Oprogramowanie wspomagajàce badanie zjawiska perkolacji w systemach chaotycznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Oprogramowanie wspomagajàce badanie zjawiska perkolacji w systemach chaotycznych"

Transkrypt

1 Zeszyty Naukowe nr 724 Akademii Ekonomicznej w Krakowie 2006 Jacek Wo oszyn Katedra Informatyki Oprogramowanie wspomagajàce badanie zjawiska perkolacji w systemach chaotycznych Streszczenie: Analiza numeryczna wraz z wykorzystaniem grafiki komputerowej stanowią wygodne narzędzia badania zachowań systemów dynamicznych, w których obserwowane są zjawiska chaosu. Badając zjawisko perkolacji rozważa się sieć złożoną z węzłów, która w najprostszym przypadku może być siatką kwadratową o równomiernie rozłożonych węzłach. Każdy węzeł jest albo nieaktywny, albo aktywny. Węzły aktywne mogą tworzyć klastry mające tę własność, że każdy węzeł klastra sąsiaduje bezpośrednio z innym aktywnym węzłem. Na użytek niniejszej pracy rozszerzony został i uogólnimy klasyczny problem perkolacji poprzez dopuszczenie możliwości stosowania różnych metod i mechanizmów aktywowania węzłów sieci w sposób bezpośredni, a także poprzez propagację frontu pobudzenia węzłów. Klasyczny proces losowego wyboru aktywności każdego węzła sieci zastąpiony został deterministycznym generowaniem chaotycznego szeregu czasowego. Powstaje w ten sposób zjawisko perkolacji w systemie chaotycznym. W sieci takiej można obserwować i analizować powstawanie klastrów lub innych form utworzonych z aktywnych węzłów. Natura zagadnienia perkolacji doskonale koresponduje z metodami symulacji komputerowej stosowanymi w badaniu tego zjawiska. Jednym z warunków efektywnego stosowania metod symulacyjnych jest wykorzystywanie odpowiedniego oprogramowania komputerowego dostosowanego do specyfiki prowadzonych badań. W niniejszej pracy zaprezentowane zostało oprogramowanie służące do przeprowadzania komputerowych eksperymentów symulacyjnych związanych ze zjawiskiem perkolacji w systemach chaotycznych. Słowa kluczowe: chaos deterministyczny, perkolacja, symulacja komputerowa.

2 112 Jacek Wołoszyn 1. Wst p Teoria chaosu wykorzystuje różnorodną metodologię w badaniu własności złożonych systemów dynamicznych. Obok podejścia teoretycznego szeroko stosowane są metody eksperymentalne. Ogromnych możliwości w tym zakresie dostarcza szybko rozwijająca się technika informatyczna oraz inne związane z nią dziedziny. Symulacja komputerowa pozwala w stosunkowo prosty sposób generować dowolnie długie ciągi obserwacji matematycznego modelu systemu chaotycznego. Odpowiedni program komputerowy może dokonywać równocześnie złożonej analizy rezultatów otrzymanych podczas eksperymentu symulacyjnego. Analiza numeryczna wraz z wykorzystaniem grafiki komputerowej stanowią wygodne narzędzia badania zachowania się systemów dynamicznych, w których obserwowane są zjawiska chaosu. Określenia chaos i determinizm przedstawiają dwa pojęcia intuicyjnie rozumiane jako przeciwstawne. Chaos kojarzy się zwykle z brakiem regularności i porządku, natomiast determinizm utożsamiany jest ze ścisłym podporządkowaniem pewnym precyzyjnie określonym regułom. Chaos deterministyczny jest terminem łączącym wspomniane dwa pozornie przeciwstawne pojęcia. Pozorną przeciwstawność łagodzi, a nawet zupełnie niweluje, stwierdzenie, że chaos i determinizm wyrażają dwa niezależne od siebie atrybuty zachowania się badanego systemu dynamicznego. Ścisłe podporządkowanie zachowania się systemu deterministycznego ustalonym regułom oznacza możliwość jednoznacznego wyznaczenia przyszłego stanu systemu na podstawie znajomości jego stanu bieżącego i stanów poprzednich. Determinizm można rozpatrywać również na płaszczyźnie jednoznacznych związków probabilistycznych. Tak rozumiane zależności deterministyczne oznaczają możliwość prognozowania przyszłych stanów systemu, czyli wyznaczenia wartości prawdopodobieństwa wystąpienia określonych stanów rozważanego systemu. Przedstawione podejście jest bardzo często wykorzystywane w analizie dynamiki systemów ekonomicznych [Wołoszyn 2000]. Brak regularności i porządku dostrzegany w zachowaniu się systemów określanych jako chaotyczne (a ściślej jako deterministycznie chaotyczne) oraz towarzysząca tym zjawiskom nieprzewidywalność zachowania się systemu nie wynikają ze skomplikowanej budowy wewnętrznej systemu i występujących tam złożonych zależności. Źródłem chaosu jest specyfika nieliniowych związków rzutujących na relacje pomiędzy zmiennymi systemu obserwowanymi w przestrzeni jego stanów. Zachowania chaotyczne są obserwowane nie tylko w złożonych systemach dynamicznych. Systemy opisywane nawet bardzo prostymi zależnościami, mające trywialne modele matematyczne, mogą wykazywać bardzo złożone zachowania opisywane skomplikowanymi trajektoriami w przestrzeni fazowej systemu.

3 Oprogramowanie wspomagające badanie Chaos generowany odwzorowaniem logistycznym Jeden z najprostszych przypadków występowania zjawiska chaosu deterministycznego można zaobserwować dokonując iteracji formuły odwzorowania logistycznego mającego następującą postać: x t + 1 = cx t (1 x t ). (1) Równanie (1) można uważać za model matematyczny systemu, którego stan opisuje jedna zmienna x. Ten system jest nieliniowy ze względu na występujący w opisującym go równaniu iloczyn. Po dokonaniu wyboru pewnego punktu startowego x 0 odpowiadającego chwili czasu t = 0, z zależności (1) w sposób deterministyczny jednoznacznie wynika stan systemu w następnej chwili czasu t = 1. Powtarzając obliczenia dla kolejnych momentów czasu otrzymujemy szereg czasowy reprezentujący zachowanie się rozpatrywanego systemu dynamicznego. Na rys. 1 przedstawiony został wykres wartości zmiennej x, które w formie szeregu czasowego otrzymano w wyniku wykonania 200 iteracji równania (1). Jako wartość początkową obserwowanej zmiennej wybrano w sposób arbitralny x 0 = 0,73621 oraz ustalono wartość mnożnika w postaci parametru c = 3, ,0 0,8 0,6 0,4 0,2 0,0 Rys. 1. Szereg czasowy generowany przez odwzorowanie logistyczne (1) 200 iteracji dla x 0 = 0,73621 oraz c = 3, Systemy dynamiczne zachowujące się w sposób chaotyczny wykazują dużą wrażliwość na warunki początkowe. Zmieniając nieznacznie wartość początkową

4 114 Jacek Wołoszyn x 0 = 0,73622 otrzymujemy zupełnie różny obraz (rys. 2) zachowania się systemu opisanego równaniem (1). Zmieniając równie nieznacznie wartość parametru c = 3, obserwujemy podobnie zdecydowanie różny przebieg wartości zmiennej x. 1,0 0,8 0,6 0,4 0,2 0,0 Rys. 2. Szereg czasowy generowany przez odwzorowanie logistyczne (1) 200 iteracji dla x 0 = 0,73622 oraz c = 3, ,2 0,1 0,0 Rys. 3. Szereg czasowy generowany przez odwzorowanie logistyczne (1) 40 iteracji dla x 0 = 0,001 oraz c = 1,25 Odwzorowanie (1) przy odpowiednim wyborze wartości parametru c oraz wartości początkowej x 0 generuje przebieg o kształcie funkcji logistycznej (nazwa

5 Oprogramowanie wspomagające badanie 115 odwzorowania). Rys. 3 prezentuje wykres początkowych 40 iteracji odwzorowania (1) dla wartości x 0 = 0,001 oraz c = 1, Zjawisko perkolacji Omawiając zjawisko perkolacji rozważamy sieć złożoną z węzłów, która w najprostszym przypadku może być siatką kwadratową o równomiernie rozłożonych węzłach w kwadratowych komórkach utworzonych przez boki siatki. Węzły mogą znajdować się w dwóch stanach: każdy węzeł jest albo nieaktywny (pusty), albo aktywny (zapełniony). Węzły aktywne mogą tworzyć klastry, czyli zbiory wierzchołków mających tę własność, że każdy węzeł klastra sąsiaduje bezpośrednio z innym aktywnym węzłem. W klasycznym problemie perkolacji [Heermann 1997] interesują nas własności klastrów powstających w wyniku losowego aktywowania węzłów. Każdy węzeł jest zapełniony z ustalonym jednakowym prawdopodobieństwem p [0;1] oraz pozostaje pusty z prawdopodobieństwem 1 p. Okazuje się, że istnieje pewna wartość graniczna p c nazywana progiem perkolacji, mająca tę własność, że aktywowanie węzłów sieci z prawdopodobieństwem p p c prowadzi do powstania klastra łączącego przeciwległe brzegi sieci węzłów (w sieci nieskończonej powstaje nieskończony klaster). Na użytek niniejszej pracy rozszerzymy i uogólnimy przedstawiony wyżej problem perkolacji dopuszczając możliwość stosowania różnych metod i mechanizmów aktywowania węzłów sieci w sposób bezpośredni, a także poprzez propagację frontu pobudzenia węzłów. Klasyczny proces losowego wyboru aktywności każdego węzła sieci zastąpimy deterministycznym generowaniem chaotycznego szeregu czasowego. Powstaje w ten sposób zjawisko perkolacji w systemie chaotycznym. W sieci takiej można obserwować i analizować powstawanie klastrów lub innych form utworzonych z aktywnych węzłów. Natura zagadnienia perkolacji doskonale koresponduje z metodami symulacji komputerowej stosowanymi w badaniu tego zjawiska. Jednym z warunków efektywnego stosowania metod symulacyjnych jest wykorzystywanie odpowiedniego oprogramowania komputerowego dostosowanego do specyfiki prowadzonych badań. W dalszej części pracy prezentowane jest oprogramowanie służące do przeprowadzania komputerowych eksperymentów symulacyjnych związanych ze zjawiskiem perkolacji w systemach chaotycznych.

6 116 Jacek Wołoszyn 4. Oprogramowanie narz dziowe wspomagajàce komputerowà symulacj zjawisk perkolacji Do celów prowadzenia komputerowych eksperymentów symulacyjnych z zakresu zagadnień związanych ze zjawiskiem perkolacji zostało zaprojektowane oraz implementowane 1 specjalne oprogramowanie nazwane Percolate, stanowiące samodzielną aplikację przeznaczoną do uruchamiania na platformie systemowej Microsoft Windows. Oprogramowanie zostało napisane w języku C++ przy wykorzystaniu systemu MFC w środowisku programistycznym Microsoft Visual Studio. Rys. 4. Główne okno programu Percolate Na rys. 4 przedstawiono wygląd głównego okna programu Percolate, które składa się z interfejsu sterującego (menu, pasek narzędzi) oraz zasadniczego widoku dokumentu. Menu główne zawiera polecenia, dostępne także za pomocą 1 Autorami projektu omawianego oprogramowania oraz jego implementacji są Jacek Wołoszyn (Katedra Informatyki AE w Krakowie) oraz Paweł Wołoszyn (Katedra Automatyki AGH w Krakowie).

7 Oprogramowanie wspomagające badanie 117 paska narzędzi, służące ustalaniu parametrów symulacji, przeprowadzaniu eksperymentów symulacyjnych oraz konfigurowaniu poszczególnych opcji programu. Widok dokumentu stanowi wizualizację stanu węzłów rozlokowanych w prostokątnej sieci i umożliwia obserwację struktury połączeń między węzłami oraz drogi propagacji aktywności węzłów. Pozwala także na interakcyjny wybór źródła propagacji. Podstawową strukturą danych programu Percolate jest węzeł reprezentowany, z programistycznego punktu widzenia, przez klasę obiektów. Właściwości tej klasy pozwalają przechowywać w każdym węźle informacje o jego bieżącym stanie oraz jednokierunkowych połączeniach z węzłami, do których ten stan będzie propagowany. Metody zdefiniowane w klasie węzła opisują podstawowe zachowanie węzła polegające na propagowaniu jego stanu do węzłów związanych połączeniami. Umożliwiają także uzyskanie informacji o bieżącym stanie, ustalenie połączeń oraz przywrócenie stanu początkowego danego węzła. Poszczególne węzły zorganizowane są w dwuwymiarową strukturę tablicową o zadanej przez użytkownika liczbie wierszy i kolumn. Graficzną reprezentacją sieci węzłów w widoku programu jest matryca złożona z kwadratowych elementów, których kolor odzwierciedla bieżący stan węzłów. Topologia widoku ekranowego odpowiada topologii struktury danych, tak więc brzegi tablicy nie są sklejone przeciwległymi parami, zaś węzły brzegowe sąsiadują z mniejszą liczbą węzłów niż te, które położone są we wnętrzu tablicy. Praca z programem rozpoczyna się od wybrania przez użytkownika rozmiaru tablicy węzłów. Rozmiar ten może być później zmieniany. Po utworzeniu węzłów możliwe jest tworzenie sieci połączeń między nimi. Następnym etapem jest wybór węzłów, od których rozpoczynać się będzie propagacja sygnału aktywacji. Po przejściu tych etapów użytkownik może rozpocząć symulację. Gdy propagacja sygnału się zakończy, można przeanalizować (również statystycznie) wyniki symulacji, a także wybrać inne źródła propagacji aktywności węzłów, zmienić układ połączeń między węzłami lub nawet zmienić rozmiary tablicy przechowującej strukturę sieci węzłów. Możliwe jest także uruchomienie eksperymentów symulacyjnych w trybie automatycznym, pozwalającym powtarzać doświadczenia wielokrotnie przy równoczesnym automatycznym rejestrowaniu uzyskiwanych rezultatów w poszczególnych przebiegach. W programie Percolate dostępne są w postaci odpowiednich narzędzi następujące polecenia: Array size zmienia liczbę wierszy i kolumn tablicy węzłów, Links setup ustala zasięg i liczbę połączeń między węzłami, Reset nodes przywraca wyjściowy stan węzłów,

8 118 Jacek Wołoszyn Propagate wykonuje jeden krok propagacji sygnału, Auto propagate iteruje kroki propagacji aż do osiągnięcia stanu ustalonego, Auto increment (przełącznik) włącza / wyłącza inkrementację stanu węzłów źródłowych, Statistics wyświetla statystyki węzłów, State gradation (przełącznik) włącza / wyłącza kolorową skalę stanu węzłów, Mark source (przełącznik) włącza / wyłącza oznaczanie węzłów źródłowych, Mark front (przełącznik) włącza / wyłącza oznaczanie frontu propagacji, View options konfiguracja dodatkowych parametrów wyświetlania, Show all links wyświetla wszystkie połączenia między węzłami, Repaint view odświeża ekran widoku węzłów, Copy kopiuje do schowka systemowego zawartość widoku, Batch uruchamia wsadowe przetwarzanie serii eksperymentów. Rys. 5. Połączenia wybranego węzła, zasięg połączeń równy 1 Rozmiar tablicy węzłów tworzonej w programie Percolate jest uzależniony zasadniczo od pojemności dostępnej pamięci operacyjnej komputera. W ekspe-

9 Oprogramowanie wspomagające badanie 119 rymentach przeprowadzanych na użytek niniejszej pracy wykorzystywane były tablice o rozmiarach rzędu węzłów. Wraz ze wzrostem liczby węzłów następuje wydłużanie czasu symulacji, który przy dużych rozmiarach tablicy w większym stopniu limituje możliwość prowadzenia doświadczeń niż wielkość pamięci operacyjnej komputera. Rys. 6. Połączenia wybranego węzła, zasięg połączeń równy 4 Podczas tworzenia połączeń między węzłami program Percolate umożliwia ustalenie dwóch parametrów: zasięgu połączeń (wyrażonego promieniem otoczenia mierzonego w metryce maksimum) oraz maksymalnej liczby połączeń wychodzących z jednego węzła. Pierwszy parametr wpływa na współczynnik skalowania wartości uzyskiwanych podczas iteracji odwzorowania logistycznego generującego przebiegi chaotyczne, które z przedziału [0, 1] transformowane są do przedziału względnych współrzędnych węzłów sąsiadujących z węzłem bazowym i zamieniane na wartości całkowite. Drugi parametr określa największą możliwą liczbę podwójnych iteracji odwzorowania logistycznego prowadzonych dla węzła bazowego celem wyznaczenia współrzędnych połączonych węzłów otoczenia. Faktyczna liczba podwójnych iteracji jest wynikiem losowania (za pomocą generatora liczb pseudolosowych o rozkładzie równomiernym) wartości mniejszej lub równej maksymalnej liczbie połączeń. W ten sposób każdy węzeł w tablicy może mieć inną, losową liczbę ustalanych połączeń, przy czym niektóre z nich mogą być dodatkowo pomijane, jeżeli wartości uzyskane w iteracjach odwzorowania logistycznego wskażą węzeł bazowy lub węzeł związany już wcześniej połączeniem.

10 120 Jacek Wołoszyn Rys. 7. Sieć połączeń węzłów, zasięg połączeń 1, maksymalna liczba połączeń 4 Rys. 8. Gęsta sieć połączeń węzłów, zasięg połączeń 3, maksymalna liczba połączeń 7 Połączenia węzłów ilustrują rys. 5 i 6 obrazujące działanie dostępnej w programie Percolate funkcji wizualizowania połączeń wszystkich lub jedynie wskazanych węzłów. Program pozwala wizualizować również wszystkie połączenia węzłów tablicy. By zachować przejrzystość graficzną, nie pokazano kierunków połączeń wychodzących z węzłów. Przykładowe sieci połączeń przedstawione są na rys. 7 i 8.

11 Oprogramowanie wspomagające badanie 121 Rys. 9. Różne konfiguracje węzłów źródłowych Użytkownik programu Percolate po utworzeniu tablicy węzłów i ustaleniu połączeń pomiędzy poszczególnymi węzłami może przystąpić do eksperymentów symulacyjnych. W tym celu konieczne jest wskazanie węzłów, od których rozpocznie się propagacja sygnału aktywacji. Interfejs programu pozwala za pomocą myszy komputerowej zaznaczać lub cofnąć zaznaczenie dowolnych węzłów przedstawionych w oknie widoku. Przykładowe konfiguracje węzłów źródłowych obrazuje rys. 9. Podczas prowadzenia eksperymentów symulacyjnych program Percolate umożliwia śledzenie drogi rozchodzenia się sygnału aktywacji węzłów. Jest to możliwe poprzez zastąpienie wartości logicznej określającej stan węzła (aktywny / nieaktywny) wartością całkowitą równą liczbie kroków propagacji, podczas których dany węzeł był aktywny. Zliczanie kroków propagacji jest uzyskiwane poprzez automatyczną inkrementację liczników węzłów źródłowych, które następnie inkrementowany stan przekazują dalej w kolejnych cyklach. W efekcie po pewnej liczbie kroków propagacji węzły źródłowe posiadają stan wyrażony największymi wartościami, węzły nowoaktywowane mają stan równy 1, pozostałe węzły nieaktywne mają natomiast stan zerowy. Zastosowanie barwnej skali w widoku ekranowym (rys. 10), niosącej więcej informacji, pozwala na prostą w percepcji wizualizację drogi rozchodzenia się sygnału aktywacji od węzłów źródłowych do frontu propagacji (skala barw wyrażająca następstwo przekazywania sygnału obejmuje sekwencję odcieni kolorów od koloru ciemnofioletowego do koloru żółtego). Niezależnie od skali barwnej, program Percolate pozwala odrębnym kolorem zaznaczyć w oknie widoku węzły źródłowe (kolor niebieski) oraz węzły znajdujące się na froncie propagacji (kolor zielony). Poszczególne kroki propagacji można realizować pojedynczo na polecenie użytkownika. Taki tryb pracy programu pozwala na precyzyjną obserwację drogi rozchodzenia się sygnału aktywacji węzłów. Na każdym etapie eksperymentu pro-

12 122 Jacek Wołoszyn Rys. 10. Obrazowanie drogi propagacji sygnału, węzły białe pozostały nieaktywne Rys. 11. Wybrane etapy tego samego eksperymentu gram Percolate umożliwia bezpośrednie skopiowanie bieżącego widoku węzłów do schowka systemowego, dzięki czemu można wykorzystywać ten obraz bez użycia dodatkowego oprogramowania graficznego. Kilka etapów tego samego eksperymentu przedstawiono na rys. 11. Program Percolate umożliwia również przeprowadzenie eksperymentu symulacyjnego automatycznie powtarzając kroki propagacji. Zatrzymanie eksperymentu zachodzi wówczas, gdy w kolejnych krokach nie następuje aktywacja nowych węzłów. Po zakończeniu lub w trakcie eksperymentu użytkownik może przywołać okno statystyk, w którym prezentowane są wartości opisujące: sieć połączeń, liczbę węzłów aktywnych i wymiary aktywnego klastra. Liczba połączeń przypadających na jeden węzeł jest średnią liczby połączeń wszystkich węzłów. Liczba i odsetek aktywnych węzłów opisuje efektywność propagacji (liczbę węzłów, do których doszedł sygnał aktywacji z węzłów źródłowych). Z kolei średnica pionowa i pozioma aktywnego klastra określa zasięg propagacji, a więc największą odległość pionową i poziomą, na jaką oddalił się sygnał z węzłów źródłowych.

13 Oprogramowanie wspomagające badanie 123 Ponieważ liczba połączeń indywidualnych węzłów wybierana jest w sposób losowy, symulacja propagacji sygnału ma charakter stochastyczny i w celu uzyskania wyników umożliwiających wyciąganie dalszych wniosków niezbędne jest wielokrotne powtarzanie eksperymentów. Program Percolate jest przystosowany do tego zadania i posiada moduł automatycznego powtarzania eksperymentów. Przed rozpoczęciem serii doświadczeń użytkownik ustala rozmiar tablicy węzłów, parametry tworzenia połączeń oraz wskazuje węzły źródłowe. Następnie zadaje liczbę eksperymentów do wykonania. Moduł automatycznie powtarza cykl eksperymentalny złożony z generowania połączeń, propagacji sygnału aż do uzyskania stanu ustalonego i obliczenia statystyk węzłów. Po każdym cyklu moduł zapisuje uzyskane statystyki do pliku tekstowego umożliwiając w ten sposób zgromadzenie wyników wszystkich doświadczeń i następnie dalszą ich komputerową analizę. 5. Eksperymenty symulacyjne Interesującym zagadnieniem jest zbadanie zależności między średnią liczbą połączeń wychodzących z węzłów a rozmiarem klastrów powstających w wyniku propagacji sygnału. Można przypuszczać, że im więcej połączeń wychodzi z aktywnego węzła, tym dalej zostanie przekazany sygnał. Jednak po pewnej liczbie kroków propagacja może ulec zatrzymaniu, jeśli sygnał dotrze do węzłów nie posiadających dalszych połączeń lub połączonych z węzłami już aktywnymi. Frakcja węzłów aktywnych 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, ,5 2 2,5 3 3,5 4 Średnia liczba połączeń Rys. 12. Wykres zależności frakcji węzłów aktywnych i średniej liczby połączeń, dane z 1100 eksperymentów, tablica węzłów 100 x 100, zasięg połączeń 1

14 124 Jacek Wołoszyn Prawdopodobieństwo zatrzymania propagacji jest tym większe, im mniej połączeń przypada średnio na jeden węzeł. W celu zbadania eksperymentalnie tej zależności zaprojektowano układ węzłów w postaci kwadratowej tablicy o wymiarach 100 x 100 węzłów. Wybrano następnie jeden węzeł źródłowy leżący w punkcie o współrzędnych (50, 50) i wykonano 1100 eksperymentów losując za każdym razem połączenia o zasięgu 1 węzła. Z uzyskanych wyników wykorzystano średnią liczbę połączeń i frakcję aktywowanych węzłów w całej tablicy. Wykres zależności tych parametrów przedstawia rys. 12. Wyniki doświadczeń potwierdzają, że wzrost liczby połączeń między węzłami powoduje wzrost frakcji węzłów objętych propagacją. Zależność ta ma z początku charakter zbliżony do wykładniczego, lecz skończony rozmiar tablicy węzłów sprawia, że po pewnej liczbie kroków propagacji proces aktywacji nowych węzłów ustaje. Zjawisko to odpowiada drugiej części wykresu zbliżającej się asymptotycznie do jedności. Zmiana skali osi pionowej na logarytmiczną uwydatnia początkowy wykładniczy charakter rozrastania się klastrów aktywnych w miarę wzrostu średniej liczby połączeń (rys. 13). 1 Frakcja węzłów aktywnych 0,1 0,01 0,001 0, ,5 2 2,5 3 3,5 4 Średnia liczba połączeń Rys. 13. Wykres zależności frakcji węzłów aktywnych i średniej liczby połączeń, dane z rys. 12, oś pionowa w skali logarytmicznej W celu zmniejszenia zaburzenia spowodowanego ograniczonym rozmiarem tablicy węzłów wykonano kolejną serię eksperymentów na tablicy węzłów o wymiarach 1000 x Wzrost liniowego rozmiaru tablicy powoduje wzrost liczby węzłów z kwadratem wzrostu rozmiaru tablicy, zaś maksymalna

15 Oprogramowanie wspomagające badanie 125 ilość obliczeń wykonywanych podczas eksperymentów zwiększa się z czwartą potęgą wzrostu rozmiaru tablicy. Zwiększenie długości boku kwadratowej tablicy ze 100 do 1000 węzłów powoduje krotne wydłużenie czasu obliczeń. Z tego powodu dla tablicy 1000 x 1000 węzłów udało się przeprowadzić jedynie 400 eksperymentów. Rys. 14. Wykres zależności liczby węzłów aktywnych i średniej liczby połączeń, eksperymenty na tablicach 100 x 100 (kolor niebieski) i 1000 x 1000 (kolor żółty), zasięg połączeń 1 Uzyskane wyniki zestawiono z wynikami eksperymentów przeprowadzonych na mniejszej tablicy. By zachować jednolitą skalę, frakcję węzłów aktywnych zastąpiono w analizie liczbą węzłów aktywnych. Dzięki temu zabiegowi rezultaty eksperymentów na większej tablicy zostały zobrazowane jako kontynuacja doświadczeń z mniejszą tablicą węzłów. Duża rozpiętość wartości (od 1 do węzłów aktywnych) skłoniła do zastosowania skali logarytmicznej. Wykres wyników eksperymentów przedstawiono na rys. 14. Wąskie poziome skupiska punktów na rys. 14 należy uznać za artefakt, gdyż odpowiadają one liczebności wszystkich węzłów ( w przypadku mniejszej tablicy i w przypadku większej). Wyniki eksperymentów leżące w tych skupiskach są zatem zdeterminowane nie samą naturą symulowanego zjawiska, lecz ograniczeniami modelu symulacyjnego. Zwiększenie rozmiaru tablicy przemieszcza takie skupiska do odpowiednio wyższych rzędnych. By uniknąć tego typu artefaktów w sytuacji granicznej, należałoby prowadzić eksperymenty na nieskończonej tablicy węzłów.

16 126 Jacek Wołoszyn Złożoność obliczeniowa nie pozwala na uzyskanie w porównywalnym czasie podobnej liczby punktów na rys. 14 dla mniejszej i większej tablicy. Mimo to daje się zauważyć pewną prawidłowość: wyniki eksperymentów dla większej liczby węzłów (kolor żółty) pokrywają się z częścią wyników doświadczeń z mniejszą liczbą węzłów (kolor niebieski). Zgodność występuje w obszarze poniżej artefaktu odpowiadającego liczbie Dalsza część wykresu, reprezentowana wyłącznie przez dane z eksperymentów na większej tablicy, stanowi przedłużenie części początkowej do bariery węzłów. Ze względu jednak na niewielką liczebność punktów w tym obszarze wykresu, trudno jest ocenić charakter zależności liczby węzłów aktywnych od średniej liczby połączeń. Rys. 15. Zasięg propagacji w eksperymencie symulacyjnym dla tablicy 100 x 100 węzłów. Kolor szary oznacza węzły aktywne, kolor biały oznacza węzły nieaktywne Oczywiste jest, że początkowy przebieg analizowanego związku liczby węzłów aktywnych i średniej liczby połączeń, nasuwający skojarzenia z zależnością wykładniczą, musi ustąpić innemu zachowaniu w miarę wzrostu liczby połączeń. Badanie liczby węzłów aktywnych po zakończeniu propagacji jest równoważne badaniu, po ilu krokach przy danej liczbie połączeń propagacja się zakończy. W przypadku dokładnie 8 połączeń każdego węzła z węzłami sąsiednimi propagacja nie zatrzyma się nigdy, tym samym liczba węzłów aktywnych wzrośnie do nieskończoności. Faktyczny próg, powyżej którego propagacja nie wygasa, może być mniejszy od 8. Z wykresu na rys. 14 wynika, że już powyżej średniej liczby 2,5 połączeń wychodzących przypadających na jeden węzeł propagacja obejmuje niemal całą dostępną przestrzeń tablicy węzłów.

17 Oprogramowanie wspomagające badanie 127 a b c d Objaśnienia: pojedynczy węzeł źródłowy położony centralnie. Skala barwna jak na rys. 10. Średnia liczba połączeń wynosi odpowiednio: a 1,8, b 2,1, c 2,2, d 3,1 Rys. 16. Drogi rozprzestrzeniania się sygnału do zakończenia propagacji w eksperymentach na tablicy 400 x 400 węzłów Występujące powyżej 2,5 połączeń na jeden węzeł przypadki zatrzymania propagacji przed objęciem wszystkich węzłów prawdopodobnie wynikają ze specyficznego położenia węzła źródłowego, który w tych przypadkach może znajdować się wewnątrz odosobnionego obszaru, do którego nie docierają połączenia z węzłów otaczających. Obszary takie widoczne są w postaci białych wysp na rys. 15 przedstawiającym zasięg propagacji w jednym z eksperymentów wykonanych na tablicy rozmiaru 100 x 100 węzłów. Aby zbadać mechanizm powstawania wysp, można prześledzić drogę rozprzestrzeniania się sygnału w aktywnych klastrach. Wyniki eksperymentów wykonanych na tablicy węzłów o wymiarach 400 x 400 dla różnych liczb połączeń

18 128 Jacek Wołoszyn zobrazowano na rys. 16. We wszystkich przypadkach wybierany był tylko jeden centralnie położony węzeł źródłowy. Jak wynika z przeprowadzonych eksperymentów symulacyjnych, nie tylko zasięg propagacji, ale także droga rozprzestrzeniania się sygnału zależy od liczby połączeń węzłów. Przy dużej liczbie połączeń sygnał rozchodzi się nieograniczenie w przybliżeniu radialnie wokół źródła. Z kolei przy mniejszej liczbie połączeń, dla której zatrzymanie się propagacji jest bardziej prawdopodobne, można obserwować chaotyczne błądzenie ścieżki propagacji przypominające ruchy Browna. Na przykład na rys. 16c front propagacji położony jest stosunkowo blisko węzła źródłowego, a szlak rozprzestrzeniania się sygnału zakreśla chaotyczne pętle oddalające się i powracające w stronę punktu wyjścia. Nasuwa się pytanie, w jaki sposób charakter ścieżki propagacji zależy od średniej liczby połączeń między węzłami. Jest to bardzo złożone zagadnienie, można jednak podjąć próbę zbadania uproszczonej wersji problemu, a mianowicie szukać odpowiedzi na pytanie, w jaki sposób średnia liczba połączeń wpływa na linearność propagacji. 6. Zakoƒczenie Jako cel dalszych badań wskazać można budowę modelu doświadczalnego umożliwiającego rozprzestrzenianie się sygnału jedynie po szlakach w przybliżeniu linearnych. Modelem takim byłaby tablica węzłów o stosunkowo niewielkiej szerokości i wielokrotnie większej długości. Węzły źródłowe powinny znajdować się na jednym z krótszych boków tablicy. W tak skonstruowanym środowisku propagacja postępująca wzdłuż chaotycznie błądzących ścieżek zostanie wyhamowana na skutek niewielkiej szerokości kanału rozprzestrzeniania się sygnału. Natomiast propagacja linearna może zachodzić tak długo, aż zostanie powstrzymana przez samą konfigurację połączeń. Innym interesującym problemem badawczym jest ustalenie związku liczby węzłów aktywnych i średniej liczby połączeń. Określenie liczby aktywnych węzłów po zakończeniu procesu propagacji odpowiada ustaleniu, po ilu krokach przy danej liczbie połączeń pomiędzy węzłami proces propagacji się zakończy. Wskazane zagadnienia mogą towarzyszyć modelowaniu procesu dyfuzji innowacji. Innym aspektem tego samego podejścia badawczego jest przestrzenne rozmieszczenie aktywnych węzłów (rys. 15). Znacznie bardziej rozbudowanym problemem jest badanie dynamiki dróg propagacji aktywności węzłów sieci (rys. 16). Na obydwu wspomnianych rysunkach wyraźnie widać fraktalny [Mandelbrot 1982] charakter uzyskiwanych map przestrzennej aktywności węzłów. Jest to całkowicie zrozumiałe ze względu na chaotyczny mechanizm propagacji aktywności.

19 Oprogramowanie wspomagające badanie 129 Literatura Heermann D.W. [1997], Podstawy symulacji komputerowych w fizyce, WNT, Warszawa. Mandelbrot B. [1982], The Fractal Geometry of Nature, W.H. Freeman, New York. Wołoszyn J. [2000], Elementy teorii chaosu deterministycznego w badaniach systemów ekonomicznych, Zeszyty Naukowe AE w Krakowie, nr 551, Kraków. Software for Percolation Phenomena Research in Chaotic Systems Numerical analysis and computer graphics are convenient tools for research into behaviour of dynamic systems that demonstrate chaos phenomena. During exploration of percolation occurrence, a net consisted of nodes is being considered. In the simplest case, it can be a square net with uniformly placed nodes. Each node can be active or non-active. The active nodes can form clusters having such a feature that each cluster node neighbours directly with other active node. For the purpose of this paper, the classical percolation problem has been extended and generalised by enabling of utilisation of various node activation methods operating in direct way, or by the propagation of node stimulation front. The classical process of random activity selection for each node has been replaced by deterministic generation of a chaotic time series. This process creates a percolation phenomenon in a chaotic system. In such a net the creation of clusters and other forms that are composed of active nodes can be observed and analysed. The behaviour of percolation issue is perfectly connected with computer simulation methods that are used for exploration of this phenomenon. A condition of effective utilisation of simulation methods is application of proper computer software that should be adopted to research characteristics. The article presents the software for computer simulation experiments that are connected with percolation phenomena in chaotic systems. Key words: deterministic chaos, percolation, computer simulation.

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.

Bardziej szczegółowo

FRAKTALE I SAMOPODOBIEŃSTWO

FRAKTALE I SAMOPODOBIEŃSTWO FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

1. Opis okna podstawowego programu TPrezenter.

1. Opis okna podstawowego programu TPrezenter. OPIS PROGRAMU TPREZENTER. Program TPrezenter przeznaczony jest do pełnej graficznej prezentacji danych bieżących lub archiwalnych dla systemów serii AL154. Umożliwia wygodną i dokładną analizę na monitorze

Bardziej szczegółowo

Przestrzenne układy oporników

Przestrzenne układy oporników Przestrzenne układy oporników Bartosz Marchlewicz Tomasz Sokołowski Mateusz Zych Pod opieką prof. dr. hab. Janusza Kempy Liceum Ogólnokształcące im. marsz. S. Małachowskiego w Płocku 2 Wstęp Do podjęcia

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała

Usługi Informatyczne SZANSA - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-22-97-52 tel. +48 33 488 89 39 zwcad@zwcad.pl www.zwcad.pl Aplikacja do rysowania wykresów i oznaczania

Bardziej szczegółowo

Program V-SIM tworzenie plików video z przebiegu symulacji

Program V-SIM tworzenie plików video z przebiegu symulacji Program V-SIM tworzenie plików video z przebiegu symulacji 1. Wprowadzenie Coraz częściej zdarza się, że zleceniodawca opinii prosi o dołączenie do opracowania pliku/ów Video z zarejestrowanym przebiegiem

Bardziej szczegółowo

Numeryczna symulacja rozpływu płynu w węźle

Numeryczna symulacja rozpływu płynu w węźle 231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,

Bardziej szczegółowo

Dostawa oprogramowania. Nr sprawy: ZP /15

Dostawa oprogramowania. Nr sprawy: ZP /15 ........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne

Bardziej szczegółowo

Wykresy statystyczne w PyroSim, jako narzędzie do prezentacji i weryfikacji symulacji scenariuszy pożarowych

Wykresy statystyczne w PyroSim, jako narzędzie do prezentacji i weryfikacji symulacji scenariuszy pożarowych Wykresy statystyczne w PyroSim, jako narzędzie do prezentacji i weryfikacji symulacji scenariuszy pożarowych 1. Wstęp: Program PyroSim posiada wiele narzędzi służących do prezentacji i weryfikacji wyników

Bardziej szczegółowo

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Dr inż. Jacek WARCHULSKI Dr inż. Marcin WARCHULSKI Mgr inż. Witold BUŻANTOWICZ Wojskowa Akademia Techniczna SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Streszczenie: W referacie przedstawiono możliwości

Bardziej szczegółowo

Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej.

Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej. Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej. Dział Zagadnienia Wymagania podstawowe Wymagania ponadpodstawowe Arkusz kalkulacyjny (Microsoft Excel i OpenOffice) Uruchomienie

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy

Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy 1 Podstawowym przeznaczeniem arkusza kalkulacyjnego jest najczęściej opracowanie danych liczbowych i prezentowanie ich formie graficznej. Ale formuła arkusza kalkulacyjnego jest na tyle elastyczna, że

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz.

Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz. 14.12.2005 r. Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz. 2 3.2. Implementacja w Excelu (VBA for

Bardziej szczegółowo

Modele symulacyjne PyroSim/FDS z wykorzystaniem rysunków CAD

Modele symulacyjne PyroSim/FDS z wykorzystaniem rysunków CAD Modele symulacyjne PyroSim/FDS z wykorzystaniem rysunków CAD Wstęp Obecnie praktycznie każdy z projektów budowlanych, jak i instalacyjnych, jest tworzony z wykorzystaniem rysunków wspomaganych komputerowo.

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS)

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Temat: Platforma Systemowa Wonderware cz. 2 przemysłowa baza danych,

Bardziej szczegółowo

Wstęp 7 Rozdział 1. OpenOffice.ux.pl Writer środowisko pracy 9

Wstęp 7 Rozdział 1. OpenOffice.ux.pl Writer środowisko pracy 9 Wstęp 7 Rozdział 1. OpenOffice.ux.pl Writer środowisko pracy 9 Uruchamianie edytora OpenOffice.ux.pl Writer 9 Dostosowywanie środowiska pracy 11 Menu Widok 14 Ustawienia dokumentu 16 Rozdział 2. OpenOffice

Bardziej szczegółowo

SysML rozpoczynanie projektu SysML001

SysML rozpoczynanie projektu SysML001 INSTRUKCJA LABORATORIUM Automatyzacja procesów przemysłowych. SysML rozpoczynanie projektu SysML001 Projekt systemu - zabawkowa katapulta Systemem, na którym będziemy uczyć się modelowania w SysML jest

Bardziej szczegółowo

Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu.

Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu. Część XIX C++ w Każda poznana do tej pory zmienna może przechowywać jedną liczbę. Jeśli zaczniemy pisać bardziej rozbudowane programy, okaże się to niewystarczające. Warto więc poznać zmienne, które mogą

Bardziej szczegółowo

opracował: mgr inż. Piotr Marchel Instrukcja obsługi programu Struktura

opracował: mgr inż. Piotr Marchel Instrukcja obsługi programu Struktura POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Bezpieczeństwo elektroenergetyczne i niezawodność zasilania laboratorium opracował: mgr inż. Piotr

Bardziej szczegółowo

Analiza zjawisk fraktalnych w finansowych szeregach czasowych *

Analiza zjawisk fraktalnych w finansowych szeregach czasowych * Zeszyty Naukowe nr 724 Akademii Ekonomicznej w Krakowie 2006 Katedra Informatyki Analiza zjawisk fraktalnych w finansowych szeregach czasowych * Streszczenie: W artykule zaproponowano ilościową metodę

Bardziej szczegółowo

Zapisywanie algorytmów w języku programowania

Zapisywanie algorytmów w języku programowania Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych

Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, Matematyka,

Bardziej szczegółowo

7. Identyfikacja defektów badanego obiektu

7. Identyfikacja defektów badanego obiektu 7. Identyfikacja defektów badanego obiektu Pierwszym krokiem na drodze do identyfikacji defektów było przygotowanie tzw. odcisku palca poszczególnych defektów. W tym celu został napisany program Gaussian

Bardziej szczegółowo

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012 Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Projektowanie baz danych za pomocą narzędzi CASE

Projektowanie baz danych za pomocą narzędzi CASE Projektowanie baz danych za pomocą narzędzi CASE Metody tworzenia systemów informatycznych w tym, także rozbudowanych baz danych są komputerowo wspomagane przez narzędzia CASE (ang. Computer Aided Software

Bardziej szczegółowo

Projektowania Układów Elektronicznych CAD Laboratorium

Projektowania Układów Elektronicznych CAD Laboratorium Projektowania Układów Elektronicznych CAD Laboratorium ĆWICZENIE NR 3 Temat: Symulacja układów cyfrowych. Ćwiczenie demonstruje podstawowe zasady analizy układów cyfrowych przy wykorzystaniu programu PSpice.

Bardziej szczegółowo

Zastosowanie CP-grafów do generacji siatek

Zastosowanie CP-grafów do generacji siatek Zastosowanie CP-grafów do generacji siatek 1 Cel zajęć Celem zajęć jest praktyczne zaznajomienie się z pojęciem CP-grafu i gramatyk grafowych, przy pomocy których można je tworzyć i nimi manipulować. Jako

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH:

WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH: WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH: Zasada podstawowa: Wykorzystujemy możliwie najmniej skomplikowaną formę wykresu, jeżeli to możliwe unikamy wykresów 3D (zaciemnianie treści), uwaga na kolory

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.

Bardziej szczegółowo

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych

SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range,

PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range, PLAN SZKOLEŃ FEMAP Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym z największych polskich

Bardziej szczegółowo

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z informatyki w gimnazjum klasa III Rok szkolny 2015/16

Wymagania edukacyjne na poszczególne oceny z informatyki w gimnazjum klasa III Rok szkolny 2015/16 Wymagania edukacyjne na poszczególne oceny z informatyki w gimnazjum klasa III Rok szkolny 2015/16 Internet i sieci Temat lekcji Wymagania programowe 6 5 4 3 2 1 Sieci komputerowe. Rodzaje sieci, topologie,

Bardziej szczegółowo

Laboratorium elementów automatyki i pomiarów w technologii chemicznej

Laboratorium elementów automatyki i pomiarów w technologii chemicznej POLITECHNIKA WROCŁAWSKA Wydziałowy Zakład Inżynierii Biomedycznej i Pomiarowej Laboratorium elementów automatyki i pomiarów w technologii chemicznej Instrukcja do ćwiczenia Regulacja dwupołożeniowa Wrocław

Bardziej szczegółowo

ABC Excel 2016 PL / Witold Wrotek. Gliwice, cop Spis treści

ABC Excel 2016 PL / Witold Wrotek. Gliwice, cop Spis treści ABC Excel 2016 PL / Witold Wrotek. Gliwice, cop. 2016 Spis treści 1 Arkusz kalkulacyjny 9 Za co lubimy arkusze kalkulacyjne 12 Excel 2016 12 Przez wygodę do efektywności 14 Podsumowanie 16 2 Uruchamianie

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: O czym mówią współczynniki funkcji liniowej? - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki

SCENARIUSZ LEKCJI. TEMAT LEKCJI: O czym mówią współczynniki funkcji liniowej? - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki SCENARIUSZ LEKCJI OPRACOWANY w RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE i OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Plan nauczania informatyki Opracował: mgr Daniel Starego

Plan nauczania informatyki Opracował: mgr Daniel Starego Obowiązuje od roku szkolnego 000/00 Plan nauczania informatyki Opracował: mgr Daniel Starego Szkoła podstawowa klasy IV VI Dział, tematyka L. godz. I rok II rok. TECHNIKA KOMPUTEROWA W ŻYCIU CZŁOWIEKA

Bardziej szczegółowo

- biegunowy(kołowy) - kursor wykonuje skok w kierunku tymczasowych linii konstrukcyjnych;

- biegunowy(kołowy) - kursor wykonuje skok w kierunku tymczasowych linii konstrukcyjnych; Ćwiczenie 2 I. Rysowanie precyzyjne Podczas tworzenia rysunków często jest potrzeba wskazania dokładnego punktu na rysunku. Program AutoCad proponuje nam wiele sposobów zwiększenia precyzji rysowania.

Bardziej szczegółowo

Rysowanie precyzyjne. Polecenie:

Rysowanie precyzyjne. Polecenie: 7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na

Bardziej szczegółowo

4.2. Program i jego konfiguracja

4.2. Program i jego konfiguracja 4.2. Program i jego konfiguracja Dopasowywanie wielkości widoku Podczas pracy z programem często dochodzi do sytuacji w której trzeba dopasować ilość zawartych danych w arkuszu do wielkości ekranu. Np.

Bardziej szczegółowo

EXCEL. Diagramy i wykresy w arkuszu lekcja numer 6. Instrukcja. dla Gimnazjum 36 - Ryszard Rogacz Strona 20

EXCEL. Diagramy i wykresy w arkuszu lekcja numer 6. Instrukcja. dla Gimnazjum 36 - Ryszard Rogacz Strona 20 Diagramy i wykresy w arkuszu lekcja numer 6 Tworzenie diagramów w arkuszu Excel nie jest sprawą skomplikowaną. Najbardziej czasochłonne jest przygotowanie danych. Utworzymy następujący diagram (wszystko

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych

Bardziej szczegółowo

Technologie informacyjne - wykład 12 -

Technologie informacyjne - wykład 12 - Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski

Bardziej szczegółowo

Efekt motyla i dziwne atraktory

Efekt motyla i dziwne atraktory O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny

Bardziej szczegółowo

Akademia Górniczo-Hutnicza

Akademia Górniczo-Hutnicza Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Kalibracja systemu wizyjnego z użyciem pakietu Matlab Kraków, 2011 1. Cel kalibracji Cel kalibracji stanowi wyznaczenie parametrów określających

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH.

METODA ELEMENTÓW SKOŃCZONYCH. METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.

Bardziej szczegółowo

MS EXCEL KURS DLA ZAAWANSOWANYCH Z WYKORZYSTANIEM VBA

MS EXCEL KURS DLA ZAAWANSOWANYCH Z WYKORZYSTANIEM VBA COGNITY Praktyczne Skuteczne Szkolenia i Konsultacje tel. 12 421 87 54 biuro@cognity.pl www.cognity.pl MS EXCEL KURS DLA ZAAWANSOWANYCH Z WYKORZYSTANIEM VBA C O G N I T Y SZKOLENIE MS EXCEL KURS ZAAWANSOWANYCH

Bardziej szczegółowo

4.2. Ustawienia programu

4.2. Ustawienia programu 4.2. Ustawienia programu Zmiana wielkości dokumentu Pracując w programie MS Excel 2010 niejednokrotnie doświadczysz sytuacji, w której otwarty przez Ciebie arkusz nie będzie mieścił się na ekranie monitora.

Bardziej szczegółowo

Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy

Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy Arkusz kalkulacyjny to program przeznaczony do wykonywania różnego rodzaju obliczeń oraz prezentowania i analizowania ich wyników.

Bardziej szczegółowo

FORMUŁY AUTOSUMOWANIE SUMA

FORMUŁY AUTOSUMOWANIE SUMA Wskazówki do wykonania Ćwiczenia 1, ocena sprawdzianu (Excel 2007) Autor: dr Mariusz Giero 1. Pobierz plik do pracy. W pracy należy wykonać obliczenia we wszystkich żółtych polach oraz utworzyć wykresy

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA DOM Z DRABINĄ I KOMINEM W 2D

RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA DOM Z DRABINĄ I KOMINEM W 2D Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Zakład Informacji Przestrzennej Inżynieria Środowiska INSTRUKCJA KOMPUTEROWA z Rysunku technicznego i geometrii wykreślnej RYSUNEK TECHNICZNY

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

REFERAT PRACY DYPLOMOWEJ Temat pracy: SUDOKU - Algorytmy tworzenia i rozwiązywania

REFERAT PRACY DYPLOMOWEJ Temat pracy: SUDOKU - Algorytmy tworzenia i rozwiązywania REFERAT PRACY DYPLOMOWEJ Temat pracy: SUDOKU - Algorytmy tworzenia i rozwiązywania Autor: Anna Nowak Promotor: dr inż. Jan Kowalski Kategorie: gra logiczna Słowa kluczowe: Sudoku, generowanie plansz, algorytmy,

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

Łukasz Januszkiewicz Technika antenowa

Łukasz Januszkiewicz Technika antenowa Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna dydaktyka bez ograniczeń zintegrowany rozwój Politechniki Łódzkiej zarządzanie Uczelnią,

Bardziej szczegółowo

Własności estymatora parametru lambda transformacji potęgowej. Janusz Górczyński, Andrzej Zieliński, Wojciech Zieliński

Własności estymatora parametru lambda transformacji potęgowej. Janusz Górczyński, Andrzej Zieliński, Wojciech Zieliński Własności estymatora parametru lambda transformacji potęgowej Janusz Górczyński, Andrzej Zieliński, Wojciech Zieliński 1. Wstęp Najczęstszym powodem transformowania zmiennej losowej jest jej normalizacja,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Slajd 1 Excel Slajd 2 Adresy względne i bezwzględne Jedną z najważniejszych spraw jest tzw. adresacja. Mówiliśmy

Bardziej szczegółowo

Technologia Informacyjna

Technologia Informacyjna Technologia Informacyjna dr inż. Paweł Myszkowski arkusz kalkulacyjny Microsoft Excel Arkusz kalkulacyjny Microsoft Excel Przechowywanie danych: Komórka autonomiczna jednostka organizacyjna, służąca do

Bardziej szczegółowo

SYSTEMY OPERACYJNE I SIECI KOMPUTEROWE

SYSTEMY OPERACYJNE I SIECI KOMPUTEROWE SYSTEMY OPERACYJNE I SIECI KOMPUTEROWE WINDOWS 1 SO i SK/WIN 006 Wydajność systemu 2 SO i SK/WIN Najprostszym sposobem na poprawienie wydajności systemu, jeżeli dysponujemy zbyt małą ilością pamięci RAM

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów technologicznych

Automatyzacja i robotyzacja procesów technologicznych Automatyzacja i robotyzacja procesów technologicznych Obsługa grawerki Laser 500 i programu LaserCut 5.3 Dominik Rzepka, dominik.rzepka@agh.edu.pl Celem projektu jest wykonanie grawerunku na pleksi oraz

Bardziej szczegółowo

3.1. Na dobry początek

3.1. Na dobry początek Klasa I 3.1. Na dobry początek Regulamin pracowni i przepisy BHP podczas pracy przy komputerze Wykorzystanie komputera we współczesnym świecie Zna regulamin pracowni i przestrzega go. Potrafi poprawnie

Bardziej szczegółowo

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) 1 1 Cel ćwiczenia Celem ćwiczenia jest rozwiązanie równań ruchu ciała (kuli) w ośrodku

Bardziej szczegółowo

Zaznaczanie komórek. Zaznaczenie pojedynczej komórki polega na kliknięciu na niej LPM

Zaznaczanie komórek. Zaznaczenie pojedynczej komórki polega na kliknięciu na niej LPM Zaznaczanie komórek Zaznaczenie pojedynczej komórki polega na kliknięciu na niej LPM Aby zaznaczyć blok komórek które leżą obok siebie należy trzymając wciśnięty LPM przesunąć kursor rozpoczynając od komórki

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Część I Rozpoczęcie pracy z usługami Reporting Services

Część I Rozpoczęcie pracy z usługami Reporting Services Spis treści Podziękowania... xi Wprowadzenie... xiii Część I Rozpoczęcie pracy z usługami Reporting Services 1 Wprowadzenie do usług Reporting Services... 3 Platforma raportowania... 3 Cykl życia raportu...

Bardziej szczegółowo

1. Arkusz kalkulacyjny (9) Za co lubimy arkusze kalkulacyjne (12) Excel 2013 (12) Podsumowanie (14) 2. Uruchamianie programu (15) Podsumowanie (18)

1. Arkusz kalkulacyjny (9) Za co lubimy arkusze kalkulacyjne (12) Excel 2013 (12) Podsumowanie (14) 2. Uruchamianie programu (15) Podsumowanie (18) 1. Arkusz kalkulacyjny (9) Za co lubimy arkusze kalkulacyjne (12) Excel 2013 (12) Podsumowanie (14) 2. Uruchamianie programu (15) Podsumowanie (18) 3. Okno programu (19) Aktywna komórka (24) Praca w chmurze

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Temat: Organizacja skoroszytów i arkuszy

Temat: Organizacja skoroszytów i arkuszy Temat: Organizacja skoroszytów i arkuszy Podstawowe informacje o skoroszycie Excel jest najczęściej wykorzystywany do tworzenia skoroszytów. Skoroszyt jest zbiorem informacji, które są przechowywane w

Bardziej szczegółowo

Podstawy Informatyki Wykład V

Podstawy Informatyki Wykład V Nie wytaczaj armaty by zabić komara Podstawy Informatyki Wykład V Grafika rastrowa Paint Copyright by Arkadiusz Rzucidło 1 Wprowadzenie - grafika rastrowa Grafika komputerowa tworzenie i przetwarzanie

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Oprogramowanie powiększające obraz na ekranie, zmniejszające zmęczenie wzroku. Podręcznik Szybkiego Startu

Oprogramowanie powiększające obraz na ekranie, zmniejszające zmęczenie wzroku. Podręcznik Szybkiego Startu Oprogramowanie powiększające obraz na ekranie, zmniejszające zmęczenie wzroku. Podręcznik Szybkiego Startu Witaj w ZoomText Express ZoomText Express to niedrogi i łatwy program powiększający obraz komputerowy.

Bardziej szczegółowo

Techniki wstawiania tabel

Techniki wstawiania tabel Tabele w Wordzie Tabela w Wordzie to uporządkowany układ komórek w postaci wierszy i kolumn, w które może być wpisywany tekst lub grafika. Każda komórka może być formatowana oddzielnie. Możemy wyrównywać

Bardziej szczegółowo

Sylabus Moduł 4: Grafika menedżerska i prezentacyjna

Sylabus Moduł 4: Grafika menedżerska i prezentacyjna Sylabus Moduł 4: Grafika menedżerska i prezentacyjna Niniejsze opracowanie przeznaczone jest dla osób zamierzających zdać egzamin ECDL (European Computer Driving Licence) na poziomie podstawowym. Publikacja

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Język UML w modelowaniu systemów informatycznych

Język UML w modelowaniu systemów informatycznych Język UML w modelowaniu systemów informatycznych dr hab. Bożena Woźna-Szcześniak Akademia im. Jan Długosza bwozna@gmail.com Wykład 10 Diagramy wdrożenia I Diagramy wdrożenia - stosowane do modelowania

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo