K)

56 Zmiana entropii w przemianach fazowych Dla przemiany fazowej S=q/T Gdzie q- ciepło przekazane w czasie przemiany H 2 O (ciecz) H 2 O (qaz) Dla procesu parowania wody: H=q= J mol -1 ΔS = q T = J mol K = J 1-1 K- mol

57 Obliczenia S dla danej reakcji S o = ns o (prod) - ms o (subst) H 2(g) + O 2(g) 2H 2 O (ciecz) S o = 2 S o (H 2 O) - [2 S o (H 2 ) + S o (O 2 )] S o = 2 mol (69.9 J/K mol) - [2 mol (130.7 J/K mol) + 1 mol (205.3 J/K mol)] S o = J/K Uwaga: Obniżenie S z powodu zmniejszenia ilości moli gazu z 3 na 2 mole cieczy Jeżeli S maleje dlaczego reakcja jest samorzutna? 58

58 II prawo termodynamiki Reakcja zachodzi samorzutnie (faworyzuje powstanie produktów) jeżeli zmiana entropii S układu i otoczenia jest dodatnia S = S ukł + S otocz S > 0 dla procesu samorzutnego 1. Obliczanie entropii związanej z rozproszeniem materii ( S (układu)) 2. Obliczanie entropii związanej z rozproszeniem energii ( S (otoczenia))

59 Obliczanie S o (1) 2 H 2(g) + O 2(g) 2 H 2 O (ciecz) S o ukł = J K -1 mol -1 ( J K -1 mol J K -1 mol -1 )= J K -1 mol -1 ΔS o otocz = q otocz T = - H T o ukł H o reakcji = H o układu= kj mol -1 ΔS o otocz - ( J mol = K S o otocz = +1917J K-1 mol-1-1 )

60 Obliczanie S o (2) 2 H 2(g) + O 2 (g) 2 H 2 O (ciecz) S o ukł = J K -1 mol -1 (mniej rozproszonej materii) S o otocz = J K -1 mol -1 (więcej rozproszonej energii) S o całkowite = = J K -1 mol J K-1 mol-1 = J K-1 mol-1 Entropia rośnie a więc reakcja jest samorzutna

61 Postulat Plancka Dla tzw. ciał planckowskich w temperaturze 0K entropia S 0 =0 CIAŁO PLANCKOWSKIE: to ciało doskonale jednolite (o jednoznacznym uporządkowaniu) nie będące gazem

62 Prawa termodynamiki 0 Dwa ciała w równowadze termicznej są w tej samej temperaturze 1 Energia nie może być ani tworzona ani zniszczona U= q + w 2 Entropia całkowita (układ + otoczenie) musi wzrosnąć w przypadku procesów samorzutnych S = S ukł + S otocz > 0 3 Entropia czystych, idealnych kryształów w T=0K (S 0 ) wynosi 0 (porządek) S 0 = 0 (kryształ)

63 Entalpia swobodna G S cał = S otocz + S ukł ΔS Mnożymy przez -T cał = ΔH T ukł + Δ S ukł -T S cał = H ukł - T S ukł -T S cał = zmiana entalpii swobodnej dla układu = G ukł W warunkach standardowych G o = H o - T S o Równanie Gibbsa

64 Standardowa entalpia swobodna G o tw Każda substancja w danym stanie ma entalpię swobodną G = H TS Można zmierzyć tylko zmianę entalpii H co oznacza że nie ma absolutnej skali dla G G można jedynie wyznaczyć G o tw entalpia swobodna tworzenia (z pierwiastków) jest stosowana jako wartość standardowa G o tw dla pierwiastków w stanie standardowym =

65 Standardowa entalpia swobodna tworzenia STANDARDOWA ENTALPIA SWOBODNA TWORZENIA ZWIĄZKÓW +163 kj/mol ozon +124 kj/mol benzen 0 NIETRWAŁE TRWAŁE - 33 kj/mol etan pierwiastki -237,1 kj/mol woda

66 Znak G dla procesów samorzutnych II prawo termodynamiki wymaga dla reakcji samorzutnych aby: S CAŁ = S ukł + S otocz > 0 Mnożymy przez T T S ukł + T S otocz > 0 i S otocz = - H ukł /T Tak więc T S ukł - H ukł > 0 H ukł -T S ukł < 0 i G = H -T S G < 0 dla procesów samorzutnych

67 Zmiany entalpii swobodnej reakcji G o = H o - T S o H o S o G o Reakcja exo (-) rośnie (+) - Produkty endo(+) maleje (-) + Substraty exo (-) maleje (-)? Zależy od T endo(+) rośnie (+)? Zależy od T W dwu ostatnich przypadkach reakcja może zachodzić samorzutnie jeżeli zmiana temperatury spowoduje że G o < 0 ΔH o T ΔS o

68 Znak entalpii swobodnej G o = H o - T S o Zmiany entalpii swobodnej= całkowita zmiana entalpii swobodnej dla układu-entalpia swobodna jest tracona w układach nieuporządkowanych Jeżeli reakcja jest egzotermiczna ( H o <0) i entropia rośnie ( S o >0) to G o <0 i reakcja może zachodzić Jeżeli reakcja jest endotermiczna ( H o >0) i entropia maleje ( S o <0) to G o >0 i reakcja nie będzie zachodzić

69 Metody obliczania G o G o = H o - T S o Dwie metody obliczania G o Wyznaczenie H o i S o oraz zastosowanie równania Gibbsa Zastosowanie tablicowych wartości standardowych entalpii swobodnej oraz zależności: G o = n G f o prod - m G f o subst

70 Reakcja spalania acetylenu: Obliczanie G o C 2 H 2(g) + 5/2O 2(g) 2CO 2(g) + H 2 O (g) Na podstawie wartości standardowych entalpii tworzenia: H o = kj mol -1 Na podstawie wartości standardowych entropii: S o = kj K-1 mol-1 Obliczamy G o : G o = H o - T S o G o = kj mol -1 - (298 K)( kj K -1 mol -1 ) = kj mol -1 Reakcja faworyzuje tworzenie produktów pomimo ujemnej wartości S o. Entalpia-siła napędowa reakcji. 71

71 Obliczanie G o dla reakcji rozpuszczania NH 4 NO 3(S) NH 4 NO 3(s) NH 4 NO 3(aq) Dane tablicowe: H o = kj mol -1 S o = J K -1 mol-1 ( kj K -1 mol-1 ) G o = kj mol -1 -(298 K) (0.1087kJ K -1 mol-1 ) = -6.7 kj mol -1 Reakcja faworyzuje otrzymywanie produktów... Pomimo dodatniej wartości H o. Reakcja- entropia siłą napędową

72 Obliczanie G o G o = n G fo prod - m G fo subst C(grafit) + O 2(g) CO 2(g) G o = G fo (CO 2 ) - [ G fo (grafit) + G fo (O 2 )] G o = kj mol -1 - [ 0 + 0] Uwaga: Entalpia swobodna tworzenia pierwiastków w stanie standardowym wynosi 0. G o = kj mol -1 Jak oczekiwano reakcja tworzenia produktów jest faworyzowana

73 Entalpia swobodna a temperatura Fe 2 O 3(s) + 3C (s) 4Fe (s) + 3CO 2(g) H o = kj mol -1 S o = J K -1 mol -1 G o = kj mol -1 - (298K)(0.560kJ J K -1 mol -1 ) = kj mol -1 Reakcja zachodzi w kierunku tworzenia substratów (faworyzuje tworzenie substratów) w 298 K Jak zmieni się temperatura jeżeli G o zmienia znak z (+) na (-)? Tzn co z temperaturą dla G o = 0 = H o - T S o Jeżeli G o = 0 to H o = T S o i T = H o / S o ~ 468kJ/0.56kJ/K = 836 K lub 563 o C 74

74 Kryteria samorzutności: uwagi 1. Dla procesów egzotermicznych H<0 i zazwyczaj S>0 proces produkuje nieuporządkowanie G<0 proces jest spontaniczny 2. Zmiany entalpii swobodnej zależą od zmian dwóch składników, przy czym H dominuje w niższych temperaturach, natomiast S w temperaturach wysokich 3. Czy wszystkie procesy egzotermiczne są spontaniczne? G= H-T S <0 Nie, ponieważ H<0, S<0 S >> H 4. Czy wszystkie procesy endotermiczne są niesamorzutne? H>0, S>0 S << H 75

75 Samorzutność a temperatura Czynnik entalpowy H, Czynnik entropowy S Zmiana G Temperatura Proces H<0 S>0 dla każdego H i S G<0 H<0 S<0 H >T S G<0 G>0 H>0 S>0 G>0 dowolna niska wysoka niska samorzutny-zachodzi dzięki zmianie entropii i entalpii we wszystkich temperaturach samorzutny tylko w niskich temperaturach uwarunkowany wyłącznie zmianą entalpii niesamorzutny Niesamorzutny H <T S G<0 wysoka Samorzutny tylko w wysokich temperaturach-uwarunkowany wyłącznie zmianą entropii H>0 S<0 G>0 dowolna Niesamorzutny- niezależnie od temperatury

76 Kryteria samorzutności procesów fizykochemicznych Warunki Funkcja termodynamiczna T, P=const Entalpia swobodna G=H-TS T,V=const Energia swobodna F=U-TS S, V=const Energia wewnętrzna U U S, P=const Entalpia H H Warunek samorzutności G<0 F<0 U<0 H<

77 Termodynamika i stała równowagi K r K r jest związane z reakcją odwracalną Jeżeli G<0, rekcja jest samorzutna (zachodzi w kierunku tworzenia produktów) G o przedstawia zmianę entalpii swobodnej jako całkowitą zmianę substratów w produkty Często układy znajdują się w stanie równowagi, gdzie substraty nie są całkowicie przeprowadzone w produkty Jak taki stan opisze termodynamika?

78 G w funkcji G o W warunkach zachodzenia reakcji aa +bb cc+dd w danej chwili możemy zdefiniować G w oparciu o iloraz G = G o + RT ln Q Q c [C] [A] a [D] [B] Jeżeli G <0 to reakcja zachodzi w kierunku tworzenia produktów Jeżeli G >0 to reakcja zachodzi w kierunku tworzenia substratów W stanie równowagi G = 0, K r =Q d b G o = - RT lnk r G o - zmiana entalpii swobodnej reakcji gdzie czyste substraty reagując dają czyste produkty a wszystkie reagenty występują w stanie standardowym G- zmiana entalpii swobodnej wywołana przebiegiem reakcji, gdy reakcja zachodzi w mieszaninie reagentów w określonym składzie 79

79 Termodynamika a stała równowagi K Stała równowagi K r jest związana z samorzutnością reakcji i G o Większa wartość G o mniejsza wartość K r G o = - RT lnk r Obliczamy K r dla reakcji N 2 O 4 2NO 2 G o = +4.7 kj mol -1 G o = +4700J mol -1 =-(8.31J K -1 mol -1 )(298K)lnK r lnk r =-(4700 J mol -1 )/(8.31J K -1 mol -1 )(298K)=-1.94 K r = Jeżeli G o > 0, to K r < 1 reakcja zachodzi w kierunku tworzenia substratów Jeżeli G o < 0, to K r >1 - reakcja zachodzi w kierunku tworzenia produktów 82

80 Równowaga chemiczna: wnioski Procesy przebiegają w kierunku wywołującym taką zmianę wartości parametrów układu, która pociąga za sobą zmniejszanie wartości entalpii swobodnej W przypadku osiągnięcia chwilowych wartości parametrów prowadzących do dodatniej wartości entalpii swobodnej proces przestaje przebiegać, a spontaniczny staje się proces odwrotny Jakakolwiek zmiana któregokolwiek z parametrów układu będącego w stanie równowagi powoduje taką reakcję układu aby zniwelować działanie bodźca i umożliwić powrót do stanu równowagi-reguła przekory Le Châtelier a

Inżynieria Biomedyczna Wykład V

Inżynieria Biomedyczna Wykład V Inżynieria Biomedyczna Wykład V 1 Plan Reakcje samorzutne Entropia II zasada termodynamiki Entalpia i energia swobodna Kryteria samorzutności Termodynamika a stała równowagi K r 2 Woda zawsze spływa w

Bardziej szczegółowo

Inżynieria Biomedyczna. Wykład IV Elementy termochemii czyli o efektach cieplnych reakcji

Inżynieria Biomedyczna. Wykład IV Elementy termochemii czyli o efektach cieplnych reakcji Inżynieria Biomedyczna Wykład IV Elementy termochemii czyli o efektach cieplnych reakcji Plan Terminologia i jednostki energii Pojemność cieplna Reaktywność chemiczna I prawo termodynamiki Entalpia Prawo

Bardziej szczegółowo

I piętro p. 131 A, 138

I piętro p. 131 A, 138 CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I piętro p. 131 A, 138 WYKŁAD - 4 RÓWNOWAGA Termochemia i termodynamika funkcje termodynamiczne, prawa termodynamiki,

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Fizyka Termodynamika Chemia reakcje chemiczne

Fizyka Termodynamika Chemia reakcje chemiczne Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Jak mierzyć i jak liczyć efekty cieplne reakcji?

Jak mierzyć i jak liczyć efekty cieplne reakcji? Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie

Bardziej szczegółowo

Wykład 10 Równowaga chemiczna

Wykład 10 Równowaga chemiczna Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości

Bardziej szczegółowo

Kryteria samorzutności procesów fizyko-chemicznych

Kryteria samorzutności procesów fizyko-chemicznych Kryteria samorzutności procesów fizyko-chemicznych 2.5.1. Samorzutność i równowaga 2.5.2. Sens i pojęcie entalpii swobodnej 2.5.3. Sens i pojęcie energii swobodnej 2.5.4. Obliczanie zmian entalpii oraz

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Termochemia elementy termodynamiki

Termochemia elementy termodynamiki Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

Jak mierzyć i jak liczyć efekty cieplne reakcji?

Jak mierzyć i jak liczyć efekty cieplne reakcji? Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie siła/powierzchnia

Bardziej szczegółowo

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001

Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001 Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001 I zasada termodynamiki - pojęcia podstawowe C2.4 Próbka zawierająca

Bardziej szczegółowo

Entropia - obliczanie. Podsumowanie

Entropia - obliczanie. Podsumowanie Chem. Fiz. CH II/4 Entropia - obliczanie. Podsumowanie 2 ) ( 2 V d C S S S 2 ) ( 2 P d C S S S S k S p S 2 2 ln ln V V R C S V + 2 2 ln ln P P R C S P w izobarze: Funkcja stanu! w izochorze: dla gazu doskonałego:

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Kiedy przebiegają reakcje?

Kiedy przebiegają reakcje? Kiedy przebiegają reakcje? Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. Termodynamika dziedzina termodynamiki

Bardziej szczegółowo

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część IV - Elementy termodynamiki i kinetyki chemicznej

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część IV - Elementy termodynamiki i kinetyki chemicznej Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część IV - Elementy termodynamiki i kinetyki chemicznej Wydział Chemii UAM Poznań 2011 POJĘCIA CIA PODSTAWOWE UKŁAD AD pewna część

Bardziej szczegółowo

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają

Bardziej szczegółowo

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne

Bardziej szczegółowo

WYKŁAD 3 TERMOCHEMIA

WYKŁAD 3 TERMOCHEMIA WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian

Bardziej szczegółowo

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii: Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do

Bardziej szczegółowo

Elementy termodynamiki chemicznej. Entalpia:

Elementy termodynamiki chemicznej. Entalpia: Elementy termodynamiki chemicznej 1 - układ fizyczny otwarty (możliwa wymiana energii i materii z otoczeniem), zamknięty (możliwa tylko wymiana energii), izolowany wielkości ekstensywne zależne od ilości

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Kiedy przebiegają reakcje?

Kiedy przebiegają reakcje? Kiedy przebiegają reakcje? Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. CH 4(g) + 2O 2(g) substraty 2(g) egzotermiczna

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Termochemia efekty energetyczne reakcji

Termochemia efekty energetyczne reakcji Termochemia efekty energetyczne reakcji 1. Podstawowe pojęcia termodynamiki chemicznej a) Układ i otoczenie Układ, to wyodrębniony obszar materii, oddzielony od otoczenia wyraźnymi granicami (np. reagenty

Bardziej szczegółowo

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA . PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. 1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w

Bardziej szczegółowo

I. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i

I. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i I. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i chemicznych) Termodynamika chemiczna - nauka zajmująca

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

Podstawy termodynamiki.

Podstawy termodynamiki. Podstawy termodynamiki. Termodynamika opisuje ogólne prawa przemian energetycznych w układach makroskopowych. Określa kierunki procesów zachodzących w przyrodzie w sposób samorzutny, jak i stanów końcowych,

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej

Bardziej szczegółowo

prof. dr hab. Małgorzata Jóźwiak

prof. dr hab. Małgorzata Jóźwiak Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga

Bardziej szczegółowo

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17)

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17) Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych

Bardziej szczegółowo

Elementy termodynamiki chemicznej. Entalpia:

Elementy termodynamiki chemicznej. Entalpia: Elementy termodynamiki chemicznej 1 - układ fizyczny otwarty (możliwa wymiana energii i materii z otoczeniem), zamknięty (możliwa tylko wymiana energii), izolowany wielkości ekstensywne zależne od ilości

Bardziej szczegółowo

II zasada termodynamiki Sens i pojęcie entropii Obliczanie zmian entropii Związki entropii z funkcjami termodynamicznymi

II zasada termodynamiki Sens i pojęcie entropii Obliczanie zmian entropii Związki entropii z funkcjami termodynamicznymi Druga zasada termodynamiki 2.4.1. II zasada termodynamiki 2.4.2. Sens i pojęcie entropii 2.4.3. Obliczanie zmian entropii 2.4.4. Związki entropii z funkcjami termodynamicznymi Druga zasada termodynamiki

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych I. Reakcje egzoenergetyczne i endoenergetyczne 1. Układ i otoczenie Układ - ogół substancji

Bardziej szczegółowo

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie

Bardziej szczegółowo

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz Kinetyka reakcji chemicznych Dr Mariola Samsonowicz 1 Czym zajmuje się kinetyka chemiczna? Badaniem szybkości reakcji chemicznych poprzez analizę eksperymentalną i teoretyczną. Zdefiniowanie równania kinetycznego

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO

Bardziej szczegółowo

Wykład z Chemii Ogólnej i Nieorganicznej

Wykład z Chemii Ogólnej i Nieorganicznej Wykład z Chemii Ogólnej i Nieorganicznej Część 5 ELEMENTY STATYKI CHEMICZNEJ Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika w Toruniu Prof. dr hab. n.chem.

Bardziej szczegółowo

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na

Bardziej szczegółowo

Termodynamika materiałów

Termodynamika materiałów Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko

Bardziej szczegółowo

CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak

CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak 1 Temperatura 2 Temperatura jest wielkością charakteryzującą stopień nagrzania danego ciała. 3 Temperaturę ciała można określić jako

Bardziej szczegółowo

Wykład 6. Klasyfikacja przemian fazowych

Wykład 6. Klasyfikacja przemian fazowych Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak

CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak 1 Temperatura 2 Temperatura jest wielkością charakteryzującą stopień nagrzania danego ciała. 3 Temperaturę ciała można określić jako

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

Chemia - laboratorium

Chemia - laboratorium Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 013/14 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii

Bardziej szczegółowo

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):

Bardziej szczegółowo

CIEPŁO O ZNANE CZY NIEZNANE?

CIEPŁO O ZNANE CZY NIEZNANE? CIEPŁO O ZNANE CZY NIEZNANE? prof. dr hab. Małgorzata Jóźwiak 1 Temperatura 2 Temperatura jest wielkości cią charakteryzującą stopień nagrzania danego ciała. a. 3 Temperaturę ciała można określić jako

Bardziej szczegółowo

Enzymologia I. Kinetyka - program Gepasi. Uniwersytet Warszawski Wydział Biologii Zakład Regulacji Metabolizmu

Enzymologia I. Kinetyka - program Gepasi. Uniwersytet Warszawski Wydział Biologii Zakład Regulacji Metabolizmu Enzymologia I Kinetyka - program Gepasi Uniwersytet Warszawski Wydział Biologii Zakład Regulacji Metabolizmu I zasada + II zasada termodynamiki zmiana entalpii i entropii może zostać wyrażona ilościowo

Bardziej szczegółowo

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017 Wykład 1 Termodynamika (1) Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka Biofizyka 1 Zaliczenie Aby zaliczyć przedmiot należy: uzyskać pozytywną ocenę z laboratorium

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata. Zakład Biofizyki Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język

Bardziej szczegółowo

II zasada termodynamiki Sens i pojęcie entropii Obliczanie zmian entropii Związki entropii z funkcjami termodynamicznymi

II zasada termodynamiki Sens i pojęcie entropii Obliczanie zmian entropii Związki entropii z funkcjami termodynamicznymi Druga zasada termodynamiki 2.4.1. II zasada termodynamiki 2.4.2. Sens i pojęcie entropii 2.4.3. Obliczanie zmian entropii 2.4.4. Związki entropii z funkcjami termodynamicznymi 2.4.5. Standardowe funkcje

Bardziej szczegółowo

1 Kinetyka reakcji chemicznych

1 Kinetyka reakcji chemicznych Podstawy obliczeń chemicznych 1 1 Kinetyka reakcji chemicznych Szybkość reakcji chemicznej definiuje się jako ubytek stężenia substratu lub wzrost stężenia produktu w jednostce czasu. ν = c [ ] 2 c 1 mol

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Wykład 8. Równowaga fazowa Roztwory rzeczywiste

Wykład 8. Równowaga fazowa Roztwory rzeczywiste Wykład 8 Równowaga fazowa Roztwory rzeczywiste Roztwory doskonałe Porównanie roztworów doskonałych i Roztwory Doskonałe rzeczywistych Roztwory Rzeczywiste Spełniają prawo Raoulta Mieszanie w warunkach

Bardziej szczegółowo

Kontakt,informacja i konsultacje

Kontakt,informacja i konsultacje Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna

Bardziej szczegółowo

CHEMIA NIEORGANICZNA. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietrop. 131 A. WYKŁAD -3

CHEMIA NIEORGANICZNA. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietrop. 131 A.  WYKŁAD -3 CHEMIA NIEORGANICZNA Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietrop. 131 A http://www.chemia.uj.edu.pl/kotarba/ WYKŁAD -3 RÓWNOWAGA Termochemia i termodynamika funkcje termodynamiczne,

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Obraz statyczny układu

Obraz statyczny układu Termodynamika Obraz statyczny układu energia kinetyczna E k = mv 2 / 2 energia wewnetrzna energia powierzchniowa inne energie U inne parametry: T, m, P, V, S... Ep= mgh energia potencjalna STAN I PRZEMIANA

Bardziej szczegółowo

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

Wykład 5. Kalorymetria i przejścia fazowe

Wykład 5. Kalorymetria i przejścia fazowe Wykład 5 Kalorymetria Ciepło przemian fazowych Bilans cieplny Proces kwazistatyczny Procesy odwracalne i nieodwracalne Praca Energia wewnętrzna Podstawowe przemiany gazowe W. Dominik Wydział Fizyki UW

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

chemia wykład 3 Przemiany fazowe

chemia wykład 3 Przemiany fazowe Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

Wykład 4. Anna Ptaszek. 27 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 31

Wykład 4. Anna Ptaszek. 27 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 31 Wykład 4 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 27 października 2015 1 / 31 Podstawy kinetyki chemicznej pochodna funkcji i jej interpretacja, pojęcie szybkości i prędkości, stechiometria

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

Przemiany energii w zjawiskach cieplnych. 1/18

Przemiany energii w zjawiskach cieplnych. 1/18 Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo