Spis treści Wstęp Spektrometria masowa (ang. Mass Spectrometry, MS)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Spis treści Wstęp Spektrometria masowa (ang. Mass Spectrometry, MS)"

Transkrypt

1 Spis treści 1 Wstęp 2 Podstawy fizyczne MS 3 Podstawowe pojęcia spektrometrii mas 3.1 Rozdzielczość 3.2 Dokładność wyznaczenia masy cząsteczkowej 3.3 Masa monoizotopowa 3.4 Jonizacja cząsteczek 4 Układy wprowadzania próbki 5 Metody jonizacji próbki 5.1 Jonizacja strumieniem elektronów (EI electron ionization) 5.2 Jonizacja chemiczna (CI Chemical Ionization) 5.3 Jonizacja laserem wspomagana matrycą (MALDI Matrix-Assisted Laser Desorption/Ionization) 5.4 Jonizacja przez rozpylanie w polu elektrycznym (ESI electrospray ionization) 5.5 Jonizacja wysokoenergetycznymi atomami (FAB fast atom bombardment) 5.6 Inne metody jonizacji próbki 6 Analizatory masy 6.1 Analizator czasu przelotu (Time Of Flight TOF) 6.2 Tandemowa spektrometria masowa (MS/MS) 6.3 Sektor magnetyczny i elektryczny 6.4 Kwadrupol i pułapka jonowa 6.5 Analizator cyklotronowego rezonansu jonów i analizator cyklotronowego rezonansu jonów z fourierowską transformacją wyników 7 Detektory 8 Zastosowania spektrometrii mas w badaniach biologicznych 8.1 Przykłady wykorzystania spektrometrii mas Wstęp Spektrometria masowa (ang. Mass Spectrometry, MS) to technika analityczna pozwalająca na dokładny pomiar stosunku masy do ładunku elektrycznego jonu, co, przy znanym ładunku jonu pozwala obliczyć masę z dokładnością do pojedynczych atomów. Do lat 70-tych XX w. masy białek szacowano metodami takimi jak: elektroforeza, chromatografia, ultrawirowanie. Jednak wyniki uzyskiwane tymi metodami były nieprecyzyjne, a błąd wynosił %. Wprowadzenie techniki MS umożliwiło znaczny postęp w tej dziedzinie. Dzięki MS w przypadku małych układów można dokonać pomiaru masy z dokładnością do u, na przykład możliwe jest rozróżnienie związków C5H12 o masie M = u oraz C4H8O o masie M = u. Technika MS początkowa ograniczona była do zjonizowanych substancji lotnych, ale rozwój metod jonizacji umożliwił dokładne określanie mas w szerokim zakresie, również dla substancji będących wyjściowo w stanie stałym i ciekłym.

2 Spektrometria masowa znajduje zastosowania w badaniach: Masy cząsteczkowej. Składu chemicznego. Budowy strukturalnej cząsteczek. Czystości substancji. Identyfikacji zanieczyszczeń. Zalety spektrometrii masowej: 1. Dokładność wyznaczenia masy. 2. Zakres zastosowania: od peptydów do dużych białek (>200 kda). MS umożliwia detekcję strukturalnych wariantów białek (mutanty, białka zmodyfikowane posttranslacyjnie). 3. Rozdzielczość: kilka jednostek masy atomowej. Początki rozwoju spektrometrii masowej sięgają końca XIX wieku, kiedy to po odkryciu promieni katodowych Thompson dokonał pierwszego pomiaru stosunku masa/ładunek dla elektronu w 1896 roku z zależności:, gdzie: E wartość przyłożonego pola elektrycznego, B wartość przyłożonego pola magnetycznego prostopadłego do E, l długość płytek odchylających, y przesunięcie plamki na ekranie. Podstawy fizyczne MS Jonizacja cząsteczek umożliwia przyspieszenie ich w polu elektrycznym w próżni. Energia kinetyczna przyspieszanego jonu jest opisana równaniem:. Wiązka przyspieszonych jonów wpada w jednorodne pole magnetyczne o wektorze indukcji B i ulega odchyleniu. Zakładając równość siły dośrodkowej i siły Lorentza otrzymujemy:, gdzie: m masa jonów, z ładunek jonów, B wektor indukcji magnetycznej, v prędkość jonu, r promień krzywizny toru w polu magnetycznym, różnica potencjałów. Korzystając z powyższych równań otrzymujemy:

3 . I dalej: Wniosek: Za pomocą pola magnetycznego, działającego na monoenergetyczną wiązkę jonów, można wyznaczać stosunki m/z, a przy znanym ładunku jonów wprost ich masy. Heterogeniczny strumień jonów można rozdzielić na składowe, zależnie od stosunku masy do ładunku. Podstawowym warunkiem zastosowania spektrometrii mas jest posiadanie przez badane cząsteczki ładunku. Cząsteczka musi być jonem! Jeśli próbka zawiera cząsteczki obojętne należy nadać im ładunek poprzez jonizację. W przypadku jonizacji polegającej na protonacji lub deprotonacji masa mierzona w spektrometrze będzie powiększona lub pomniejszona o masę protonu lub protonów przyłączonych lub odłączanych od cząsteczki analizowanej substancji. Jonizacja elektronami powoduje jedynie wybicie elektronu bez przyłączania protonu. Podstawowe pojęcia spektrometrii mas Rozdzielczość Rozdzielczość jest zdefiniowana jako, gdzie jest określona dla sąsiadujących, rozróżnialnych mas i. Rozdzielczość umożliwia np. rozdzielenie mas równych Da i Da. Stosuje się dwa kryteria rozdzielczości: %-owa dolina jeśli dwa sąsiednie piki przekrywają się na poziomie 10 % wysokości jest to szerokość piku mierzona na poziomie 5% wysokości, pełna szerokość w połowie maksimum, FWHM full width, half-maximum - szerokość połówkowa. Rozdzielczość piku = masa piku [Da] podzielona przez odległość między punktami odpowiadającymi połowie maksymalnej wartości piku [Da]. Zgodnie z zastosowanym kryterium:.

4 Dokładność wyznaczenia masy cząsteczkowej Dokładność wyznaczenia masy cząsteczkowej jest zdefiniowana jako różnica pomiędzy zmierzoną i obliczoną masą dla danego jonu. Jest ona podawana w % zmierzonej masy ( ± 0.01%) lub w ppm ( ± 100 ppm). Masa monoizotopowa Węgiel występuje w przyrodzie w postaci izotopów: 12 C 98.8%, 13 C 1.1 %. Podobnie azot: 14 N 99.6 %, 15 N 0.4 % Monoizotopowe piki uzyskuje się dla cząsteczek, w których występuje jeden izotop pierwiastka. W rzeczywistości cząsteczki jednego związku mogą mieć masy różniące się ze względu na obecność w cząsteczce różnych izotopów np. n-butan, C 4 H 10 4%-owe prawdopodobieństwo występowania w cząsteczce izotopu 13 C (prawdopodobieństwo występowania cząsteczek zawierających 2 lub 3 takie atomy jest zaniedbywalne). Dla cząsteczek biologicznych zawierających setki atomów węgla i azotu widmo masowe staje się bardzo skomplikowane. Jego rozkład można przewidzieć teoretycznie. Chemiczna średnia masa cząsteczki jest średnią mas zawierających wszystkie stabilne izotopy. Jonizacja cząsteczek Jony tworzą się pod wpływem bombardowania substancji elektronami, atomami, jonami. Utworzony jon rozpada się następnie na pewną liczbę mniejszych jonów, o charakterystycznych masach pozwalających na ich identyfikację. Wyróżniamy następujące typy jonów: Jon molekularny jon o masie równej masie cząsteczkowej związku z dokładnością do masy elektronu. Jon pseudomolekularny jon powstający po dołączeniu do cząsteczki jonów H +, Na +, Cl + lub lub odłączeniu jonu H +. Jony fragmentacyjne pod wpływem jonizacji cząsteczka może ulec rozbiciu na pewną liczbę jonów o charakterystycznych masach. W typowym widmie MS widzimy jony związane z różną masą izotopową cząsteczek, jony molekularne, jony pseudomolekularne oraz jony fragmentacyjne. Nawet niewielka cząsteczka może mieć skomplikowane widmo masowe, zależne dodatkowo od sposobu jonizacji. Układy wprowadzania próbki Poszczególne układy różnią się zależnie od stanu skupienia analizowanej próbki i metody jonizacji:

5 stan stały sondy z probówką, płytki (jonizacja typu EI, MALDI), stan ciekły zawory wstrzykowe, pompy strzykawkowe, systemy HPLC, FPLC, systemy elektroforezy kapilarnej (jonizacja typu ESI, MALDI), stan gazowy układy chromatografii GC, komory próżniowe, systemy strzykawek gazoszczelnych (jonizacja typu EI, CI, ICP). Metody jonizacji próbki Jonizacja strumieniem elektronów (EI electron ionization) Po przyłożeniu napięcia katoda emituje elektrony o ściśle określonej energii, które zderzając się z cząsteczkami próbki wybijają elektron lub elektrony z ich orbit walencyjnych. Konieczne jest przeprowadzenie badanej substancji w stan pary. Jonizacja odbywa się w próżni. Metoda ta powoduje zwykle fragmentację badanych cząsteczek. EI charakteryzuje się stosunkowo małą wydajnością poniżej 1% cząsteczek ulega jonizacji. Postać wyników: piki jonów molekularnych obserwowane w widmie masowym posiadają zazwyczaj ładunek +1. W przypadku niskorozdzielczej analizy typu EI masa cząsteczkowa próbki jest zazwyczaj równa. Najczęściej stosowany zakres analizy to Da cząsteczki o wyższych masach ulegają łatwo dekompozycji przy stosowaniu jonizacji typu EI. Najczęściej analizowane próbki: niskocząsteczkowe, nieorganiczne, organiczne w postaci stałej. Zastosowania: potwierdzanie masy cząsteczkowej substancji po syntezie, analiza niskocząsteczkowych zanieczyszczeń, nadzór prawidłowości procesów technologicznych. Jonizacja chemiczna (CI Chemical Ionization) Konieczność przeprowadzenia związku w stan pary (podobnie jak dla EI) ograniczona możliwość analizy cząsteczek takich jak: peptydy, cukry, białka. W wyniku jonizacji wiązką elektronów gazu buforowego (najczęściej jest nim metan) pod ciśnieniem 10-4 mm Hg powstają jony molekularne CH 5 +, które następnie jonizują cząsteczki analizowanej substancji. Gaz buforowy jest obecny w dużym nadmiarze (~ 100 razy) w stosunku do analizowanej substancji. Jest to stosunkowo delikatny sposób jonizacji, pozwala na zmniejszenie stopnia fragmentacji cząsteczki, produkuje jony MH +. Jony te ulegają w małym stopniu dalszemu rozpadowi, gdyż nie mają one dużego nadmiaru energii wewnętrznej. Z tego powodu jony MH + są jonami o dużej intensywności, często o największej. Jonizacja laserem wspomagana matrycą (MALDI Matrix-Assisted Laser Desorption/Ionization) Analizowana substancja jest rozpuszczana w lotnym rozpuszczalniku, a następnie mieszana z roztworem matrycy (roztwór cząstek organicznych absorbujących promieniowanie laserowe). Mieszaninę nanosi się na płytkę ze stali nierdzewnej i pozwala odparować rozpuszczalnikowi w

6 strumieniu powietrza. Po wysuszeniu próbkę wprowadza się do komory pomiarowej i usuwa powietrze. Następnie próbkę naświetla się impulsami lasera, co powoduje wzbudzenie matrycy. Matrycami stosowanymi w technice MALDI są substancje, które: Dobrze absorbują promieniowanie z zakresu UV. Łatwo sublimują. Po desorpcji dostarczają dużych ilości jonów (protonów) potrzebnych do jonizacji badanej substancji. Skoncentrowany impuls laserowy trwający ok. 3 ns oddziałujący z matrycą wywołuje ciąg następujących po sobie reakcji: Absorpcja promieniowania przez materiał matrycy. Odparowanie próbki i wyrzucenie strumienia gazów. Dysocjacja termiczna matrycy. Tworzenie jonów. Reakcje jonów z badaną substancją i jej jonizacja. Przyjmuje się, że możliwe są następujące drogi jonizacji próbki: Dysocjacja termiczna z utworzeniem pary kation anion. Oderwanie elektronu. Oderwanie bądź przyłączenie protonu. Przyłączenie kationu bądź anionu. Wytworzone jony są przyspieszane w polu elektrycznym i kierowane do detektora. Technika MALDI jest zaliczana do łagodnych sposobów jonizacji, pokrewnych jonizacji chemicznej. Główną część energii cieplnej, przekształcanej następnie w energię drgań wiązań chemicznych, pochłania matryca, co chroni badaną substancję przed rozkładem. Stwierdzono: Bardzo krótkie (3 ns) impulsy promieniowania o dużej koncentracji energii aplikowane próbkom znajdującym się w wysokiej próżni ( Torr) powodują raczej odparowanie materiału, aniżeli jego rozkład, nawet w przypadku materiałów tak wrażliwych, jak białka o masie cząsteczkowej > Da. Substancje o małej masie cząsteczkowej często ulegają w tych warunkach fragmentacji (duże cząsteczki mają wiele stopni swobody zaabsorbowana energia ulega rozproszeniu bez rozerwania wiązań chemicznych). Metoda ta jest stosowana głównie do sekwencjonowania peptydów i określania masy cząsteczkowej białek. Zakres analizy to Da. Najczęściej analizowane są średnio- i wysokocząsteczkowe substancje organiczne, peptydy, białka, polimery, kwasy nukleinowe. Metoda znajduje zastosowanie w biochemii, biotechnologii, farmakologii, neurochemii, immunologii. Postać wyników: najczęściej jonizacja +1, rzadziej +2, możliwość obserwacji niekowalencyjnych

7 kompleksów. W widmie pojawiają się jony pojedynczo (M + ) i wielokrotnie (M 2+, M 3+ ) zjonizowane oraz jony agregatów polimeru o różnym stopniu zjonizowania 2M +, 3M 2+, 2M 3+. Zalety metody: wysoka czułość, możliwość analizy pikomolowych ilości białka, delikatna jonizacja, umożliwiająca małą fragmentację, tolerancja dla soli w stężeniu milimolowym. Wady metody: stosowanie matryc może stanowić problem w pomiarach dla związków o masie poniżej 700Da, możliwość fotodegradacji na skutek desorpcji/jonizacji laserem, stosowanie kwaśnych matryc może powodować rozpad niektórych badanych substancji Jonizacja przez rozpylanie w polu elektrycznym (ESI electrospray ionization) Pierwszym etapem jest jonizacja próbki w stanie ciekłym pod ciśnieniem atmosferycznym w silnym polu elektrycznym (napięcia rzędu V). Na powierzchni cieczy opuszczającej kapilarę akumulują się ładunki. Następnie strumień cieczy ulega rozbiciu na naładowane kropelki. Kolejnym etapem jest odparowanie rozpuszczalnika. Powoduje to kurczenie kropelek do momentu, gdy odpychanie elektrostatyczne przewyższy siły spójności cieczy, co rozrywa kropelki i powoduje powstanie jonów często o ładunku wielokrotnym. Najczęściej analizowane próbki: średnio- i wysokocząsteczowe substancje organiczne, peptydy, białka, polimery, kwasy nukleinowe w postaci ciekłej o zakresie mas Da. Metodę jonizacji ESI stosuje się w biochemii, biotechnologii, farmakologii, neurochemii, medycynie sądowej, oraz w detekcji w chromatografii cieczowej. Postać wyników: serie pików odpowiadających kolejnym, wielokrotnie naładowanym, protonowanym jonom [M+zH] z+, [M+(z+1)H] (z+1)+, itd. Zalety metody: uniwersalna metoda, umożliwiająca przeprowadzenie substancji z roztworu w formę zjonizowanego gazu, minimalna fragmentacja próbki podczas jonizacji, wysoka czułość, kompatybilność z technikami chromatograficznymi (LC) oraz elektroforetycznymi, możliwość analizy dużych cząsteczek, możliwość badania substancji rozpuszczonych w różnych rozpuszczalnikach. Wady metody: obecność soli i mieszanin może obniżać czułość, wymagana duża czystość próbki.

8 Jonizacja wysokoenergetycznymi atomami (FAB fast atom bombardment) Metoda FAB jest stosowana w przypadku jonów zawartych w nielotnych rozpuszczalnikach, takich jak gliceryna, alkohol m-nitrobenzymowy. Nie można jej stosować do substancji niepolarnych. Wiązka szybkich atomów (argonu, ksenonu) uzyskiwana jest z wykorzystaniem jonów (np. cezu). Przyspieszane jony trafiają do komory zderzeniowej, gdzie przekazują atomom pęd. Obojętne atomy uderzają w roztwór analizowanej substancji wyrzucając z roztworu jony i cząsteczki obojętne. Wyrzucane jony są kierowane do analizatora. Metodę można stosować do mieszanin o maksymalnej masie 10 kda. Postać wyników: widmie obserwuje się jony [M+H] n+ lub [M+H] n-. Zalety metody: szybkość i łatwość wykonania, łatwe do interpretacji widma, możliwość prostego regenerowania źródła atomów/jonów. Wady metody: średnia czułość metody, problemy z analizą mieszanin, możliwość wpływu matrycy na jakość widma. Inne metody jonizacji próbki Jonizacja polem (field ionisation, FI). Termorozpylanie (termospray, TE). Desorpcja polem (field desorption, FD). Desorpcja laserowa (laser desorption, LD). Plazma wzbudzona indukcyjnie (ICP). Należy pamiętać, że w wyniku jonizacji cząsteczek jednego rodzaju różnymi metodami otrzymuje się różne widma masowe. Techniki jonizacyjne stosowane w przypadku biomolekuł zamieszczono w poniższej tabeli: Biomolekuły Metoda jonizacji Mechanizm jonizacji Peptydy FAB, MALDI, ESI protonacja, deprotonacja Białka MALDI, ESI protonacja Węglowodory FAB, MALDI, ESI protonacja, deprotonacja, kationozacja (inny kation niż H+) Oligonukleotydy MALDI, ESI protonacja, deprotonacja, kationozacja Małe biomolekuły FAB, MALDI, ESI protonacja, deprotonacja, kationozacja, wybicie elektronu Próbki białek do badań zwykle wykonuje się w objętości 5 50 μl i stężeniu μm.

9 Analizatory masy Analizator czasu przelotu (Time Of Flight TOF) Powstałe jony są wprowadzane do analizatora, gdzie pod wpływem impulsu elektrycznego ulegają przyspieszeniu i zaczynają przemieszczać się w kierunku detektora jonów połączonego z urządzeniem rejestrującym czas od impulsu przyspieszającego do momentu uderzenia określonego jonu w detektor. Czas przelotu jest przeliczany na stosunek jony poruszają się coraz wolniej.. Ze wzrostem Rozdzielczość analizatora początkowo wynosiła < Obecnie stosuje się analizatory ze zwierciadłem elektrostatycznym, które zwiększa rozdzielczość aparatu do kilkudziesięciu tysięcy, ale zmniejsza zakres dopuszczalnych mas cząsteczkowych. Analizatory TOF są najczęściej stosowane razem ze źródłami jonów MALDI. Tandemowa spektrometria masowa (MS/MS) Podstawowy układ składa się z dwóch spektrometrów masowych. Za pomocą pierwszego spektrometru selekcjonuje się wybrany jon (najczęściej jon molekularny) na podstawie stosunku. Jon ten (macierzysty, parent ion) poddawany jest zderzeniom np. z wprowadzonym gazem obojętnym. Na skutek zderzeń jon macierzysty rozpada się na jony fragmentacyjne (daughter ions), które można analizować za pomocą drugiego spektrometru. Układy stosowane w tandemowej spektrometrii mas mogą składać się z szeregu spektrometrów, MS n (gdzie ), co wydatnie zwiększa możliwość identyfikacji próbek. Sektor magnetyczny i elektryczny Sektor magnetyczny umożliwia pomiary zmiany toru lotu jonów w polu magnetycznym. Stopień zakrzywienia toru zależy od stosunku masy do ładunku ( ), prędkości jonu i od parametrów pola magnetycznego. Sektor magnetyczny charakteryzuje się niską rozdzielczością (< 5000) związaną z dużymi różnicami prędkości cząsteczek wpadających do urządzenia. Problem rozdzielczości rozwiązuje przez zastosowanie sektora elektrycznego przed sektorem magnetycznym, w którym cząsteczki są rozpędzane, dzięki czemu różnice prędkości są mniejsze. Sektor elektryczny jest zbudowany z dwóch równoległych, zakrzywionych płyt do których przyłożono potencjał elektryczny umożliwiający przyspieszanie jonów. Jony o jednakowej prędkości mają jednakowe tory lotu w sektorze elektrycznym. Za sektorem elektrycznym znajduje się szczelina przez którą przelatują tylko jony o określonej energii trafiające następnie do sektora magnetycznego. Kwadrupol i pułapka jonowa Kwadrupol zbudowany z czterech symetrycznie ułożonych równoległych prętów. Działa jako filtr masy w jednym momencie przepuszcza tylko jony o określonym stosunku masy do ładunku ( ). Dzieje się to dzięki przykładaniu do prętów prądu zmiennego o określonej częstotliwości i napięciu oraz napięcia stałego. Kwadrupol można ustawić tak, aby przepuszczał jony o szerokim lub wąskim zakresie.

10 Pułapka jonowa (Ion trap IT) jest analizatorem pozwalającym na przetrzymywanie jonów. Działa na zasadzie podobnej do kwadrupola. Manipulując parametrami prądu przyłączonego do elektrod można uwięzić w pułapce jony o określonym stosunku masy do ładunku ( ) lub jony o szerokim zakresie. Pomiaru masy dokonuje się przez uwięzienie w pułapce jonów o szerokim zakresie i wyrzucanie z pułapki kolejnych grup jonów o określonym. Pułapki jonowe charakteryzują się zwykle dość niewielką rozdzielczością (kilku tysięcy) oraz bardzo dużą czułością. Analizator cyklotronowego rezonansu jonów i analizator cyklotronowego rezonansu jonów z fourierowską transformacją wyników Analizator cyklotronowego rezonansu jonów (Ion Cyclotron Resonance ICR) W tym typie analizotora jony są pułapkowane w cyklotronie, gdzie wpadają w ruch kołowy. Widmo jest tworzone przez działanie na jony polem elektromagnetycznym o zmieniającej się częstotliwości i rejestrację zmian natężenia prądu w płytach detektorowych lub zmiany absorpcji fali elektromagnetycznej. W analizatorze panuje bardzo wysoka próżnia ciśnienie nie większe niż 10-4 Pa, zwykle 10-6 Pa lub mniejsze. Rozdzielczości analizatorów cyklotronowych mogą być bardzo duże, zwykle kilkaset tysięcy, mogą dochodzić nawet do miliona (przy wraz ze wzrostem analizowanej cząsteczki. ), ale zmniejszają się Analizator cyklotronowego rezonansu jonów z fourierowską transformacją wyników (Fourier Transform Ion Cyclotron Resonance FT-ICR) działa podobnie jak analizator cyklotronowego rezonansu jonowego. W analizatorze FT-ICR zastosowano bardziej wydajną metodę zbierania danych niż w ICR. Przy pomocy złożonej fali elektromagnetycznej wzbudzane są jednocześnie wszystkie jony. Na płytach detektora rejestrowany jest sygnał zawierający wiele częstotliwości charakterystycznych dla jonów o różnym, który nastepnie jest przekształcany w widmo przy pomocy transformacji Fouriera. Analizatory FT-ICR są znacznie szybsze niż analizatory ICR, inne parametry (rozdzielczość, czułość itp.) są podobne. Analizatory FT-ICR wyparły obecnie z rynku analizatory ICR. Detektory Zadaniem detektorów jest rejestracja jonów przechodzących przez analizator. 1. Puszka Faradaya to metalowa, cylindryczna komora z otworem przez który wlatują jony. Gdy jony docierają do dna puszki oddają jej swój ładunek, co powoduje przepływ niewielkiego prądu podlegającego rejestracji. Detektory te charakteryzują się małą czułością. 2. Powielacz elektronowy jest to detektor zbudowany z serii płytek, do których przyłączono wysokie napięcie. Jony po uderzeniu w pierwszą płytkę (dynodę konwersyjną), powodują emisję elektronów, które z kolei uderzają w następną płytkę (dynodę) powodując wybicie większej liczby elektronów. W ten sposób sygnał jest kaskadowo wzmacniany i trafia ostatecznie na anodę powodując przepływ rejestrowanego prądu. W nowszych konstrukcjach powielaczy elektronowych serię dynod zastępuje się zakrzywioną zwężającą się rurą (powielacz elektronowy o dynodzie ciągłej). Elektrony uderzają wielokrotnie w ściany rury powodując emisję kolejnych elektronów. Powielacze elektronowe są bardzo czułymi detektorami. 3. Detektor mikrokanalikowy zbudowany jest z płytki z niewielkimi (4-25 μm), zakrzywionymi otworami. Powierzchnia otworów pokryta jest półprzewodnikiem mającym zdolność emisji

11 4. 5. elektronów. Na stronie wejściowej płytki utrzymywany jest potencjał ujemny (napięcie rzędu 1 kv) w stosunku do strony wyjściowej. Jony wpadają do kanalików i zderzają się ze ścianami otworów powodując kaskadową emisję elektronów, podobnie jak w powielaczu elektronowym. Za każdym z kanalików znajduje się metalowa anoda zbierająca elektrony. Sygnał powstały w ten sposób jest mierzony. Detektor fotopowielaczowy składająca się z dwóch dynod konwersyjnych (jedna dla jonów dodatnich druga dla jonów ujemnych), ekranu fluorescencyjnego i fotopowielacza. Jony wpadające do detektora uderzają w dynodę konwersyjną powodując emisję elektronów. Elektrony są kierowane na ekran fluorescencyjny przy pomocy pola elektrycznego. Po uderzeniu elektronu w ekran emitowane są fotony, które trafiają do fotopowielacza. Fotopowielecz wzmacnia sygnał, który potem jest rejestrowany. Detekcja w analizatorze cyklotronowego rezonansu jonów (ICR) analizatory ICR są jednocześnie detektorami jonów, nie wymagają one instalacji dodatkowych detektorów. Zastosowania spektrometrii mas w badaniach biologicznych Etapem milowym w zastosowaniu spektrometrii mas w badaniach struktury i funkcji białek było wynalezienie metod łagodnej jonizacji. Przy wysokiej dokładności pomiarów wymaga niewielkich ilości i objętości próbki białka. Umożliwia detekcję z dokładnością do pojedynczych aminokwasów (mutageneza, modyfikacje posttranslacyjne, np. fosforylacja). Jak każda metoda doświadczalna ma ona pewne ograniczenia i wady. Aby uzyskać wiarygodne wyniki próbka musi być idealnie czysta. Z tym wymaganiem łączą się trudności z selektywną analizą mieszanin. W przypadku dużych białek widma są skomplikowane i trudne do interpretacji. Pomimo tych ograniczeń spektrometria mas jest jedna z najbardziej precyzyjnych metod pomiarowych. Przykłady wykorzystania spektrometrii mas 1. Określenie masy i identyfikacja białek. 2. Sekwencjonowanie białek technika MS-MS, połączona z chemiczną lub enzymatyczną degradacją cząsteczek białek w celu uzyskania oligopeptydów o masach < 3 kda, pozwala określić sekwencje białka i ustalić które aminokwasy uległy modyfikacji posttranslacyjnej. 3. Dynamika fałdowania białek pomiędzy białkami a otoczeniem zachodzi stała wymiana wodorów amidowych. Jej szybkość zależy od struktury białka. Jeśli białko umieścimy w D2O zaobserwujemy wymianę protonu na deuter. W przypadku białka rozwiniętego wymiana wodorów na deuter zachodzi z podobną szybkością dla wszystkich aminokwasów. Dla białek zwiniętych szybkość wymiany zależy od otoczenia wodoru amidowego: ekspozycja wodoru amidowego na solwent szybka wymiana, zaangażowanie wodoru amidowego w tworzenie struktur lokalnych wolniejsza wymiana, zaangażowanie wodoru amidowego w tworzenie struktur globalnych (np. alfa-helisa) wolna wymiana lub jej brak w białku zwiniętym. Analiza masowa pokazuje dla których peptydów nastąpiła wymiana proton-deuter na tej podstawie możemy identyfikować struktury tworzące się podczas fałdowania białek. 4. Identyfikacja stanów pośrednich. W metodzie ESI białka zjonizowane w stanie natywnym posiadają węższy rozkład stanów i

12 mniejszy ładunek niż białka zjonizowane w stanie zdenaturowanym. Obserwacja rozkładu w funkcji stanu zwinięcia białka pozwala określić czy istnieją stany pośrednie procesu faldowania. Identyfikacja modyfikacji posttranslacyjnych. Modyfikacje postranslacyjne takie jak: fosforylacja, glikozylacja, acylacja, tworzenie mostków dwusiarczkowych, izomeryzacja ładunku, odcinanie końców C lub N, lub cięcie białka przez karboksypeptydazy, aminopeptydazy lub endopeptydazy powodują zmianę masy biomolekuł widoczną w widmach MS. Identyfikacja białek po dwuwymiarowej elektroforezie (2-DE). Potwierdzenie prawidłowości syntezy peptydów. Synteza peptydów, projektowanie antybiotyków, nietypowych ligandów polega na stopniowym blokowaniu, odblokowywaniu i aktywacji gryp aminowych i karboksylowych w białkach. W trakcie syntezy mogą pojawiać się następujące problemy: delecja peptydów, niekompletne zablokowanie, utlenianie metioniny, trifluoroacetylacja seryny. Zmiany mas z tym związane są widoczne w widmach MS. Na tej podstawie można ocenić jakość wykonanej syntezy. Badania kompleksy białkowych. W obecności 5 mm Mg 2+ zarejestrowano rybosomy 70S. Poprzez obniżenie stężenia jonów magnezu uzyskano dysocjację podjednostki 70S na podjednostki 30S i 50S oraz określono dokładnie ich masy. Analiza kwasów nukleinowych, w tym analiza mieszanin oligonukleotydow i długich łańcuchów kwasów nukleinowych i sekwencjonowanie DNA. Analiza węglowodorów. Obrazowanie w medycynie. Zamrożona tkanka jest cięta na cienkie plastry i umieszczana na metalowej płytce pokrytej materiałem absorbującym UV. Następnie oświetlana jest punktowo (przemiatana) laserem. Na skutek absorpcji energii wybijane są cząsteczki budujące tkankę. W kolejności wybicia cząsteczki analizowane są metodami spektroskopii masowej. Następnie tworzy się mapy masowe tkanki.

dobry punkt wyjściowy do analizy nieznanego związku

dobry punkt wyjściowy do analizy nieznanego związku spektrometria mas dobry punkt wyjściowy do analizy nieznanego związku cele: wyznaczenie masy cząsteczkowej związku wyznaczenie wzoru empirycznego określenie fragmentów cząsteczki określenie niedoboru wodoru

Bardziej szczegółowo

Spektrometria mas (1)

Spektrometria mas (1) pracował: Wojciech Augustyniak Spektrometria mas (1) Spektrometr masowy ma źródło jonów, które jonizuje próbkę Jony wędrują w polu elektromagnetycznym do detektora Metody jonizacji: - elektronowa (EI)

Bardziej szczegółowo

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek Proteomika Spektrometria mas i jej zastosowanie do badań białek Spektrometria mas (MS) Metoda pozwalająca na pomiar stosunku masy do ładunku jonów (m/z) m/z można przeliczyć na masę jednostką m/z jest

Bardziej szczegółowo

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII WYKŁAD I PODSTAWY SPEKTROMETRII MAS

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII WYKŁAD I PODSTAWY SPEKTROMETRII MAS ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII WYKŁAD I PODSTAWY SPEKTROMETRII MAS ZAKRESY PROMIENIOWANIA ELEKTROMAGNETYCZNEGO, WYKORZYSTYWANEGO WNAJWAŻNIEJSZYCH METODACH SPEKTRALNYCH

Bardziej szczegółowo

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek Proteomika Spektrometria mas i jej zastosowanie do badań białek Spektrometria mas (MS) Metoda pozwalająca na pomiar stosunku masy do ładunku jonów (m/z) m/z można przeliczyć na masę jednostką m/z jest

Bardziej szczegółowo

Co to jest spektrometria mas?

Co to jest spektrometria mas? Co to jest spektrometria mas? Jest to nowoczesna technika analityczna pozwalająca na dokładne wyznaczenie masy analizowanej substancji Dokładność pomiaru może się wahać od jednego miejsca dziesiętnego

Bardziej szczegółowo

Jonizacja plazmą wzbudzaną indukcyjnie (ICP)

Jonizacja plazmą wzbudzaną indukcyjnie (ICP) Jonizacja plazmą wzbudzaną indukcyjnie (ICP) Inductively Coupled Plasma Ionization Opracowane z wykorzystaniem materiałów dr Katarzyny Pawlak z Wydziału Chemicznego PW Schemat spektrometru ICP MS Rozpylacz

Bardziej szczegółowo

Schemat ideowy spektrometru mas z podwójnym ogniskowaniem przedstawiono na rys. 1. Pierwsze ogniskowanie według energii jonów odbywa się w sektorze

Schemat ideowy spektrometru mas z podwójnym ogniskowaniem przedstawiono na rys. 1. Pierwsze ogniskowanie według energii jonów odbywa się w sektorze Spektrometria mas Spektrometria mas Początek spektrometrii mas wiązany jest z nazwiskiem Thomsona, który w roku 1911 za pomocą odchylania wiązki jonów w polu magnetycznym wykrył trwałe izotopy neonu, oraz

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII WYKŁAD I PODSTAWY SPEKTROMETRII MAS Prof. dr hab. Witold Danikiewicz Instytut Chemii Organicznej PAN Warszawa ZAKRESY PROMIENIOWANIA ELEKTROMAGNETYCZNEGO,

Bardziej szczegółowo

Ćwiczenie 4. Wyznaczanie masy cząsteczkowej białek za pomocą spektrometrii mas.

Ćwiczenie 4. Wyznaczanie masy cząsteczkowej białek za pomocą spektrometrii mas. Ćwiczenie 4. Wyznaczanie masy cząsteczkowej białek za pomocą spektrometrii mas. Spektrometria mas jest narzędziem analitycznym stosowanym między innymi do pomiaru masy cząsteczkowej analitu. Dla dużych

Bardziej szczegółowo

Próżnia w badaniach materiałów

Próżnia w badaniach materiałów Próżnia w badaniach materiałów Pomiary ciśnień parcjalnych Konstanty Marszałek Kraków 2011 Analiza składu masowego gazów znajduje coraz większe zastosowanie ze względu na liczne zastosowania zarówno w

Bardziej szczegółowo

Opis przedmiotu zamówienia

Opis przedmiotu zamówienia 1 Załącznik nr 1 do Specyfikacji Istotnych Warunków Zamówienia Opis przedmiotu zamówienia Przedstawione niżej szczegółowe parametry zamawianej aparatury są parametrami minimalnymi. Wykonawca może zaproponować

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Spektrometria mas w badaniu. dr hab. Andrzej Kotarba, prof. UJ mgr Piotr Legutko, inż.

Spektrometria mas w badaniu. dr hab. Andrzej Kotarba, prof. UJ mgr Piotr Legutko, inż. Spektrometria mas w badaniu materiałów dr hab. Andrzej Kotarba, prof. UJ mgr Piotr Legutko, inż. Spektrometria mas Technika analityczna, której podstawowym zadaniem jest dokładny pomiar masy pojedynczej

Bardziej szczegółowo

IDENTYFIKACJA SUBSTANCJI W CHROMATOGRAFII CIECZOWEJ

IDENTYFIKACJA SUBSTANCJI W CHROMATOGRAFII CIECZOWEJ IDENTYFIKACJA SUBSTANCJI W CHROMATOGRAFII CIECZOWEJ Prof. dr hab. inż. Agata Kot-Wasik, prof. zw. PG agawasik@pg.gda.pl 11 Rozdzielenie + detekcja 22 Anality ZNANE Co oznaczamy? Anality NOWE NIEZNANE WWA

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

Detekcja spektrometrii mas

Detekcja spektrometrii mas Detekcja spektrometrii mas Schemat chromatografu gazowego MS Dozownik Detektor Kolumna kapilarna w metodach chromatografii System przetwarzania danych Butla z gazem nośnym Spektrometr mas Wlot próbki do

Bardziej szczegółowo

Proteomika. 1. Definicja proteomiki i techniki stosowane w proteomice

Proteomika. 1. Definicja proteomiki i techniki stosowane w proteomice Proteomika 1. Definicja proteomiki i techniki stosowane w proteomice Przepływ informacji, złożoność, *mika DNA RNA Białko Funkcja Genomika Transkryptomika Proteomika Metabolomika Liczba obiektów ~+ ++

Bardziej szczegółowo

Podstawy akceleratorowej spektrometrii mas. Techniki pomiarowe

Podstawy akceleratorowej spektrometrii mas. Techniki pomiarowe Podstawy akceleratorowej spektrometrii mas Techniki pomiarowe Podstawy spektrometrii mas Spektrometria mas jest narzędziem znajdującym szerokie zastosowanie w badaniach fizycznych i chemicznych. Umożliwia

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Zastosowanie spektrometrii masowej w odlewnictwie

Zastosowanie spektrometrii masowej w odlewnictwie AKADEMIA GÓRNICZO-HUTNICZA im. St. STASZICA Wydział Odlewnictwa Katedra Inżynierii Procesów Odlewniczych Pracownia Ochrony Środowiska Zastosowanie spektrometrii masowej w odlewnictwie Opracowała: dr inż.

Bardziej szczegółowo

dr Małgorzata Czerwicka Zakład Analizy Środowiska Instytut Ochrony Środowiska i Zdrowia Człowieka Wydział Chemii UG

dr Małgorzata Czerwicka Zakład Analizy Środowiska Instytut Ochrony Środowiska i Zdrowia Człowieka Wydział Chemii UG dr Małgorzata Czerwicka Zakład Analizy Środowiska Instytut Ochrony Środowiska i Zdrowia Człowieka Wydział Chemii UG Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu

Bardziej szczegółowo

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna

Bardziej szczegółowo

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII WYKŁAD 15 NOWE ZASTOSOWANIA I KIERUNKI ROZWOJU SPEKTROMETRII MAS

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII WYKŁAD 15 NOWE ZASTOSOWANIA I KIERUNKI ROZWOJU SPEKTROMETRII MAS ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII WYKŁAD 15 NOWE ZASTOSOWANIA I KIERUNKI ROZWOJU SPEKTROMETRII MAS Instytut Chemii Organicznej PAN, Warszawa Podstawowe kierunki rozwoju spektrometrii

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? SKUTECZNOŚĆ IZOLACJI Wydajność izolacji- ilość otrzymanego kwasu nukleinowego Efektywność izolacji- jakość otrzymanego kwasu nukleinowego w stosunku do ilości Powtarzalność izolacji- zoptymalizowanie procedury

Bardziej szczegółowo

Zastosowanie spektroskopii masowej w odlewnictwie

Zastosowanie spektroskopii masowej w odlewnictwie Akademia Górniczo-Hutnicza im. St. Staszica w Krakowie Wydział Odlewnictwa AGH Pracownia Ochrony Środowiska Zastosowanie spektroskopii masowej w odlewnictwie (Instrukcja do ćwiczenia) Opracowanie: prof.

Bardziej szczegółowo

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII

ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII ZASTOSOWANIA SPEKTROMETRII MAS W CHEMII ORGANICZNEJ I BIOCHEMII WYKŁAD II JONIZACJA CHEMICZNA (CI), JONIZACJA POLEM (FI) I DESORPCJA POLEM (FD), SPEKTROMETRIA JONÓW WTÓRNYCH (FAB, LSIMS) W jaki sposób

Bardziej szczegółowo

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH PODSTAWY SPEKTROMETRII MAS

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH PODSTAWY SPEKTROMETRII MAS FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH PODSTAWY SPEKTROMETRII MAS Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa SPEKTROMETRIA MAS PODSTAWOWE

Bardziej szczegółowo

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych)

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych) Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych) Metody instrumentalne podział ze względu na uzyskane informację. 1. Analiza struktury; XRD (dyfrakcja

Bardziej szczegółowo

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

Metody desorpcyjne: DESIi DART. Analizator masy typu Orbitrap. Spektrometry typu TOF-TOF. Witold Danikiewicz. Copyright 2012

Metody desorpcyjne: DESIi DART. Analizator masy typu Orbitrap. Spektrometry typu TOF-TOF. Witold Danikiewicz. Copyright 2012 SPEKTROMETRIA MAS W CHEMII ORGANICZNEJ, ANALITYCZNEJ I BIOCHEMII WYKŁAD 15 NOWE ZASTOSOWANIA I KIERUNKI ROZWOJU SPEKTROMETRII MAS Instytut Chemii Organicznej PAN, Warszawa Podstawowe kierunki rozwoju spektrometrii

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 2 ANALIZA ŚLADÓW

ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 2 ANALIZA ŚLADÓW ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 2 ANALIZA ŚLADÓW 100% - 1% składnik główny 1% - 0.01% składnik uboczny poniżej 0.01% składnik śladowy Oznaczenie na poziomie 1 ppm (0.0001%) odpowiada w przybliżeniu

Bardziej szczegółowo

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

Akademickie Centrum Czystej Energii. Ogniwo paliwowe Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody

Bardziej szczegółowo

EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? EKSTRAHOWANIE KWASÓW NUKLEINOWYCH Wytrącanie etanolem Rozpuszczenie kwasu nukleinowego w fazie wodnej (met. fenol/chloroform) Wiązanie ze złożem krzemionkowym za pomocą substancji chaotropowych: jodek

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Metody chromatograficzne w chemii i biotechnologii, wykład 6. Łukasz Berlicki

Metody chromatograficzne w chemii i biotechnologii, wykład 6. Łukasz Berlicki Metody chromatograficzne w chemii i biotechnologii, wykład 6 Łukasz Berlicki Techniki elektromigracyjne Elektroforeza technika analityczna polegająca na rozdzielaniu mieszanin związków przez wymuszenie

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Badanie licznika Geigera- Mullera

Badanie licznika Geigera- Mullera Badanie licznika Geigera- Mullera Cel ćwiczenia Celem ćwiczenia jest zbadanie charakterystyki napięciowej licznika Geigera-Müllera oraz wyznaczenie szczególnych napięć detektora Wstęp Licznik G-M jest

Bardziej szczegółowo

PODSTAWY INTERPRETACJI WIDM MASOWYCH. Copyright 2003 Witold Danikiewicz

PODSTAWY INTERPRETACJI WIDM MASOWYCH. Copyright 2003 Witold Danikiewicz PODSTAWY INTERPRETACJI WIDM MASOWYCH 1. Ustalanie masy cząsteczkowej Metody: widmo EI 70 ev i np. 12 ev; łagodne metody jonizacji (FAB, LSIMS, CI, ESI, APCI, MALDI, FI) w celu otrzymania jonu molekularnego.

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1) Przykład sprawozdania z analizy w nawiasach (czerwonym kolorem) podano numery odnośników zawierających uwagi dotyczące kolejnych podpunktów sprawozdania Jan Kowalski grupa B dwójka 7(A) analiza Wynik przeprowadzonej

Bardziej szczegółowo

Identyfikacja węglowodorów aromatycznych techniką GC-MS

Identyfikacja węglowodorów aromatycznych techniką GC-MS Identyfikacja węglowodorów aromatycznych techniką GC-MS Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. 1.Wstęp teoretyczny Zagadnienie rozdzielania mieszanin związków

Bardziej szczegółowo

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

Ruch ładunków w polu magnetycznym

Ruch ładunków w polu magnetycznym Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym

Bardziej szczegółowo

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Techniki immunochemiczne opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Oznaczanie immunochemiczne RIA - ( ang. Radio Immuno Assay) techniki radioimmunologiczne EIA -

Bardziej szczegółowo

Nowoczesne metody analizy pierwiastków

Nowoczesne metody analizy pierwiastków Nowoczesne metody analizy pierwiastków Techniki analityczne Chromatograficzne Spektroskopowe Chromatografia jonowa Emisyjne Absorpcyjne Fluoroscencyjne Spektroskopia mas FAES ICP-AES AAS EDAX ICP-MS Prezentowane

Bardziej szczegółowo

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Błąd gruby, systematyczny, przypadkowy, dokładność, precyzja, przedział

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

ET AAS 1 - pierwiastkowa, GW ppb. ICP OES n - pierwiastkowa, GW ppm n - pierwiastkowa, GW <ppb

ET AAS 1 - pierwiastkowa, GW ppb. ICP OES n - pierwiastkowa, GW ppm n - pierwiastkowa, GW <ppb Analiza instrumentalna Spektrometria mas F AAS 1 - pierwiastkowa, GW ppm ET AAS 1 - pierwiastkowa, GW ppb ICP OES n - pierwiastkowa, GW ppm ICP MS n - pierwiastkowa, GW

Bardziej szczegółowo

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym? Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje

Bardziej szczegółowo

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery.

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. Dział - Substancje i ich przemiany WYMAGANIA PODSTAWOWE stosuje zasady bezpieczeństwa

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM Laboratorium z Konwersji Energii Ogniwo Paliwowe PEM 1.0 WSTĘP Ogniwo paliwowe typu PEM (ang. PEM FC) Ogniwa paliwowe są urządzeniami elektro chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii,

Bardziej szczegółowo

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE

Bardziej szczegółowo

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący

Bardziej szczegółowo

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA NMR. No. 0 No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega

Bardziej szczegółowo

Słowniczek pojęć fizyki jądrowej

Słowniczek pojęć fizyki jądrowej Słowniczek pojęć fizyki jądrowej atom - najmniejsza ilość pierwiastka jaka może istnieć. Atomy składają się z małego, gęstego jądra, zbudowanego z protonów i neutronów (nazywanych inaczej nukleonami),

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop.

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop. Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop. 2017 Spis treści Przedmowa 11 1. Wprowadzenie 13 1.1. Krótka historia

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej!

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej! METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH Spektrometry IRMS akceptują tylko próbki w postaci gazowej! Stąd konieczność opracowania metod przeprowadzania próbek innych

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,

Bardziej szczegółowo

Techniki łączone w analityce chemicznej

Techniki łączone w analityce chemicznej Techniki łączone w analityce chemicznej dr inż. Andrzej Wasik Katedra Chemii Analitycznej Wydział Chemiczny Politechniki Gdańskiej Gdańsk, 2004 Program Ograniczenia klasycznej analizy dwuwymiarowej i sposoby

Bardziej szczegółowo

WYSOKOSPRAWNA ELEKTROFOREZA KAPILARNA (HPCE) + +

WYSOKOSPRAWNA ELEKTROFOREZA KAPILARNA (HPCE) + + WYSOKOSPRAWNA ELEKTROFOREZA KAPILARNA (HPCE) WSTĘP Zjawisko elektroforezy polega na poruszaniu się lub migracji cząstek naładowanych w polu elektrycznym w wyniku przyciągania względnie odpychania. Najprostszy

Bardziej szczegółowo

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe) Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe) Kod ucznia Suma punktów Witamy Cię na drugim etapie konkursu chemicznego. Podczas konkursu możesz korzystać

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

I. Substancje i ich przemiany

I. Substancje i ich przemiany NaCoBeZU z chemii dla klasy 1 I. Substancje i ich przemiany 1. Pracownia chemiczna podstawowe szkło i sprzęt laboratoryjny. Przepisy BHP i regulamin pracowni chemicznej zaliczam chemię do nauk przyrodniczych

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Wewnętrzna budowa materii - zadania

Wewnętrzna budowa materii - zadania Poniższe zadania rozwiąż na podstawie układu okresowego. Zadanie 1 Oceń poprawność poniższych zdań, wpisując P, gdy zdanie jest prawdziwe oraz F kiedy ono jest fałszywe. Stwierdzenie Atom potasu posiada

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny chemia kl. I

Wymagania programowe na poszczególne oceny chemia kl. I I. Substancje i ich przemiany Wymagania programowe na poszczególne oceny chemia kl. I Ocena dopuszczająca [1] zalicza chemię do nauk przyrodniczych stosuje zasady bezpieczeństwa obowiązujące w pracowni

Bardziej szczegółowo

SPEKTROMETRIA IRMS. (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S)

SPEKTROMETRIA IRMS. (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S) SPEKTROMETRIA IRMS (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S) R = 2 H/ 1 H; 13 C/ 12 C; 15 N/ 14 N; 18 O/ 16 O ( 17 O/ 16 O), 34 S/ 32 S Konstrukcja

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Typ wiązania w KBr... Typ wiązania w HBr... Zadanie 2. (2 pkt) Oceń poprawność poniższych

Bardziej szczegółowo

Przemiana materii i energii - Biologia.net.pl

Przemiana materii i energii - Biologia.net.pl Ogół przemian biochemicznych, które zachodzą w komórce składają się na jej metabolizm. Wyróżnia się dwa antagonistyczne procesy metabolizmu: anabolizm i katabolizm. Szlak metaboliczny w komórce, to szereg

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny z chemii w kl.1. I. Substancje i ich przemiany

Wymagania programowe na poszczególne oceny z chemii w kl.1. I. Substancje i ich przemiany Wymagania programowe na poszczególne oceny z chemii w kl.1 I. Substancje i ich przemiany Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] zalicza chemię do nauk przyrodniczych wyjaśnia, dlaczego chemia

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Aparatura w absorpcyjnej spektrometrii atomowej

Aparatura w absorpcyjnej spektrometrii atomowej Lidia Kozak, Przemysław Niedzielski Lidia Kozak, Przemysław Niedzielski Spektrometry absorpcji atomowej zbudowane są z następujących podstawowych części: źródła promieniowania, atomizera, monochromatora,

Bardziej szczegółowo

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE WYMAGANIA PODSTAWOWE wskazuje w środowisku substancje chemiczne nazywa sprzęt i szkło laboratoryjne opisuje podstawowe właściwości substancji będących głównymi składnikami stosowanych na co dzień produktów

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO Cel ćwiczenia: Zapoznanie się z metodą pomiaru grubości cienkich warstw za pomocą interferometrii odbiciowej światła białego, zbadanie zjawiska pęcznienia warstw

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

Ć W I C Z E N I E N R E-16

Ć W I C Z E N I E N R E-16 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-16 WYZNACZANIE WYMIARU FRAKTALNEGO W PROCESIE

Bardziej szczegółowo

SPEKTROMETRIA MAS GOLUS KATARZYNA FIZYKA TECHNICZNA SEM.VIII

SPEKTROMETRIA MAS GOLUS KATARZYNA FIZYKA TECHNICZNA SEM.VIII SPEKTROMETRIA MAS GOLUS KATARZYNA FIZYKA TECHNICZNA SEM.VIII TECHNIKA SPEKTROMETRII MAS. I. ZASADA OGNISKOWANIA WIĄZEK JONOWYCH JEDNORODNYM POLEM MAGNETYCZNYM I RADIALNYM POLEM ELEKTRYCZNYM. Spektrometria

Bardziej szczegółowo

uczeń opanował wszystkie wymagania podstawowe i ponadpodstawowe

uczeń opanował wszystkie wymagania podstawowe i ponadpodstawowe 1 Agnieszka Wróbel nauczyciel biologii i chemii Plan pracy dydaktycznej na chemii w klasach pierwszych w roku szkolnym 2015/2016 Poziom wymagań Ocena Opis wymagań podstawowe niedostateczna uczeń nie opanował

Bardziej szczegółowo