Detektory czastek. Elementy fizyki czastek elementarnych. Wykład III. Detekcja czastek detektory śladowe kalorymetry Detektory w dużych eksperymentach

Wielkość: px
Rozpocząć pokaz od strony:

Download "Detektory czastek. Elementy fizyki czastek elementarnych. Wykład III. Detekcja czastek detektory śladowe kalorymetry Detektory w dużych eksperymentach"

Transkrypt

1 czastek Elementy fizyki czastek elementarnych Wykład III Detekcja czastek detektory śladowe kalorymetry w dużych eksperymentach

2 Jonizacja U podstaw działania przeważajacej większości detektorów czastek elementarnych leży zjawisko jonizacji: Czastka naładowana przechodzac przez ośrodek oddziałuje Kulombowsko z elektronami i oddaje im część swojej energii wybijajac je z atomów. A.F.Żarnecki Wykład III 1

3 Jonizacja Straty energii na jonizację opisuje wzór Bethe-Blocha: de dx = MeV g cm 2 gdzie: z - ładunek czastki, β - jej prędkość I - energia jonizacji; dla większości materiałów 10 ev δ - poprawka zwiazana z polaryzacja ośrodka Przy założeniu m m e jonizacja zależy wyłacznie od β / γ Straty minimalne dla γ 3: de dx z 2 Z A 1 β 2 Stopping power [MeV cm 2 /g] [ ln 2m eβ 2 γ 2 I 2 β 2 δ 2 Lindhard- Scharff Nuclear losses µ Anderson- Ziegler min 2MeV/ g ] wzór Bethe-Blocha Bethe-Bloch µ + on Cu Radiative effects reach 1% [GeV/c] Muon momentum Radiative losses Without δ βγ [MeV/c] Minimum ionization A.F.Żarnecki Wykład III 2 cm 2 E µc [TeV/c]

4 Jonizacja Jonizacja może prowadzić do wielu różnorodnych procesów, będacych podstawa detekcji czastek. Metody historyczne : kondensacja pary komora mgłowa Wilsona (1911) reakcje chemicznych ślady w emulsji fotograficznej ( 1930) (wciaż używane ze względu na precyzję) Wykorzystywane współcześnie: świecenie (scyntylacja) liczniki scyntylacyjne przepływ pradu liczniki gazowe detektory półprzewodnikowe wrzenie cieczy komora pęcherzykowa (1952) wyładowanie elektryczne komora iskrowa A.F.Żarnecki Wykład III 3

5 Licznik scyntylacyjny W niektórych substancjach (kryształach, zwiazkach organicznych) powrotowi wzbudzonego atomu do stanu podstawowego towarzyszy emisja fotonu - scyntylacja Emitowane fotony moga być rejestrowane przez fotopowielacze, fotodiody lub inne elementy światłoczułe. Zalety: tanie, szybka odpowiedź detektora (kilka ns)... Wady: kłopotliwy tor optyczny, brak pomiaru pozycji... A.F.Żarnecki Wykład III 4

6 Licznik scyntylacyjny Ogromny postęp w dziedzinie urzadzeń opto-elektronicznych, jaki dokonał się w ostatnich latach, doprowadził do ponownego wzrostu zainteresowania scyntylatorami. Element odczytu prototypu kalorymetru dla ILC Krzemowy fotopowielacz Jeszcze nie tak dokładny jak tradycyjny, ale szybki postęp... A.F.Żarnecki Wykład III 5

7 Licznik scyntylacyjny Miniaturyzacja odczytu otworzyła drogę do budowy detektorów śladowych opartych o włókna scyntylujace Ekspertyment D0 Element odczytu (8 włókien) A.F.Żarnecki Wykład III 6

8 Zastosowania aplikacyjne A.F.Żarnecki Wykład III 7

9 Liczniki gazowe Wielodrutowa komora proporcjonalna: Jony i elektrony swobodne, powstałe w gazie w wyniku jonizacji, dryfuja w kierunku odpowiednich elektrod. Pole elektryczne jest najsilniejsze przy drutach anodowych. Przy odpowiednim doborze napięcia może tam dojść do wtórnych jonizacji i kaskadowego powielania ładunku porzez przyspieszane elektrony wzmocnienie gazowe ( ) Nagroda Nobla Georges Charpak: for his invention and development of particle detectors, in particular the multiwire proportional chamber (MWPC) A.F.Żarnecki Wykład III 8

10 Liczniki gazowe Słabym punktem komory wielodrutowej sa... druty. Ze względu na działajace siły nie moga być zbyt blisko siebie ograniczona rozdzielczość przestrzenna ( 1mm) Nowe pomysły Micro-Strip Gas Chamber (MSGC): anode 7 µm coating 1 µm gas mixture Ne(40%)-DME(60%) cathode 93 µm thickness 0.6 µm pitch 200 µm J_V_255 drift plane 3 mm 0.3 mm glass substrate Wielodrutowe komory MWPC, oparte na pomyśle Czarpak a, stosowane sa coraz rzadziej. zamiast drutów - metalowe paski napylone na izolatorze pół komory wielodrutowej Odległości między paskami moga być dużo mniejsze dokładniejsze pomiary torów ( 100µm) pixle zamiast pasków możliwa rekonstrukcja 2-D!!! A.F.Żarnecki Wykład III 9

11 Komora dryfowa Komora proporcjonalna z wydłużonym obszarem dryfu: t = 0 t = t /v d Znajac prędkość dryfu elektronów w komorze v d oraz opóźnienie impulsu z komory t możemy wyznaczyć pozycję czastki... Typowe prędkości dryfu: v d 10 5 m/s = 100 µm/ns Dokładność pomiaru czasu 1ns dokładność pozycji 100µm Wada: pomiar tylko w jednym wymiarze... A.F.Żarnecki Wykład III 10

12 Komora TPC Time Projection Chambre - komora projekcji czasowej Pełna, trójwymiarowa (3D) rekonstrukcja toru czastki na podstawie: czasu dryfu elektronów (1 współrzędna) miejsca rejestracji elektronów w MSGC (2 współrzędne) Schematyczny rysunek TPC (1/4 detektora): kalorymetr izolacja zewn. katoda centralna e izolacja wewn. E MSGC elektronika TPC mocowanie kable kalory dodatkowe komory IP (nominalny punkt oddziaływania) oś detektora A.F.Żarnecki Wykład III 11

13 Eksperyment NA49 (zderzenia ciężkich jonów) A.F.Żarnecki Wykład III 12

14 STAR A.F.Żarnecki Wykład III 13

15 Komora TPC 32 Jednoczesny pomiar pędu (z zakrzywienia toru w polu magnetycznym) i gęstości strat na jonizację pozwala na (częściowa) identyfikację czastek: de/dx (kev/cm) µ π K p e D Momentum (GeV/c) A.F.Żarnecki Wykład III 14

16 półprzewodnikowe Sa coraz powszechniej używane w fizyce czastek. Przykład konstrukcji detektora krzemowego (silicon micro-strip detector): W wyniku jonizacji powstaja swobodne elektrony i dziury. mierzymy przepływ ładunku przez spolaryzowane w kierunku zaporowym złacze pn (diodę). Warstwa typu p w postaci waskich pasków bardzo dokładny pomiar pozycji czastki (< 10µm) półprzewodnikowe moga także wykorzystywać inne technologie, np. układy typu CCD (powszechnie używane w kamerach cyfrowych). A.F.Żarnecki Wykład III 15

17 Pojedyńczy segment detektora wierzchołka eksperymentu ZEUS A.F.Żarnecki Wykład III 16

18 Eksperyment D0 A.F.Żarnecki Wykład III 17

19 półprzewodnikowe Dzięki rozwojowi technologii możemy budować coraz tańsze i coraz większe detektory: półprzewodnikowe sa używane głównie do pomiaru wierzchołka oddziaływania i wierzchołków wtórnych NA NA NA Mark II 1990 DELPHI 1991 ALEPH 1991 OPAL 1992 CDF 1993 L CLEO III 1999 BABAR 2001 CDF-II 2006 ATLAS 2006 CMS identyfikacji mezonów B (kwarku b; cτ 0.5mm) Year of operation A.F.Żarnecki Wykład III 18

20 ALEPH e + e Zh b b q q zrekonstruowane dwa wtórne wierzchołki ALEPH DALI_F1 ECM=206.7 Pch=83.0 Efl=194. Ewi=124. Eha=35.9 BEHOLD Run=54698 Evt=4881 Nch=28 EV1=0 EV2=0 EV3=0 ThT= :32 Detb= E3FFFF Gev EC (φ 138)*SIN(θ) 5 Gev HC o o o o x x ox o x o x oo ox o x x o oo xo o x RO TPC 0.3cm 0.6cm Y" 1cm 0 1cm X" P>.50 Z0<10 D0<2 F.C. imp. µ o x o o o 15 GeV x θ=180 θ=0 o o o o o o o x x x x o x A.F.Żarnecki Wykład III 19

21 śladowe (mierzace tory czastek) pozwalaja na pomiar pędu jedynie dla czastek naładowanych (!) Aby jak najmniej zakłucać lot czastki detektory śladowe powinny mieć jak najmniejsza gęstość/grubość Czastki neutralne nie oddziałuję praktycznie w detektorach śladowych pozostaja niewidoczne musimy mieć inna metodę dla ich pomiaru Aby zmierzyć energię czastek neutralnych lub pęków (ang. jetów) czastek (zawierajacych cz. naładowane i neutralne) budujemy Kalorymetry A.F.Żarnecki Wykład III 20

22 Kalorymetry Pomiar energii w kalorymetrze polega na całkowitej absorbcji czastki padajacej i zamianie jej energii na mierzalny sygnał. Sygnał pochodzi od kaskady czastek wtórnych, powstajacych w oddziaływaniu czastki pierwotnej z gęstym materiałem kalorymetru. Czastki wtórne dziela się energia czastki pierwotnej, a jonizujac ośrodek prowadza do powstania sygnału proporcjonalnego do poczatkowej energii. Rodzaje kaskad (i kalorymetrów): elektromagnetyczne (elektronowo-fotonowe) - wywoływane przez elektrony, pozytony, fotony, π hadronowe - wywoływane przez inne, silnie oddziałujace czastki A.F.Żarnecki Wykład III 21

23 Kalorymetry elektromagnetyczne Dla energii powyżej E c 10 MeV: elektrony traca energię prawie wyłacznie na promieniowanie hamowania e γ fotonów ulegaja konwersji na pary e + e γ e e + Wysokoenergetyczny elektron lub foton wpadajac do kalorymetru wywołuje kaskadę składajac a się z N E/E c czastek Promieniowanie hamowania i kreacja par nie zmieniaja energii kaskady 100% tracone na jonizację ośrodka możliwy jest bardzo dokładny pomiar energii. A.F.Żarnecki Wykład III 22

24 Kalorymetry hadronowe Oddziaływania silne hadronów z jadrami ośrodka prowadza głównie do produkcji pionów (π ±, π ) i kaonów (K ±, K ). π + K + π + π ο π π + π+ Większość energii poczatkowej γ γ czastki zostaje ostatecznie zużyta na jonizację ośrodka dajac mierzony sygnał. Jednak część energii gubiona jest na wzbudzenia i rozbicie jader oraz neutrina produkowane w rozpadach. Z uwagi na duże fluktuacje w rozwoju kaskady prowadzi to do niepewności w pomiarze energii: σ E E 50% E[GeV ] Stosujac odpowiednie materiały (np. uran) możemy odzyskać część energii traconej w procesach jadrowych i poprawić dokładność pomiaru (tzw. kalorymetry kompensujace). Możemy też starać się zmierzyć udział różnych procesów w rozwoju kaskady ( tracking calorimeter ) A.F.Żarnecki Wykład III 23

25 Symulacja rozwoju kaskady hadronowej A.F.Żarnecki Wykład III 24

26 Kalorymetry jednorodne Kaskada rozwija się wyłacznie w materiale aktywnym (pozwalajacym na pomiar strat energii): Kalorymetry próbkujace Materiał aktywny (pomiar) przekładany wartwami gęstego absorbera (rozwój kaskady): Precyzyjny pomiar, ale kalorymetr duży i kosztowny (materiały aktywne maja naogół niewielkie gęstości) Dodatkowe fluktuacje pogarszaja pomiar, ale kalorymetr jest dużo mniejszy i tańszy Wpływ fluktuacji maleje ze wzrostem energii A.F.Żarnecki Wykład III 25

27 Tracking calorimeter A.F.Żarnecki Wykład III 26

28 sa jak ogry... Ogry sa jak cebula... Cebula ma warstwy... Ogry maja warstwy... maja warstwy... A.F.Żarnecki Wykład III 27

29 Struktura warstwowa Współczesne eksperymenty fizyki wysokich energii (zwłaszcza te na wiazkach przeciwbieżnych) sa naogół zbudowane z wielu różnorodnych elementów. Ułożone jeden za drugim detektory umożliwiaja optymalny pomiar wszystkich rodzajów czastek i ich (zwykle częściowa) identyfikację. Kaskady elektromagnetyczne sa dużo krótsze niż hadronowe, gdyż naogół droga radiacyjna drogi na oddziaływanie (silne) 1X 1λ int A.F.Żarnecki Wykład III 28

30 , d. sladowe kalorymetry VTX TPC e. m. hadronowy det. mionowe e + γ π +, p... ο n, K... µ + ν A.F.Żarnecki Wykład III 29

31 A.F.Żarnecki Wykład III 30

32 A.F.Żarnecki Wykład III 31

33 A.F.Żarnecki Wykład III 32

34 Eksperyment ZEUS A.F.Żarnecki Wykład III 33

35 Przypadek rozpraszania elektron-proton Ekspertment ZEUS A.F.Żarnecki Wykład III 34

36 Przypadek rozpraszania elektron-proton Ekspertment H1, det. sladowe kal. elektromagnetyczny kal. hadronowy hadrony e p e R Z A.F.Żarnecki Wykład III 35

37 SiD Projekt detektora dla eksperymentu przy ILC Koncepcja detektora opartego w całości o detektory półprzewodnikowe (krzemowe) A.F.Żarnecki Wykład III 36

38 Rekonstrukcja czastek Przyszłe detektory Particle Flow Algorithm (PFA) Detektor wyposażony w kalorymetr śladowy umożliwia pełna identyfikację wszystkich produkowanych czastek i optymalny pomiar ich energii. A.F.Żarnecki Wykład III 37

Akceleratory i detektory czastek

Akceleratory i detektory czastek Akceleratory i detektory czastek Elementy fizyki czastek elementarnych Wykład II Akceleratory czastek ograniczenia, świetlność Detekcja czastek detektory śladowe kalorymetry Detektory w dużych eksperymentach

Bardziej szczegółowo

Akceleratory i detektory czastek

Akceleratory i detektory czastek Akceleratory i detektory czastek Elementy fizyki czastek elementarnych Wykład II Akceleratory czastek ograniczenia, świetlność Detekcja czastek detektory śladowe kalorymetry Detektory w dużych eksperymentach

Bardziej szczegółowo

Akceleratory i detektory czastek

Akceleratory i detektory czastek Akceleratory i detektory czastek Elementy fizyki czastek elementarnych Wykład II Akceleratory czastek akceleratory kołowe, ograniczenia, świetlność Detekcja czastek detektory śladowe kalorymetry Detektory

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wszechświat czastek elementarnych Wykład 9: Współczesne eksperymenty prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych Wykład

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Detekcja cząstek

Wszechświat Cząstek Elementarnych dla Humanistów Detekcja cząstek Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 24 października 2017 A.F.Żarnecki WCE Wykład 4 24 października

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne? 2010/11(z) Ewolucja Wszech'swiata czas,energia,temperatura Detekcja cząstek

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

Marek Kowalski

Marek Kowalski Jak zbudować eksperyment ALICE? (A Large Ion Collider Experiment) Jeszcze raz diagram fazowy Interesuje nas ten obszar Trzeba rozpędzić dwa ciężkie jądra (Pb) i zderzyć je ze sobą Zderzenie powinno być

Bardziej szczegółowo

Fizyka czastek: detektory

Fizyka czastek: detektory Fizyka czastek: detektory prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład II Detektory gazowe Jonizacja w gazach Straty energii na jonizację mówia nam o tym ile energii

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wszechświat czastek elementarnych Wykład 8: Współczesne eksperymenty prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych Wykład

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek

Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek Elementy Fizyki Jądrowej Wykład 7 Detekcja cząstek Detekcja cząstek rejestracja identyfikacja kinematyka Zjawiska towarzyszące przechodzeniu cząstek przez materię jonizacja scyntylacje zjawiska w półprzewodnikach

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

Metody eksperymentalne w fizyce wysokich energii

Metody eksperymentalne w fizyce wysokich energii Metody eksperymentalne w fizyce wysokich energii prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład III Oddziaływanie fotonów i hadronów Detektory gazowe Fotony Przekrój

Bardziej szczegółowo

NIEWIDZIALNE DO DETEKCJI CZĄSTEK. czyli. Z Hajduk Z. Hajduk IFJ PAN KRAKÓW

NIEWIDZIALNE DO DETEKCJI CZĄSTEK. czyli. Z Hajduk Z. Hajduk IFJ PAN KRAKÓW JAK WIDZIMY TO NIEWIDZIALNE czyli WPROWADZENIE DO DETEKCJI CZĄSTEK Z Hajduk Z. Hajduk IFJ PAN KRAKÓW Referencje Niniejszy wykład korzysta z materiałów i danych zawartych w : oraz CERN Summer Student Lectures

Bardziej szczegółowo

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty. D. Kiełczewska, wykład 3

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty. D. Kiełczewska, wykład 3 Detektory cząstek Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty Przechodzenie cząstek naładowanych przez materię Cząstka naładowana: traci energię przez zderzenia

Bardziej szczegółowo

Identyfikacja cząstek

Identyfikacja cząstek Określenie masy i ładunku cząstek Pomiar prędkości przy znanym pędzie e/ µ/ π/ K/ p czas przelotu (TOF) straty na jonizację de/dx Promieniowanie Czerenkowa (C) Promieniowanie przejścia (TR) Różnice w charakterze

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych Jak działają detektory Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych LHC# Wiązka to pociąg ok. 2800 paczek protonowych Każda paczka składa się. z ok. 100 mln protonów 160km/h

Bardziej szczegółowo

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych.

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych. Detektory cząstek Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych Eksperymenty D. Kiełczewska, wykład 3 1 Przechodzenie cząstek naładowanych

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wszechświat czastek elementarnych Wykład 7: Współczesne eksperymenty prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych Wykład

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wszechświat czastek elementarnych Wykład 6: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych Wykład 6: 27 marca 2013 p.1/43

Bardziej szczegółowo

T E B. B energia wiązania elektronu w atomie. Fotony

T E B. B energia wiązania elektronu w atomie. Fotony Fotony Gdy wiązka fotonów (promieniowanie X i γ) przechodzi przez ośrodek, zasadnicze znaczenie mają trzy procesy : 1) zjawisko fotoelektryczne 2) rozpraszanie Comptona 3) kreacja pary e + e Szczegółowa

Bardziej szczegółowo

Fizyka cząstek elementarnych

Fizyka cząstek elementarnych Wykład IV Metody doświadczalne fizyki cząstek elementarnych II Detektory cząstek elementarnych Cząstki naładowane elektrycznie, powodujące wzbudzenie lub jonizację atomów i cząsteczek, podlegają bezpośredniej

Bardziej szczegółowo

Metody eksperymentalne w fizyce wysokich energii

Metody eksperymentalne w fizyce wysokich energii Metody eksperymentalne w fizyce wysokich energii prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład II Oddziaływanie czastek naładowanych z materia Oddziaływanie elektronów

Bardziej szczegółowo

Maria Krawczyk, Wydział Fizyki UW

Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 14.X.2009 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne I? Cząstka i fale falowe własności cząstek elementarnych Cząstki fundamentalne

Bardziej szczegółowo

Metody eksperymentalne w fizyce wysokich energii

Metody eksperymentalne w fizyce wysokich energii Metody eksperymentalne w fizyce wysokich energii prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład III Detektory gazowe Liczniki scyntylacyjne Jonizacja w gazach Straty

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

Budowa i działanie detektorów cząstek elementarnych. Autor: Rafał Sarnecki

Budowa i działanie detektorów cząstek elementarnych. Autor: Rafał Sarnecki Budowa i działanie detektorów cząstek elementarnych. Autor: Rafał Sarnecki Plan prezentacji: 1.licznik proporcjonalny; 2. wielodrutowa komora proporcjonalna 3. komora iskrowa i strumieniowa 4. komora dryfowa

Bardziej szczegółowo

Metody eksperymentalne w fizyce wysokich energii

Metody eksperymentalne w fizyce wysokich energii Metody eksperymentalne w fizyce wysokich energii prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład V Kalorymetry Detektory śladowe umieszczone w polu magnetycznym umożliwiaja

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków

Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

Cel. Pomiar wierzchołków oddziaływań. Badanie topologii przypadków. Pomiar pędów (ładunku) Pomoc w identyfikacji cząstek (e, µ, γ)

Cel. Pomiar wierzchołków oddziaływań. Badanie topologii przypadków. Pomiar pędów (ładunku) Pomoc w identyfikacji cząstek (e, µ, γ) Pomiar torów w cząstek Cel Pomiar wierzchołków oddziaływań pomiar czasów życia preselekcja oddziaływań wybranej klasy Badanie topologii przypadków krotności rozkłady kątowe Jety Pomiar pędów (ładunku)

Bardziej szczegółowo

Oddziaływanie promieniowania jonizującego z materią

Oddziaływanie promieniowania jonizującego z materią Oddziaływanie promieniowania jonizującego z materią Plan Sposoby oddziaływania promieniowania Straty jonizacyjne Stopping power Krzywa Bragga cienkie absorbery energy straggling Przykłady oddziaływania

Bardziej szczegółowo

Compact Muon Solenoid

Compact Muon Solenoid Compact Muon Solenoid (po co i jak) Piotr Traczyk CERN Compact ATLAS CMS 2 Muon Detektor CMS był projektowany pod kątem optymalnej detekcji mionów Miony stanowią stosunkowo czysty sygnał Pojawiają się

Bardziej szczegółowo

Oddziaływania elektrosłabe

Oddziaływania elektrosłabe Oddziaływania elektrosłabe X ODDZIAŁYWANIA ELEKTROSŁABE Fizyka elektrosłaba na LEPie Liczba pokoleń. Bardzo precyzyjne pomiary. Obserwacja przypadków. Uniwersalność leptonów. Mieszanie kwarków. Macierz

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV Struktura protonu Wykład IV akcelerator HERA Elementy fizyki czastek elementarnych rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury równania ewolucji QCD struktura fotonu % & lub NC DIS Deep

Bardziej szczegółowo

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje

Bardziej szczegółowo

Fizyka cząstek elementarnych warsztaty popularnonaukowe

Fizyka cząstek elementarnych warsztaty popularnonaukowe Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Badanie wysokoenergetycznych mionów kosmicznych w detektorze ICARUS.

Badanie wysokoenergetycznych mionów kosmicznych w detektorze ICARUS. Badanie wysokoenergetycznych mionów kosmicznych w detektorze ICARUS. Tomasz Palczewski Promotor: Prof. dr hab. Joanna Stepaniak. Warszawska Grupa Neutrinowa. Seminarium Doktoranckie IPJ 21.11.2006. Warszawa.

Bardziej szczegółowo

Oddziaływanie Promieniowania Jonizującego z Materią

Oddziaływanie Promieniowania Jonizującego z Materią Oddziaływanie Promieniowania Jonizującego z Materią Plan Ogólne własności detektora Czułość Rozdzielczość energetyczna Funkcja odpowiedzi Wydajność i czas martwy Tomasz Szumlak AGH-UST Wydział Fizyki i

Bardziej szczegółowo

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów

Bardziej szczegółowo

Detektory w fizyce cząstek

Detektory w fizyce cząstek 4 Detektory w fizyce cząstek Krzysztof Fiałkowski Instytut Fizyki UJ Kiedy czytamy o nowych odkryciach z dziedziny fizyki cząstek, rzadko zastanawiamy się nad szczegółami doświadczeń, które doprowadziły

Bardziej szczegółowo

Struktura układu doświadczalnego EKSPERYMENT ELEKTRONICZNY. detektor. interfejs. Detektory elektroniczne

Struktura układu doświadczalnego EKSPERYMENT ELEKTRONICZNY. detektor. interfejs. Detektory elektroniczne Struktura układu doświadczalnego EKSPERYMENT ELEKTRONICZNY 2013 Zjawisko przyrodnicze detektor Urządzenie pomiarowe Urządzenie wykonawcze interfejs regulator interfejs komputer Detektory elektroniczne

Bardziej szczegółowo

Co chcemy mierzyć (obecnie)? Należy pamiętać, że: Jakie obiekty podstawowe mierzymy bezpośrednio? Jak mierzymy?

Co chcemy mierzyć (obecnie)? Należy pamiętać, że: Jakie obiekty podstawowe mierzymy bezpośrednio? Jak mierzymy? Detekcja, detektory 2010 Detektory elektroniczne Zamiana energii nośników informacji na impuls prądu elektrycznego Zjawisko przyrodnicze detektor Urządzenie pomiarowe proces Układ detekcyjny (wielostopniowy)

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

Detektory. Kalorymetry : Liczniki Czerenkowa Układy detektorów Przykłady wielkich współczesnych detektorów Wybrane eksperymenty ostatnich lat

Detektory. Kalorymetry : Liczniki Czerenkowa Układy detektorów Przykłady wielkich współczesnych detektorów Wybrane eksperymenty ostatnich lat Detektory Kalorymetry : rozwój kaskady kalorymetr elektromagnetyczny kalorymetr hadronowy budowa kalorymetru Liczniki Czerenkowa Układy detektorów Przykłady wielkich współczesnych detektorów Wybrane eksperymenty

Bardziej szczegółowo

Oddziaływanie cząstek naładowanych z materią i ich detektory

Oddziaływanie cząstek naładowanych z materią i ich detektory Oddziaływanie cząstek naładowanych z materią i ich detektory Dominika Alfs, Joanna Wojnarska 15 listopada 2015 1 / 81 Plan prezentacji Opis teoretyczny oddziaływań Oddziaływania cząstek naładowanych z

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Zespół Zakładów Fizyki Jądrowej

Zespół Zakładów Fizyki Jądrowej gluons Zespół Zakładów Fizyki Jądrowej Zakład Fizyki Hadronów Zakład Doświadczalnej Fizyki Cząstek i jej Zastosowań Zakład Teorii Układów Jądrowych QCD Zakład Fizyki Hadronów Badanie struktury hadronów,

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III Struktura protonu Elementy fizyki czastek elementarnych Wykład III kinematyka rozpraszania doświadczenie Rutherforda rozpraszanie nieelastyczne partony i kwarki struktura protonu Kinematyka Rozpraszanie

Bardziej szczegółowo

Eksperyment ALICE i plazma kwarkowo-gluonowa

Eksperyment ALICE i plazma kwarkowo-gluonowa Eksperyment ALICE i plazma kwarkowo-gluonowa CERN i LHC Jezioro Genewskie Lotnisko w Genewie tunel LHC (długość 27 km, ok.100m pod powierzchnią ziemi) CERN/Meyrin Gdzie to jest? ok. 100m Tu!!! LHC w schematycznym

Bardziej szczegółowo

Elementy fizyki czastek elementarnych

Elementy fizyki czastek elementarnych Źródła czastek Elementy fizyki czastek elementarnych Wykład II Naturalne źródła czastek Źródła promieniotwórcze Promieniowanie kosmiczne Akceleratory czastek Akceleratory elektrostatyczne, liniowe i kołowe

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków

Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków 2 Pomiary jonizacji Nasze piękne równania opisujące straty jonizacyjne mogą zostać użyte do wyznaczenia średniej

Bardziej szczegółowo

Fizyka czastek: detektory

Fizyka czastek: detektory Fizyka czastek: detektory prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład III Detektory krzemowe Wprowadzenie Pierwsze detektory półprzewodnikowe: lata 50 XX w. (pomiar

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)

Bardziej szczegółowo

Title. Tajemnice neutrin. Justyna Łagoda. obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań

Title. Tajemnice neutrin. Justyna Łagoda. obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań Title Tajemnice neutrin Justyna Łagoda obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań Cząstki i oddziaływania 3 generacje cząstek 2/3-1/3 u d c s t b kwarki -1 0 e νe µ νµ

Bardziej szczegółowo

Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe

Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Uniwersytet Warszawski - Wydział Fizyki opiekun: dr Artur Kalinowski 1 Plan prezentacji Eksperyment CMS Układ wyzwalania Metoda

Bardziej szczegółowo

r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC

r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC 1 V.1 WYNIKI LEP 2 e + e - Z 0 Calkowity przekroj czynny 3 4 r. akad. 2008/2009 s Q N 3 4 s M s N Q I M 12 s ) M (s s s 2 f C 2 Z C f f

Bardziej szczegółowo

Oddziaływanie promieniowania jonizującego z materią

Oddziaływanie promieniowania jonizującego z materią Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony

Bardziej szczegółowo

Podstawy fizyki subatomowej

Podstawy fizyki subatomowej Podstawy fizyki subatomowej Zenon Janas Zakład Fizyki Jądrowej IFD UW ul. Pasteura 5 p..81 tel. 55 3 681 e-mail: janas@fuw.edu.pl http://www.fuw.edu.pl/~janas/fsuba/fizsub.htm Zasady zaliczenia Obecność

Bardziej szczegółowo

promieniowania Oddziaływanie Detekcja neutronów - stosowane reakcje (Powtórka)

promieniowania Oddziaływanie Detekcja neutronów - stosowane reakcje (Powtórka) Wykład na Studiach Podyplomowych "Energetyka jądrowa we współczesnej elektroenergetyce", Kraków, 4 maj DETEKCJA NEUTRONÓW JERZY JANCZYSZYN Oddziaływanie promieniowania (Powtórka) Cząstki naładowane oddziałują

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:... Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 4 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Dobór optymalnego

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV Struktura protonu Wykład IV akcelerator HERA Elementy fizyki czastek elementarnych rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury równania ewolucji QCD struktura fotonu NC DIS Deep Inelastic

Bardziej szczegółowo

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy

Bardziej szczegółowo

Gazowe detektory w eksperymentach wysokich energii na przykładzie kalorymetru uzupełniającego eksperymentu ZEUS

Gazowe detektory w eksperymentach wysokich energii na przykładzie kalorymetru uzupełniającego eksperymentu ZEUS Praca doktorska Stefan Koperny Gazowe detektory w eksperymentach wysokich energii na przykładzie kalorymetru uzupełniającego eksperymentu ZEUS Promotor: prof.dr hab. Kazimierz Jeleń Kraków, 2010 Oświadczenie

Bardziej szczegółowo

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka Seminarium -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne Konrad Tudyka 1 W 1908r. Rutheford zatopił niewielka ilość 86 Rn w szklanym naczyniu o ciękich sciankach (przenikliwych

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża

Bardziej szczegółowo

Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23

Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23 Metamorfozy neutrin Katarzyna Grzelak Zakład Czastek i Oddziaływań Fundamentalnych IFD UW Sympozjum IFD 2008 6.12.2008 K.Grzelak (UW ZCiOF) 1 / 23 PLAN Wprowadzenie Oscylacje neutrin Eksperyment MINOS

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV. rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury.

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV. rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury. Struktura protonu Wykład IV akcelerator HERA Elementy fizyki czastek elementarnych rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury równania ewolucji QCD struktura fotonu NC DIS Deep Inelastic

Bardziej szczegółowo

Dynamika relatywistyczna

Dynamika relatywistyczna Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:

Bardziej szczegółowo

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Neutrina Wykład VII Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrino elektronowe Zaproponowane

Bardziej szczegółowo

Zderzenia relatywistyczne

Zderzenia relatywistyczne Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak

Bardziej szczegółowo

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ. Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie

Bardziej szczegółowo

Fizyka do przodu w zderzeniach proton-proton

Fizyka do przodu w zderzeniach proton-proton Fizyka do przodu w zderzeniach proton-proton Leszek Adamczyk (KOiDC WFiIS AGH) Seminarium WFiIS March 9, 2018 Fizyka do przodu w oddziaływaniach proton-proton Fizyka do przodu: procesy dla których obszar

Bardziej szczegółowo

Badanie oddziaływań neutrin za pomocą komory TPC wypełnionej ciekłym

Badanie oddziaływań neutrin za pomocą komory TPC wypełnionej ciekłym Badanie oddziaływań neutrin za pomocą komory TPC wypełnionej ciekłym argonem Justyna Łagoda 21.10.2005 Plan obecny stan wiedzy o oscylacjach neutrin krótkie przypomnienie komora projekcji czasowej wypełniona

Bardziej szczegółowo

Fizyka cząstek elementarnych i oddziaływań podstawowych

Fizyka cząstek elementarnych i oddziaływań podstawowych Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość

Bardziej szczegółowo

Fizyka czastek: detektory

Fizyka czastek: detektory Fizyka czastek: detektory prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład III Detektory krzemowe Wprowadzenie Pierwsze detektory półprzewodnikowe: lata 50 XX w. (pomiar

Bardziej szczegółowo

Metody i Techniki Jądrowe

Metody i Techniki Jądrowe Politechnika Warszawska Wydział Fizyki Praca zaliczeniowa z przedmiotu: Metody i Techniki Jądrowe Detektory gazowe promieniowania jonizującego i ich zastosowania w badaniach naukowych, dozymetrii i przemyśle

Bardziej szczegółowo

Zderzenia relatywistyczne

Zderzenia relatywistyczne Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki

Bardziej szczegółowo

1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7.

1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Weronika Biela 1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Obliczenie przekroju czynnego 8. Porównanie

Bardziej szczegółowo

Dostosowywanie programu kierunku Fizyki poprzez opracowanie 30 nowych ćwiczeń na pracowniach fizycznych i pracowni elektronicznej

Dostosowywanie programu kierunku Fizyki poprzez opracowanie 30 nowych ćwiczeń na pracowniach fizycznych i pracowni elektronicznej Zadanie 35 Dostosowywanie programu kierunku Fizyki poprzez opracowanie 30 nowych ćwiczeń na pracowniach fizycznych i pracowni elektronicznej 371. Opracowanie programu ćwiczeń 1 II PRACOWNIA FIZYCZNA Instytut

Bardziej szczegółowo

J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE

J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE J14 Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE 1. Oddziaływanie ciężkich cząstek naładowanych z materią [1, 2] a) straty energii na jonizację (wzór Bethego-Blocha,

Bardziej szczegółowo

Tomasz Szumlak WFiIS AGH 05/05/2017, Kraków

Tomasz Szumlak WFiIS AGH 05/05/2017, Kraków Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 05/05/2017, Kraków 2 The beauty of this is that it is only of theoretical importance, and there is no way it can be of any practical

Bardziej szczegółowo

Metody eksperymentalne w fizyce wysokich energii

Metody eksperymentalne w fizyce wysokich energii Metody eksperymentalne w fizyce wysokich energii prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład IV Detektory krzemowe Wprowadzenie Pierwsze detektory półprzewodnikowe:

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV Struktura protonu Elementy fizyki czastek elementarnych Wykład IV kinematyka rozpraszania rozpraszanie nieelastyczne partony i kwarki struktura protonu akcelerator HERA wyznaczanie funkcji struktury Kinematyka

Bardziej szczegółowo

Współczesne eksperymenty fizyki czastek elementarnych

Współczesne eksperymenty fizyki czastek elementarnych Współczesne eksperymenty fizyki czastek elementarnych Letnia Szkoła Fizyki 2009 Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej Letnia

Bardziej szczegółowo

Ćwiczenie 3. POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU Rozpad α

Ćwiczenie 3. POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU Rozpad α 39 40 Ćwiczenie 3 POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU W ćwiczeniu dokonuje się pomiaru zasięgu w powietrzu cząstek α emitowanych przez źródło promieniotwórcze. Pomiary wykonuje się za pomocą komory jonizacyjnej

Bardziej szczegółowo

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Neutrina Wykład VII Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrino elektronowe Zaproponowane

Bardziej szczegółowo

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury

Bardziej szczegółowo

J6 - Pomiar absorpcji promieniowania γ

J6 - Pomiar absorpcji promieniowania γ J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować

Bardziej szczegółowo

Na tropach czastki Higgsa

Na tropach czastki Higgsa Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005 A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005

Bardziej szczegółowo

Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ

Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ INTEGRAL - International Gamma-Ray Astrophysical Laboratory prowadzi od 2002 roku pomiary promieniowania γ w Kosmosie INTEGRAL 180 tys km Źródła

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo