Struktura układu doświadczalnego EKSPERYMENT ELEKTRONICZNY. detektor. interfejs. Detektory elektroniczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Struktura układu doświadczalnego EKSPERYMENT ELEKTRONICZNY. detektor. interfejs. Detektory elektroniczne"

Transkrypt

1 Struktura układu doświadczalnego EKSPERYMENT ELEKTRONICZNY 2013 Zjawisko przyrodnicze detektor Urządzenie pomiarowe Urządzenie wykonawcze interfejs regulator interfejs komputer Detektory elektroniczne Zamiana energii nośników informacji na impuls prądu elektrycznego proces nośniki informacji Układ detekcyjny (wielostopniowy) impuls prądowy Detekcja: oddziaływanie nośników informacji z materią wzmacnianie pierwotnych sygnałów generacja prądowych impulsów analogowych wielkość i kształt impulsu jest funkcją procesu oddziaływania nośnika z materią detektora 1

2 Wczesna historia pomiarów promieniowania Ekrany scyntylacyjne Emulsje fotograficzne Licznik Geigera-Mullera Komora mgłowa Wilsona NOBEL Charles Wilson Jonizacja Historia - niedawna NOBEL Donald Glaser 1959 Komora pęcherzykowa - Zapis fotograficzny Precyzyjny pomiar topologii oddziaływań ale Nie znamy chwili zajścia zdarzenia Brak możliwości wyboru przypadków oddziaływań 2

3 Co chcemy mierzyć (obecnie)? Trajektoria lotu cząstki Energia Pęd Identyfikacja rodzaj cząstki i ładunek elektryczny Chwilę w czasie Należy pamiętać, że: Cząstki możemy zobaczyć tylko kiedy oddziałują z materią detektora (stąd neutrina prawie niewidzialne) Oddziaływanie odbywa się zawsze poprzez depozyt energii Składniki eksperymentu FWE Pomiar niedestrukcyjny Pomiar destrukcyjny Pomiar resztek 3

4 Detektory promieniowania Detektory fotonów - zakres widmowy w pobliżu pasma widzialnego Detektory promieniowania jonizującego: Fizyka oddziaływań promieniowania z materią fundamentem technik detekcji hc E = hν = λ h = 6,62*10-34 J s 1 ev = 1.6*10-19 J E [ ev ] 1.24 = λ [ µ m] wysokoenergetyczne fotony stabilne cząstki naładowane Detektory elektroniczne: scyntylacyjne jonizacyjne gazowe półprzewodnikowe Pomiar śladu Jonizacja: de/dx straty energii Rozproszenie nierelatywistyczne rutherfordowskie Formuła Bethe-Bloch 4

5 Detektory jonizacyjne Ośrodek aktywny: Gaz Ciało stałe (półprzewodnik) Multi Wire Proportional Chambers MWPC Time Projection Chambers Time Expansion Chambers Proportional Materiały: Chambers Thin Gap Krzem, Chambers Drift Chambers German, Jet Chambers Węgiel (diament), Straw Arsenek Tubes Galu Micro Technologia: Well Chambers Paskowe Cathode Strip Chambers Mozaikowe Resistive Dryfowe Plate Chambers Micro Strip Gas Chambers GEM - Gas Electron Multiplier Micromegas Micromesh Gaseous Structure Detektory gazowe Argon, Hel, Neon, Krypton, Ksenon + domieszki Emisja fotonów stowarzyszona z procesem lawinowego powielania elektronów 5

6 Detektory gazowe liczniki proporcjonalne wielodrutowe komory proporcjonalne i dryfowe MultiWire Proportional Chamber (Charpak 1968) Georges Charpak Nobel Prize in Physics

7 Wielodrutowe komory proporcjonalne (Georges Charpak, 1968) Poszczególne anody niezależnymi detektorami Pomiar pozycji trafienia cząstki Lawinowe powielanie elektronów Wzmocnienie gazowe do 10 7 Gazowe detektory dryfowe Czas dryfu ładunku jonizacyjnego zależy od: składu ośrodka natężenia pola elektrycznego scintillator DELAY Stop TDC Start drift anode low field region drift high field region gas amplification Pomiar czasu przepływu ładunku jonizacyjnego Pomiar pozycji trafienia cząstki 7

8 Detektory śladowe - Time projection Chamber (TPC) TPC trajektorie cząstek naładowanych 4 moduły TPC Całkowita objętość obszaru aktywnego:45 m czujników pikseli 62 moduły komór wielodrutowych Pole magnetyczne 1.5 Tesla Mieszanka gazowa: Ar + CO 2 Identyfikacja cząstek przez pomiar de/dx NA pc data 8

9 Identyfikacja cząstek przez pomiar czasu przelotu TOF TOF pomiar pędu konieczny Identyfikacja cząstek - połączony pomiar de/dx i TOF NA49 Zderzenia Pb+Pb Przedział pędu 5 6 GeV/c Nowe techniki w detektorach gazowych MSGC: 100 µm 10 µm Micro-Pattern Gas Detectors (GEM, Micromegas) - Zdolność rejestracji silnych strumieni promieniowania - Odczyt do Time Projection Chamber Odczyt pikselowy Micro-Pattern Gas Detectors 50 µm 140 µm Micromegas: Hz mm -2 9

10 Gas Electron Multiplier (GEM) Detector (Fabio Sauli 1995) Gęsta siatka otworów (sitko) w cienkiej folii plastikowej o zewnętrznych powierzchniach pokrytych miedzią Przyłożenie różnych potencjałów do obu stron folii powoduje powstanie dipolowego pola elektrycznego w otworkach Ions 40 % 60 % F. Sauli, Nucl. Instrum. Methods A386(1997)531 Electrons GEM: Gas Electron Multiplier Duża gęstość komórek (50-100/mm 2 ) Typowa geometria: 5 µm Cu na 50 µm kaptonie 70 µm otwór 140 µm odstęp 5 µm 50 µm 70 µm 55 µm 70 µm 140 µm 10

11 BASIC GEM DETECTOR -V D 3 mm DRIFT -V TOP V GEM -V BOT 1 mm MULTIPLICATION INDUCTION DRIFT PATTERNED READOUT BOARD ED DRIFT Zalety: GEM 1 Swoboda w kształtowaniu geometrii detektora GEM 2 Odczyt oddzielony od obszaru wzmocnienia Możliwość kaskadowego wielostopniowego GEM 2 wzmocnienia ładunku READOUT ET1 TRANSFER 1 ET2 TRANSFER 2 EI INDUCTION Odczyt dwuwymiarowy Cartesian: 400 µm 80 µm 350 µm 400 µm Small angle: Pads: C. Altumbas et al, NIM A490(2002)177 A. Bressan et al, Nucl. Instr. and Meth. A425(1999)254 11

12 Odczyt mikropixelowy detektorów gazowych Zastosowanie nagiego układu CMOS jako anody Medipix2 collaboration 17 instytutów (16 EU i 1 US) Zastosowania: Radiografia dentystyczna Mamografia Angiografia Dynamiczna autoradiografia Promieniowanie synchrotronowe Mikroskop elektronowy Kamera Gamma Pixel: 55 µm Dyfrakcja X 256 x 256 pixeli Detekcja neutronów 14-bit licznik odczytu na każdym pikselu Monitor promieniowania Odczyt szeregowy <5ms@180MHz Odczyt równoległy <300us@120MHz (>1KHz kadr) Powierzchnia ~2cm 2 12

13 Od Medipix do TimePix e - from source test beam Pomiar śladów! Mikro TPC TimePix + GEM setup TimePix (EUDET: Bonn, Freiburg, Saclay, CERN, NIKHEF) 600 µm 14 mm 3 pixel functionality modes DESY Test Beam: 5 GeV electrons 14 mm Freiburg Bonn X. Llopart M.Titov Krzemowe detektory paskowe (Silicon strip detectors) Płaska płytka z krzemu wysokooporowego (wysoka czystość) tutaj: typu n Jedna powierzchnia posegmentowana na paski w postaci złącz np Odległość między paskami 20 do 200 µm - fotolitografia wysokiej precyzji Przestrzeń w pełni zubożona przez przyłożenie napięcia zaporowego (25-500V) Cząstka jonizująca powoduje tworzenie par elektron-dziura (25k w warstwie 300 µm). 50 µm 300 µm 13

14 Detektory gazowe detekcja promieniowania X Zakres stosowalności: energia fotonów X < 100keV Absorpcja fotonów w ośrodku gazowym 14

15 Zastąpienie kliszy rentgenowskiej specjalną wielodrutową komorą proporcjonalną Pomiar 1D >>> scanning >>> obraz 2D Zalety: obraz cyfrowy zmniejszenie dawki promieniowania poprawa kontrastu Efekt fotoelektryczny Einstein 1905) Fotony? Wydajność fotoemisji zależy od: energii fotonu rodzaju materiału fotokatody 15

16 FOTOPOWIELACZ I WE I f R WE WY Fotopowielacz = źródło prądowe Konwerter prąd-napięcie Fotopowielacz cd. 16

17 Fotokatoda i materiał okna Fotopowielacz cd. Proces wzmocnienia jest procesem statystycznym w przybliżeniu opisywanym rozkładem Poissona. B - fotopowielacz o dużych szumach A - fotopowielacz o niewielkich szumach Szumy fotopowielacza prąd ciemny, impulsy (zliczenia) ciemne Przyczyna: termoemisja elektronów z powierzchni fotokatody i dynod. Obniżenie temperatury radykalne zmniejszenie szumów 17

18 8852 Photomultiplier BURLE - Quantacon PMT 51-mm (2-inch) średnica fotokatody, 12-stopniowy Pole magnetyczne!!! zakłóca działanie fotopowielacza Okna wejściowe: Materiał Pyrex, Corning No. 7740, Współczynnik załamania dla nm Dynody: Dynoda no Gallium-Phosphide Dynody no.2 do 12, Beryllium-Oxide Struktura liniowa z ogniskowaniem elektrostatycznym Powielanie elektronów w układach MICROCHANNEL PLATE niewrażliwy na zewnętrzne pole magnetyczne! Wzmacniacze obrazu (Image Intensifier) 18

19 85104 Microchannel Plate Photomultiplier BURLE With Semi-Transparent Photocathode Fotokatoda Arsenek Galu dobra zdolność zliczania fotonów czułość fotokatody 120 ma/watt dla 860 nm szeroki spektralny zakres czułości do 920 nm średnica okna wejściowego - 18 mm niewrażliwy na zewnętrzne pole magnetyczne Micro-pixel Avalanche PhotoDiodes - fotopowielacz półprzewodnikowy Golovin i Sadygov w latach 90 Gęsta macierz fotodiod lawinowych działających w modzie Geigera hν R 50Ω Substrate Doskonała rozdzielczość energetyczna rozdzielczość czasowa: ps liczba pixeli do 40000/mm 2 wzmocnienie ~ x 10 4 napięcie zasilania ~65 V 19

20 Detekcja fotonów wysokoenergetycznych Promieniowanie X i gamma detektory scyntylacyjne Dla większych energii fotonów (E> ~20keV) konieczność zastosowanie gęstego ośrodka: np. NaI(Th) Scyntylacje: rozbłyski ośrodka wskutek oddziaływania promieniowania Widmo scyntylacji: zakres widzialny (na ogół) Licznik scyntylacyjny 20

21 Zestawienie różnych scyntylatorów Pomiar energii Kalorymetry elektromagnetyczne i hadronowe Całkowite zniszczenie cząstki i absorpcja jej energii (+pomiar topologii) Kalorymetr próbkujący jonizacyjny CIEKŁY ARGON Electron shower in lead. Cloud chamber. W.B. Fretter, UCLA 21

22 Optyczne detektory gazowe Prekursor Micro-pattern Gas Detectors? G. Charpak, J.P. Fabre, F. Sauli, M. Suzuki & W. Dominik, Nucl. Instr. and Meth. A258(1987)177 Optical Time Projection Chamber Dwuprotonowy rozpad 45 Fe K. Miernik et al, Nucl. Instr. Meth. A581(2007)194 22

23 Rekonstrukcja zdarzeń Z θ Y t L PM = v d t X φ Fotopowielacz Rekonstrukcja zdarzenia: (r, Θ, φ ) XY L o Kamera L o = r cosθ L PM = r sinθ r 2 = L o2 + L PM 2 Θ = arctan(l o /L PM ) 23

24 Rozpad 2α jądra 8 Be T 1/2 = 0.77 s 8 B T 1/2 = 0.84 s 8 Li MeV 2α 3.04 MeV 8 Be 2α 2α Rozpad 45 Fe w He +Ar (2:1) K. Miernik et al, Phys. Rev. Letters 99(2007),1-4 24

25 Zakłócenia i szumy Zakłócenia i szumy niepożądane sygnały w układach elektronicznych Występują w każdym elektronicznym układzie pomiarowym Przyczyny powstawania nie zawsze kontrolowane przez eksperymentatora Klasyfikacja (na użytek wykładu): zakłócenia zewnętrzne, wywołane pracą innych urządzeń elektrycznych, zjawiskami przyrodniczymi szumy powodowane przez fluktuacje transportu ładunku elektrycznego wewnątrz układu pomiarowego związane ze zjawiskiem przepływu prądu Zakłócenia zewnętrzne. Typowy tor przenikania zakłóceń : Źródło zakłóceń (nadajnik) Kanał transmisji odbiornik Eliminacja zakłóceń pomiarowych powinna zachodzić we wszystkich elementach toru transmisyjnego: zadanie niewdzięczne, nudne, żmudne czasochłonne i wymaga dużej intuicji, ale od skuteczności zależy jakość wyników pomiaru 25

26 Szum biały Sygnał + Szum 26

27 Widmo szumów oraz zakłóceń zewnętrznych Szumy i zakłócenia ograniczają czułość aparatury pomiarowej i precyzję pomiaru Należy z nimi walczyć! np.: technika modulacyjna (częstość modulacji zależy od eksperymentatora). najmniej zakłócone pasmo Hz Należy unikać wielokrotności częstości sieciowej! 27

Co chcemy mierzyć (obecnie)? Należy pamiętać, że: Jakie obiekty podstawowe mierzymy bezpośrednio? Jak mierzymy?

Co chcemy mierzyć (obecnie)? Należy pamiętać, że: Jakie obiekty podstawowe mierzymy bezpośrednio? Jak mierzymy? Detekcja, detektory 2010 Detektory elektroniczne Zamiana energii nośników informacji na impuls prądu elektrycznego Zjawisko przyrodnicze detektor Urządzenie pomiarowe proces Układ detekcyjny (wielostopniowy)

Bardziej szczegółowo

Particles Signatures and detectors

Particles Signatures and detectors Detekcja, detektory 2009 Detektory elektroniczne Zamiana energii nośników informacji na impuls prądu elektrycznego Zjawisko przyrodnicze detektor Urządzenie pomiarowe proces Układ detekcyjny (wielostopniowy)

Bardziej szczegółowo

Mikroprocesory. magistrala. jednostka arytmetyczno-logiczna

Mikroprocesory. magistrala. jednostka arytmetyczno-logiczna Mikroprocesory Procesor - jednostka arytmetyczno-logiczna maszyny cyfrowej: zespół rejestrów układ sterujący z zegarem Bufor (zespół rejestrów) magistrala Układ sterujący jednostka arytmetyczno-logiczna

Bardziej szczegółowo

NIEWIDZIALNE DO DETEKCJI CZĄSTEK. czyli. Z Hajduk Z. Hajduk IFJ PAN KRAKÓW

NIEWIDZIALNE DO DETEKCJI CZĄSTEK. czyli. Z Hajduk Z. Hajduk IFJ PAN KRAKÓW JAK WIDZIMY TO NIEWIDZIALNE czyli WPROWADZENIE DO DETEKCJI CZĄSTEK Z Hajduk Z. Hajduk IFJ PAN KRAKÓW Referencje Niniejszy wykład korzysta z materiałów i danych zawartych w : oraz CERN Summer Student Lectures

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek

Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek Elementy Fizyki Jądrowej Wykład 7 Detekcja cząstek Detekcja cząstek rejestracja identyfikacja kinematyka Zjawiska towarzyszące przechodzeniu cząstek przez materię jonizacja scyntylacje zjawiska w półprzewodnikach

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek

Bardziej szczegółowo

Identyfikacja cząstek

Identyfikacja cząstek Określenie masy i ładunku cząstek Pomiar prędkości przy znanym pędzie e/ µ/ π/ K/ p czas przelotu (TOF) straty na jonizację de/dx Promieniowanie Czerenkowa (C) Promieniowanie przejścia (TR) Różnice w charakterze

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów

Bardziej szczegółowo

Marek Kowalski

Marek Kowalski Jak zbudować eksperyment ALICE? (A Large Ion Collider Experiment) Jeszcze raz diagram fazowy Interesuje nas ten obszar Trzeba rozpędzić dwa ciężkie jądra (Pb) i zderzyć je ze sobą Zderzenie powinno być

Bardziej szczegółowo

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych.

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych. Detektory cząstek Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych Eksperymenty D. Kiełczewska, wykład 3 1 Przechodzenie cząstek naładowanych

Bardziej szczegółowo

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty. D. Kiełczewska, wykład 3

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty. D. Kiełczewska, wykład 3 Detektory cząstek Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty Przechodzenie cząstek naładowanych przez materię Cząstka naładowana: traci energię przez zderzenia

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Detekcja cząstek

Wszechświat Cząstek Elementarnych dla Humanistów Detekcja cząstek Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 24 października 2017 A.F.Żarnecki WCE Wykład 4 24 października

Bardziej szczegółowo

J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE

J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE J14 Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE 1. Oddziaływanie ciężkich cząstek naładowanych z materią [1, 2] a) straty energii na jonizację (wzór Bethego-Blocha,

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe

Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Uniwersytet Warszawski - Wydział Fizyki opiekun: dr Artur Kalinowski 1 Plan prezentacji Eksperyment CMS Układ wyzwalania Metoda

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych Jak działają detektory Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych LHC# Wiązka to pociąg ok. 2800 paczek protonowych Każda paczka składa się. z ok. 100 mln protonów 160km/h

Bardziej szczegółowo

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy

Bardziej szczegółowo

Detektory czastek. Elementy fizyki czastek elementarnych. Wykład III. Detekcja czastek detektory śladowe kalorymetry Detektory w dużych eksperymentach

Detektory czastek. Elementy fizyki czastek elementarnych. Wykład III. Detekcja czastek detektory śladowe kalorymetry Detektory w dużych eksperymentach czastek Elementy fizyki czastek elementarnych Wykład III Detekcja czastek detektory śladowe kalorymetry w dużych eksperymentach Jonizacja U podstaw działania przeważajacej większości detektorów czastek

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne? 2010/11(z) Ewolucja Wszech'swiata czas,energia,temperatura Detekcja cząstek

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

Fizyka czastek: detektory

Fizyka czastek: detektory Fizyka czastek: detektory prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład II Detektory gazowe Jonizacja w gazach Straty energii na jonizację mówia nam o tym ile energii

Bardziej szczegółowo

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia

Bardziej szczegółowo

Cel. Pomiar wierzchołków oddziaływań. Badanie topologii przypadków. Pomiar pędów (ładunku) Pomoc w identyfikacji cząstek (e, µ, γ)

Cel. Pomiar wierzchołków oddziaływań. Badanie topologii przypadków. Pomiar pędów (ładunku) Pomoc w identyfikacji cząstek (e, µ, γ) Pomiar torów w cząstek Cel Pomiar wierzchołków oddziaływań pomiar czasów życia preselekcja oddziaływań wybranej klasy Badanie topologii przypadków krotności rozkłady kątowe Jety Pomiar pędów (ładunku)

Bardziej szczegółowo

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

Fizyka cząstek elementarnych

Fizyka cząstek elementarnych Wykład IV Metody doświadczalne fizyki cząstek elementarnych II Detektory cząstek elementarnych Cząstki naładowane elektrycznie, powodujące wzbudzenie lub jonizację atomów i cząsteczek, podlegają bezpośredniej

Bardziej szczegółowo

T E B. B energia wiązania elektronu w atomie. Fotony

T E B. B energia wiązania elektronu w atomie. Fotony Fotony Gdy wiązka fotonów (promieniowanie X i γ) przechodzi przez ośrodek, zasadnicze znaczenie mają trzy procesy : 1) zjawisko fotoelektryczne 2) rozpraszanie Comptona 3) kreacja pary e + e Szczegółowa

Bardziej szczegółowo

Akceleratory i detektory czastek

Akceleratory i detektory czastek Akceleratory i detektory czastek Elementy fizyki czastek elementarnych Wykład II Akceleratory czastek ograniczenia, świetlność Detekcja czastek detektory śladowe kalorymetry Detektory w dużych eksperymentach

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

promieniowania Oddziaływanie Detekcja neutronów - stosowane reakcje (Powtórka)

promieniowania Oddziaływanie Detekcja neutronów - stosowane reakcje (Powtórka) Wykład na Studiach Podyplomowych "Energetyka jądrowa we współczesnej elektroenergetyce", Kraków, 4 maj DETEKCJA NEUTRONÓW JERZY JANCZYSZYN Oddziaływanie promieniowania (Powtórka) Cząstki naładowane oddziałują

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

J6 - Pomiar absorpcji promieniowania γ

J6 - Pomiar absorpcji promieniowania γ J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować

Bardziej szczegółowo

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ. Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie

Bardziej szczegółowo

Detekcja promieniowania jonizującego. Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie

Detekcja promieniowania jonizującego. Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie Detekcja promieniowania jonizującego Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie Człowiek oraz wszystkie żyjące na Ziemi organizmy są stale narażone na wpływ promieniowania jonizującego.

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:... Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 4 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Dobór optymalnego

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

Nowatorskie rozwiązanie:tpc z odczytem optycznym (prof. Wojciech Dominik)

Nowatorskie rozwiązanie:tpc z odczytem optycznym (prof. Wojciech Dominik) Nowatorskie rozwiązanie:tpc z odczytem optycznym (prof. Wojciech Dominik) Do wnętrza komory wpada promieniotwórczy jon i zatrzymuje się w gazie. Po pewnym czasie następuje rozpad z emisją cząstek naładowanych

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża

Bardziej szczegółowo

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący

Bardziej szczegółowo

Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków

Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu

Bardziej szczegółowo

Ćwiczenie 57 Badanie absorpcji promieniowania α

Ćwiczenie 57 Badanie absorpcji promieniowania α Ćwiczenie 57 Badanie absorpcji promieniowania α II PRACOWNIA FIZYCZNA UNIWERSYTET ŚLĄSKI W KATOWICACH Cele doświadczenia Głównym problemem, który będziemy badać w tym doświadczeniu jest strata energii

Bardziej szczegółowo

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,

Bardziej szczegółowo

Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu

Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu Paweł Bilski Zakład Fizyki Radiacyjnej i Dozymetrii (NZ63) IFJ PAN Fluorescenscent Nuclear Track Detectors (FNTD) pierwsza

Bardziej szczegółowo

Zakres wykładu. Detekcja światła. Zakres wykładu. Zakres wykładu

Zakres wykładu. Detekcja światła. Zakres wykładu. Zakres wykładu Zakres wykładu Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009

Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009 Ćwiczenie LP2 Jacek Grela, Łukasz Marciniak 25 października 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii

Bardziej szczegółowo

Detekcja promieniowania X

Detekcja promieniowania X Detekcja promieniowania X Trochę statystyki: rozkład dwumianowy Przykład 1: rzucamy N=10 razy monetą. Prawdopodobieństwo wyrzucenia orła wynosi p=1/2 Jakie jest prawdopodobieństwo, że w tych N próbach

Bardziej szczegółowo

Metody i Techniki Jądrowe

Metody i Techniki Jądrowe Politechnika Warszawska Wydział Fizyki Praca zaliczeniowa z przedmiotu: Metody i Techniki Jądrowe Detektory gazowe promieniowania jonizującego i ich zastosowania w badaniach naukowych, dozymetrii i przemyśle

Bardziej szczegółowo

Fizyka cząstek elementarnych warsztaty popularnonaukowe

Fizyka cząstek elementarnych warsztaty popularnonaukowe Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński

Bardziej szczegółowo

Budowa i działanie detektorów cząstek elementarnych. Autor: Rafał Sarnecki

Budowa i działanie detektorów cząstek elementarnych. Autor: Rafał Sarnecki Budowa i działanie detektorów cząstek elementarnych. Autor: Rafał Sarnecki Plan prezentacji: 1.licznik proporcjonalny; 2. wielodrutowa komora proporcjonalna 3. komora iskrowa i strumieniowa 4. komora dryfowa

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

Oddziaływanie Promieniowania Jonizującego z Materią

Oddziaływanie Promieniowania Jonizującego z Materią Oddziaływanie Promieniowania Jonizującego z Materią Plan Ogólne własności detektora Czułość Rozdzielczość energetyczna Funkcja odpowiedzi Wydajność i czas martwy Tomasz Szumlak AGH-UST Wydział Fizyki i

Bardziej szczegółowo

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka Seminarium -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne Konrad Tudyka 1 W 1908r. Rutheford zatopił niewielka ilość 86 Rn w szklanym naczyniu o ciękich sciankach (przenikliwych

Bardziej szczegółowo

J8 - Badanie schematu rozpadu jodu 128 I

J8 - Badanie schematu rozpadu jodu 128 I J8 - Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wytworzenie izotopu 128 I poprzez aktywację w źródle neutronów próbki zawierającej 127 I, a następnie badanie schematu rozpadu tego nuklidu

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Metody eksperymentalne w fizyce wysokich energii

Metody eksperymentalne w fizyce wysokich energii Metody eksperymentalne w fizyce wysokich energii prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład III Oddziaływanie fotonów i hadronów Detektory gazowe Fotony Przekrój

Bardziej szczegółowo

Repeta z wykładu nr 10. Detekcja światła. Kondensator MOS. Plan na dzisiaj. fotopowielacz, część 2 MCP (detektor wielokanałowy) streak camera

Repeta z wykładu nr 10. Detekcja światła. Kondensator MOS. Plan na dzisiaj. fotopowielacz, część 2 MCP (detektor wielokanałowy) streak camera Repeta z wykładu nr 10 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 fotopowielacz,

Bardziej szczegółowo

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora

Bardziej szczegółowo

Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ

Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ INTEGRAL - International Gamma-Ray Astrophysical Laboratory prowadzi od 2002 roku pomiary promieniowania γ w Kosmosie INTEGRAL 180 tys km Źródła

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej

J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej Celem doświadczenie jest wyznaczenie zawartości manganu w stalowym przedmiocie. Przedmiot ten, razem z próbką zawierającą czysty mangan,

Bardziej szczegółowo

Metody eksperymentalne w fizyce wysokich energii

Metody eksperymentalne w fizyce wysokich energii Metody eksperymentalne w fizyce wysokich energii prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład III Detektory gazowe Liczniki scyntylacyjne Jonizacja w gazach Straty

Bardziej szczegółowo

Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski

Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski Wzrost pseudomorficzny Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 naprężenie

Bardziej szczegółowo

Akceleratory i detektory czastek

Akceleratory i detektory czastek Akceleratory i detektory czastek Elementy fizyki czastek elementarnych Wykład II Akceleratory czastek ograniczenia, świetlność Detekcja czastek detektory śladowe kalorymetry Detektory w dużych eksperymentach

Bardziej szczegółowo

Fotodetektor. Odpowiedź detektora światłowodowego. Nachylenie (czułość) ~0.9 ma/mw. nachylenie = czułość (ma/mw) Prąd wyjściowy (ma)

Fotodetektor. Odpowiedź detektora światłowodowego. Nachylenie (czułość) ~0.9 ma/mw. nachylenie = czułość (ma/mw) Prąd wyjściowy (ma) Detektory Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania źródła. Sergiusz Patela

Bardziej szczegółowo

Akceleratory i detektory czastek

Akceleratory i detektory czastek Akceleratory i detektory czastek Elementy fizyki czastek elementarnych Wykład II Akceleratory czastek akceleratory kołowe, ograniczenia, świetlność Detekcja czastek detektory śladowe kalorymetry Detektory

Bardziej szczegółowo

Pomiar strumienia termicznych neutronów w podziemnym laboratorium w Gran Sasso. Karol Jędrzejczak IPJ P-VII Łódź

Pomiar strumienia termicznych neutronów w podziemnym laboratorium w Gran Sasso. Karol Jędrzejczak IPJ P-VII Łódź Pomiar strumienia termicznych neutronów w podziemnym laboratorium w Gran Sasso Karol Jędrzejczak IPJ P-VII Łódź W kwietniu tego roku zmierzyliśmy strumień neutronów w laboratorium podziemnym w Gran Sasso

Bardziej szczegółowo

Ćwiczenie 3. POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU Rozpad α

Ćwiczenie 3. POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU Rozpad α 39 40 Ćwiczenie 3 POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU W ćwiczeniu dokonuje się pomiaru zasięgu w powietrzu cząstek α emitowanych przez źródło promieniotwórcze. Pomiary wykonuje się za pomocą komory jonizacyjnej

Bardziej szczegółowo

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje

Bardziej szczegółowo

Urządzenia półprzewodnikowe

Urządzenia półprzewodnikowe Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor

Bardziej szczegółowo

Wykład VII Detektory I

Wykład VII Detektory I Wykład VII Detektory I Rodzaje detektorów Parametry detektorów Sygnał na wyjściu detektora zależy od długości fali (l), powierzchni światłoczułej (A) i częstości modulacji (f), polaryzacji (niech opisuje

Bardziej szczegółowo

Dozymetria promieniowania jonizującego

Dozymetria promieniowania jonizującego Dozymetria dział fizyki technicznej obejmujący metody pomiaru i obliczania dawek (dóz) promieniowania jonizującego, a także metody pomiaru aktywności promieniotwórczej preparatów. Obecnie termin dawka

Bardziej szczegółowo

BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO

BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 11 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 3-12 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Oddziaływanie z materią

Bardziej szczegółowo

Licznik scyntylacyjny

Licznik scyntylacyjny Detektory promieniowania jonizującego. Licznik scyntylacyjny Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 004. s.1/8 ` Politechnika Poznańska, Instytut Chemii i Elektrochemii Technicznej,

Bardziej szczegółowo

Detekcja cząstek elementarnych. w eksperymencie MINOS. Krzysztof Wojciech Fornalski Wydział Fizyki Politechniki Warszawskiej 2006

Detekcja cząstek elementarnych. w eksperymencie MINOS. Krzysztof Wojciech Fornalski Wydział Fizyki Politechniki Warszawskiej 2006 Detekcja cząstek elementarnych w eksperymencie MINOS Krzysztof Wojciech Fornalski Wydział Fizyki Politechniki Warszawskiej 2006 Wstęp detektory budowa i typ scyntylatorów światłowody fotopowielacze kalibracja

Bardziej szczegółowo

Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków

Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków 2 Pomiary jonizacji Nasze piękne równania opisujące straty jonizacyjne mogą zostać użyte do wyznaczenia średniej

Bardziej szczegółowo

Wyznaczanie energii promieniowania γ pochodzącego ze. źródła Co metodą absorpcji

Wyznaczanie energii promieniowania γ pochodzącego ze. źródła Co metodą absorpcji Wyznaczanie energii promieniowania γ pochodzącego ze 6 źródła Co metodą absorpcji I. Zagadnienia 1. Procesy fizyczne prowadzące do emisji kwantów γ. 2. Prawo absorpcji. Oddziaływanie promieniowania γ z

Bardziej szczegółowo

ZJAWISKA FOTOELEKTRYCZNE

ZJAWISKA FOTOELEKTRYCZNE ZJAWISKA FOTOELEKTRYCZNE ZEWNĘTRZNE, WEWNETRZNE I ICH RÓŻNE ZASTOSOWANIA ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Światło padając na powierzchnię materiału wybija z niej elektron 1 ZJAWISKO FOTOELEKTRYCZNE

Bardziej szczegółowo

Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego.

Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego. Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego. Prawo rozpadu promieniotwórczego. Rodzaje promieniowania PROMIENIOWANIE ŁADUNEK ELEKTRYCZNY MASA CECHY CHARAKTERYSTYCZNE alfa +2e 4u beta

Bardziej szczegółowo

Maria Krawczyk, Wydział Fizyki UW

Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 14.X.2009 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne I? Cząstka i fale falowe własności cząstek elementarnych Cząstki fundamentalne

Bardziej szczegółowo

( ) u( λ) w( f) Sygnał detektora

( ) u( λ) w( f) Sygnał detektora PARAMETRY DETEKTORÓW FOTOELEKTRYCZNYCH Sygnał detektora V = V(b,f, λ,j,a) b f λ J A - polaryzacja, - częstotliwość modulacji, - długość fali, - strumień (moc) padającego promieniowania, - pole powierzchni

Bardziej szczegółowo

Elementy optoelektroniczne. Przygotował: Witold Skowroński

Elementy optoelektroniczne. Przygotował: Witold Skowroński Elementy optoelektroniczne Przygotował: Witold Skowroński Plan prezentacji Wstęp Diody świecące LED, Wyświetlacze LED Fotodiody Fotorezystory Fototranzystory Transoptory Dioda LED Dioda LED z elektrycznego

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu

Bardziej szczegółowo

CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO

CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 1 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

1100-1BO15, rok akademicki 2016/17

1100-1BO15, rok akademicki 2016/17 1100-1BO15, rok akademicki 2016/17 y z y z y f y f y y y y z f z f zz ff Analizując rysunek można napisać zależność n sin u r s r s n sinu. Aby s było niezależne od kąta u musi być zachowany warunek sin

Bardziej szczegółowo

Zespół Zakładów Fizyki Jądrowej

Zespół Zakładów Fizyki Jądrowej gluons Zespół Zakładów Fizyki Jądrowej Zakład Fizyki Hadronów Zakład Doświadczalnej Fizyki Cząstek i jej Zastosowań Zakład Teorii Układów Jądrowych QCD Zakład Fizyki Hadronów Badanie struktury hadronów,

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 8 Tomasz Kwiatkowski 24 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 8 1/21 Plan wykładu Efekt fotoelektryczny wewnętrzny Matryca CCD Budowa piksela

Bardziej szczegółowo

Skończona studnia potencjału

Skończona studnia potencjału Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach

Bardziej szczegółowo