Nobel 2010 z fizyki grafen
|
|
- Daniel Witek
- 7 lat temu
- Przeglądów:
Transkrypt
1 FOTON 111, Zima Nobel 2010 z fizyki grafen Adam Rycerz Instytut Fizyki UJ Tegoroczna Nagroda Nobla z fizyki została przyznana za odkrycie zupełnie nieoczekiwane. Komitet Noblowski uhonorował Andre Geima i Konstantina Novoselova, którzy na przełomie 2004 i 2005 roku pokazali, że z pospolitego grafitu można zaskakująco łatwo wypreparować jednoatomowej grubości warstwę, czyli grafen [1]. Ta nowa dwuwymiarowa odmiana krystaliczna węgla nazywana jest często cudownym materiałem i jest rozważana jako następca krzemu, czyli materiał bazowy przyszłej elektroniki. Seria odkryć dotyczących niezwykłych własności grafenu, które opiszę krótko poniżej, nie byłaby możliwa bez znacznie starszych badań teoretycznych nad zachowaniem dwuwymiarowego gazu bezmasowych cząstek Diraca, który stanowi model elektronów w grafenie. Pokazuje to po raz kolejny, że rozwiązania problemów fizyki teoretycznej, pozornie odległych od rzeczywistości, mogą wywrzeć istotny wpływ na życie codzienne. Andre Geim i Konstantin Novoselov w laboratorium na Uniwersytecie w Manchesterze W tekstach popularnonaukowych dotyczących fizyki często można znaleźć stwierdzenie: Wszystkie własności materii mają źródło w prawach mechaniki kwantowej. Rzadko zdajemy sobie jednak sprawę, że prawdziwa siła liczącej prawie sto lat teorii kwantów nie tkwi jedynie w zdolności wyjaśniania obserwowanych zjawisk przyrody i własności istniejących materiałów. Tkwi ona w mocy przewidywania, dzięki której nowe zjawiska i materiały powstają najpierw w dojrzałej formie w głowach (i komputerach) uczonych, a następnie są odtwarzane w laboratorium. Teoria kwantów jest zatem żeby użyć obrazowego porównania dla świata materii nieożywionej tym, czym w przyszłości być może stanie się inżynieria genetyczna dla świata organizmów żywych.
2 14 FOTON 111, Zima 2010 Ogromnemu postępowi, jaki dokonał się w ostatnim ćwierćwieczu w dziedzinie wytwarzania układów mikroelektronicznych, towarzyszyły równie istotne zmiany w światowym systemie obiegu informacji naukowej, takie jak powstanie internetowych baz preprintów czy czasopism typu open access. Te dwa czynniki łącznie sprawiły, że droga od równań matematycznych do budowy układu elektronicznego opartego na nowym materiale o niespotykanych wcześniej własnościach znacznie się skróciła. W dalszej części artykułu przedstawię pokrótce historię odkrycia grafenu, nieco miejsca poświęcając także przykładom innych fascynujących materiałów, które po uprzednich badaniach teoretycznych zadomowiły się w ostatnich latach w wielu laboratoriach, mają spore szanse trafić pod strzechy, a być może również zyskać uznanie Komitetu Noblowskiego w niedalekiej przyszłości. W 1928 roku Paul Dirac podał równanie opisujące ruch elektronu z uwzględnieniem postulatów zarówno mechaniki kwantowej jak i szczególnej teorii względności Einsteina. Równanie Diraca stało się podstawą relatywistycznej teorii kwantów i pozwoliło zrozumieć wiele zjawisk, których teoria nierelatywistyczna nie tłumaczyła. Z drugiej strony, teoria Diraca prowadziła do szeregu sprzecznych ze zdrowym rozsądkiem jak się wtedy wydawało efektów, jak istnienie antymaterii (pozytonu, odkrytego w 1932 roku przez Carla D. Andersona) czy paradoks Kleina (polegający na tym, że strumień elektronów padający na barierę potencjału o nieskończonej wysokości jest przez nią całkowicie przepuszczany). Przez następne dziesięciolecia, wielu matematyków i fizyków matematycznych badało rozwiązania równania Diraca w różnych sytuacjach. Sporym zainteresowaniem cieszyła się wersja równania opisująca elektrony w świecie dwuwymiarowym, dla której możliwe było otrzymanie szeregu rozwiązań ścisłych. Takie badania wydawały się szczególnie odległe od rzeczywistości: nasz świat jest przecież, jak każdy wie, trójwymiarowy! Trójwymiarowe były też obie znane do połowy lat 80. XX wieku formy krystaliczne węgla: grafit i diament. Pierwsza z nich, znacznie częściej występująca w przyrodzie, zbudowana jest z cienkich warstw (o grubości zaledwie jednego atomu), z których każda ma strukturę przypominającą plaster miodu. Warstwy są stosunkowo słabo związane ze sobą, dzięki czemu można je łatwo przesuwać (co wykorzystujemy pisząc ołówkiem). W 1984 roku Gordon W. Semenoff pokazał, że elektrony w pojedynczej warstwie grafitowej (nazwanej później grafenem) opisuje równanie Diraca w jego najprostszej wersji: dla cząstek bezmasowych w świecie dwuwymiarowym. Możliwość izolacji warstwy grafitowej wydawała się jednak wówczas mało realna. Wkrótce nastąpił przełom w naszej wiedzy na temat odmian węgla: obok grafitu i diamentu pojawiły się fullereny (1985) i nanorurki (1990). Dlaczego na odkrycie grafenu trzeba było czekać kolejne piętnaście lat? Zapewne przyczyną było przekonanie, że taki ściśle dwuwymiarowy obiekt nie może istnieć w naszym świecie: żaden znany mate-
3 FOTON 111, Zima riał nie tworzył warstw jednoatomowej grubości, które pozostawałyby stabilne po oderwaniu od podłoża. Odkrycia grafenu dokonali uczeni z Uniwersytetu w Manczesterze, Andre Geim i Konstantin Novoselov, ze współpracownikami z Rosji i Holandii. W pracy opublikowanej w Nature w 2005 roku [2] opisali m.in. działanie tranzystora polowego zbudowanego w całości z grafenu, w którym możliwa jest płynna zmiana koncentracji nośników elektryczności (poprzez przyłożenie zewnętrznego pola elektrycznego), a nawet zamiana elektronów na dziury. Urządzenie takie nie ma odpowiednika w elektronice opartej na krzemie. W tej samej pracy opisano pomiar tzw. masy cyklotronowej, czyli efektywnej masy, która charakteryzuje dynamikę cząstki w polu magnetycznym. Pomiar ten stanowi bezpośredni dowód, że w grafenie mamy do czynienia z bezmasowymi elektronami Diraca. Wkład Geima i Novoselova w fizykę materii skondensowanej trudno przecenić. Nie polegał on tylko na odkryciu niezwykle ciekawego materiału, lecz również na potencjalnie znacznie ważniejszej próbie zmiany zwyczajów panujących w wielu dziedzinach nauki. Uczeni postanowili bowiem upowszechnić wszelkie szczegóły opracowanej przez siebie metody izolacji grafenu, poprzez filmy instruktażowe i szkolenia dla członków konkurencyjnych zespołów badawczych. Dzięki temu, badania grafenu niemal natychmiast podjęło kilkadziesiąt zespołów z całego świata, a eksplozja publikacji i cytowań dotyczących tego materiału nie ma precedensu. W krótkim czasie potwierdzono przewidywania teoretyczne dotyczące szeregu własności, z których najciekawsze wydają się przewodnictwo elektryczne i współczynnik absorpcji światła widzialnego: obie wielkości wyrażają się wyłącznie poprzez fundamentalne stałe przyrody, czyli ładunek elektronu e, prędkość światła w próżni c i stałą Plancka h [3]. Dużemu przewodnictwu monowarstwy σ = 4e 2 /πh = 1/(20,3 kω) towarzyszy bardzo mały współczynnik absorpcji światła (πα = 2,3%, gdzie α = e 2 /ħc = 1/137,036 to stała struktury subtelnej), co czyni grafen obiecującym budulcem połączeń elektrycznych w wyświetlaczach LCD czy e-papierze. Wykonanie pomiaru absorpcji było możliwe dzięki uzyskaniu względnie dużych jednorodnych warstw grafenu, które były podtrzymywane przez brzegi otworów o średnicach do 50 μm w metalowej folii o grubości 20 μm. Pomimo, że obecnie niepewność pomiarów zarówno przewodnictwa elektrycznego jak i absorpcji światła jest zbyt duża, aby mogły one posłużyć do wyznaczania stałych przyrody z dokładnością metrologiczną, warto podkreślić, że z grafenem wiążą się aż dwa nowe makroskopowe zjawiska kwantowe.
4 16 FOTON 111, Zima 2010 Fotografia przedstawia otwór o średnicy 50 μm, zakryty częściowo przez pojedynczą i podwójną warstwę grafenu. Nałożony wykres pokazuje pomiar natężenia światła wzdłuż jasnej linii u dołu rysunku. Reprodukcja z pracy [3]. Spośród rozważanych obecnie zastosowań grafenu na pierwszy plan wysuwają się te, które mają związek ze spintroniką. W odróżnieniu od klasycznej elektroniki, która operuje ładunkiem elektronu i powoli zbliża się do granic wyznaczonych przez mechanikę kwantową (słynne prawo Moora pozwala oczekiwać, że obecny rozwój wydajności układów elektronicznych zatrzyma się około roku 2025), spintronika koncentruje się na innej własności elektronu: tzw. spinie (czyli momencie magnetycznym). Obrót spinu wymaga użycia znacznie mniejszej energii niż przemieszczenie ładunku, dlatego teoretyczne granice rozwoju spintroniki leżą daleko poza analogicznymi granicami dla elektroniki klasycznej. Grafen wydaje się szczególnie dogodnym materiałem do zastosowań w spintronice ze względu na wysoki stopień koherencji kwantowej: elektron, wstrzyknięty do grafenu przez zewnętrzną elektrodę (wykonaną z metalu ferromagnetycznego) zachowuje swoją tożsamość (i ustawienie spinu) przez bardzo długi czas. Co więcej, elektrony w grafenie posiadają dodatkowe liczby kwantowe (pseudospiny), na których można wykonywać identyczne operacje jak na spinie. Jedna z wersji takiej pseudospintroniki, operuje na tzw. indeksie doliny: liczbie kwantowej numerującej nierównoważne punkty w przestrzeni pędów, w których może znajdować się elektron (nazywane punktami Diraca). Szereg prac teoretycznych pokazuje, że doskonałość działania elementarnych układów może być znacznie wyższa niż analogicznych urządzeń rozważanych w standardowej spintronice. Co ciekawe, dzięki stworzeniu nowej koncepcji elektroniki kwantowej dla grafenu niedawno zauważono, że podobne operacje na wspomnianym indeksie doliny powinno dać się wykonywać w przypadku elektronu uwięzionego w nanorurce węglowej [4]. Taka możliwość wydaje się szczególnie obie-
5 FOTON 111, Zima cująca, gdyż technologia budowy układów zawierających nanorurki węglowe jest dopracowana w znacznie większym stopniu niż podobne technologie dla układów grafenowych. Na koniec warto wspomnieć o innych potencjalnych materiałach elektroniki przyszłości, których historia bardzo przypomina opisaną powyżej. W 1971 roku Dyakonov i Perel opisali teoretycznie zjawisko nazwane później spinowym efektem Halla (nazwa pochodzi od fizyka amerykańskiego J.E. Hirscha.) Jeśli przez prostokątną próbkę wykonaną z odpowiedniego materiału przepuścimy prąd elektryczny, na krawędziach pojawią się przeciwnie skierowane momenty magnetyczne. W odróżnieniu od klasycznego efektu Halla, efekt spinowy zachodzi bez zewnętrznego pola magnetycznego, a jego źródłem może być np. rozpraszanie elektronów na atomach domieszek wprowadzających oddziaływanie typu spin-orbita. Spinowy efekt Halla został zaobserwowany doświadczalnie niemal równocześnie z odkryciem grafenu pod koniec 2004 roku [5]. Szybko stał się jednym z głównych efektów wykorzystywanych w układach spintronicznych. Trudno dzisiaj jednoznacznie stwierdzić, które z opisanych materiałów i zjawisk znajdą zastosowanie w elektronice przyszłości. Być może będą to jeszcze inne, nieznane dziś układy? Jest jednak pewne, że stworzony przed blisko stu laty aparat matematyczny teorii kwantów odegra kluczową rolę w ich projektowaniu. Literatura [1] B. Trauzettel, Od grafitu do grafenu, Postępy Fizyki, 58 zeszyt 6/2007, s [2] K.S. Novoselov i in., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005), s [3] R.R. Nair i in., Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene, Science 320 (2008), s [4] A. Pályi, G. Burkard, Disorder-mediated electron valley resonance in carbon nanotube quantum dots, arxiv: (2010). [5] Y.K. Kato i in., Observation of the Spin Hall Effect in Semiconductors, Science 306 (2004), s
Grafen perspektywy zastosowań
Grafen perspektywy zastosowań Paweł Szroeder 3 czerwca 2014 Spis treści 1 Wprowadzenie 1 2 Właściwości grafenu 2 3 Perspektywy zastosowań 2 3.1 Procesory... 2 3.2 Analogoweelementy... 3 3.3 Czujniki...
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego
Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
i elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Ruch ładunków w polu magnetycznym
Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się
F = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów
Bozon Higgsa prawda czy kolejny fakt prasowy?
Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami
POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA ENERGETYKI I APARATURY PRZEMYSŁOWEJ NADPRZEWODNICTWO I EFEKT MEISSNERA Katarzyna Mazur Inżynieria Mechaniczno-Medyczna Sem. 9 1. Przypomnienie istotnych
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1
Wykład z mechaniki. Prof.. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu TESTOWEGO
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Ćwiczenia z mikroskopii optycznej
Ćwiczenia z mikroskopii optycznej Anna Gorczyca Rok akademicki 2013/2014 Literatura D. Halliday, R. Resnick, Fizyka t. 2, PWN 1999 r. J.R.Meyer-Arendt, Wstęp do optyki, PWN Warszawa 1979 M. Pluta, Mikroskopia
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N
OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P
Cząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Grafen i jego własności
Grafen i jego własności Jacek Baranowski Instytut Technologii Materiałów Elektronicznych Wydział Fizyki, Uniwersytet Warszawski W Polsce są duże pokłady węgla, niestety nie można ich przerobić na grafen,
Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Promieniowanie cieplne ciał.
Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych
Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa
Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku
1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F
SPIS TREŚCI Przedmowa 11 Wprowadzenie... 13 Część I. Doświadczenia dyfrakcyjno-interferencyjne z pojedynczymi obiektami mikroświata.. 17 Literatura... 23 1.1. Doświadczenia dyfrakcyjno-interferencyjne
Zjawisko Halla Referujący: Tomasz Winiarski
Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Podstawy fizyki kwantowej
Wykład I Prolog Przy końcu XIX wieku fizyka, którą dzisiaj określamy jako klasyczną, zdawała się być nauką ostateczną w tym sensie, że wszystkie jej podstawowe prawa były już ustanowione, a efektem dalszego
GRAFEN. Prof. dr hab. A. Jeleński. Instytut Technologii MateriałówElektronicznych Ul.Wólczyńska 133 01-919 Warszawa www.itme.edu.
GRAFEN Prof. dr hab. A. Jeleński Instytut Technologii MateriałówElektronicznych Ul.Wólczyńska 133 01-919 Warszawa www.itme.edu.pl SPIS TREŚCI Czy potrzeba nowych materiałów? Co to jest grafen? Wytwarzanie
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Fizyka cząstek elementarnych i oddziaływań podstawowych
Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki
Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,
Atomy mają moment pędu
Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
Redefinicja jednostek układu SI
CENTRUM NAUK BIOLOGICZNO-CHEMICZNYCH / WYDZIAŁ CHEMII UNIWERSYTETU WARSZAWSKIEGO Redefinicja jednostek układu SI Ewa Bulska MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
Wykłady z Fizyki. Kwanty
Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Model Bohra budowy atomu wodoru - opis matematyczny
Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na
POLE MAGNETYCZNE W PRÓŻNI
POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.
Teoria grawitacji. Grzegorz Hoppe (PhD)
Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
STRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
Historia. Zasada Działania
Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
Wykład Budowa atomu 1
Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia
Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN
Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż. Łukasz Graczykowski - lgraczyk@cern.ch Zakład Fizyki Jądrowej, Wydział
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
Przerwa energetyczna w germanie
Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania
WFiIS. Wstęp teoretyczny:
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.
Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze
Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została
Podstawy fizyki ciała stałego półprzewodniki domieszkowane
Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,
Różne dziwne przewodniki
Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
Wykorzystanie Grafenu do walki z nowotworami. Kacper Kołodziej, Jan Balcerak, Justyna Kończewska
Wykorzystanie Grafenu do walki z nowotworami Kacper Kołodziej, Jan Balcerak, Justyna Kończewska Spis treści: 1. Co to jest grafen? Budowa i właściwości. 2. Zastosowanie grafenu. 3. Dlaczego może być wykorzystany
Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.
Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy
Wykład Budowa atomu 2
Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14
Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie
Kto nie zda egzaminu (nie uzyska oceny dostatecznej), będzie zdawał testowy egzamin poprawkowy Reinhard Kulessa 1
Wykład z mechaniki. Prof. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu testowego
Statystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski
Wzrost pseudomorficzny Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 naprężenie
Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści
Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, 2011 Spis treści Przedmowa 15 Przedmowa do wydania drugiego 19 I. PODSTAWY I POSTULATY 1. Doświadczalne podłoŝe mechaniki kwantowej
cz. 1. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek
Grafen. Poprzednio. Poprzednio
Elektronika plastikowa i organiczna Grafen Poprzednio Poprzednio Metody syntezy związków organicznych pozwalają na tworzenie półprzewodników organicznych o zadanych własnościach mechanicznych i elektrooptycznych
Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii
Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.
DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Filozofia przyrody - Filozofia Eleatów i Demokryta
5 lutego 2012 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 4 Materializm Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
kwantowanie: Wskazówka do wyprowadzenia (plus p. Gaussa) ds ds Wykład VII: Schrodinger Klein Gordon, J. Gluza
kwantowanie: Wskazówka do wyprowadzenia (plus p. Gaussa) ds ds V Erwin Schrodinger Austriak 1926 (4 prace) Nobel (wraz z Dirakiem), 1933 Paradoks kota Banknot 1000 szylingowy Czym jest życie? (o teorii
fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW
fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne