SPINTRONIKA. Przyszłość i prawie teraźniejszość

Wielkość: px
Rozpocząć pokaz od strony:

Download "SPINTRONIKA. Przyszłość i prawie teraźniejszość"

Transkrypt

1 SPINTRONIKA Przyszłość i prawie teraźniejszość

2 ZWYKŁA ELEKTRONIKA Wykorzystuje ładunek elektronu jako cechę użyteczną pozwalającą tworzyć rozmaite układy elektroniczne. Powszechnie sądzi się, że możliwości dalszego rozwoju elektroniki bazującej na krzemie i innych półprzewodnikach kończą się.

3 SPINTRONIKA Jest to bardzo młoda, interdyscyplinarna dziedzina (i modna). Jako konkurencja elektroniki rozwija się równolegle z elektroniką molekularną, bioelektroniką, elektronika polimerów. Wiadomo, dlaczego spintronika powstała i się rozwija. Ale co to właściwie jest?

4 SPINTRONIKA Wykorzystuje spin elektronu w tych samych celach, co zwykła elektronika ładunek. Najpowszechniej znany przykład: tzw gigantyczny magnetoopór. Innym przykładem może być spinowy tranzystor, którego pomysł został po raz pierwszy zaproponowany i opracowany teoretycznie w 1990 roku przez Supriyo Datta i Biswajit Das z Purdue University (USA).

5 Spintronika nie zamierza wyeliminować zwykłej elektroniki Procesor Elektronika bazuje na ładunku Dysk Działanie pamięci bazuje na orientacji SPINU w Ferromagnetyku Połączenie dwóch światów To cel SPINTRONIKI

6 Podstawy fizyczne spintroniki Co to jest spin i w jaki sposób można zmienić kierunek spinu? Czy własności materiału zależą od kierunku spinu? Co to jest magnetoopór?

7 Spin elektronu Z S detektor N atom srebra Doświadczenie Sterna -Gerlacha

8 Spin elektronu SPIN jest to wielkość w 100% kwantowa. Ma on reputację wielkości, której nie można zrozumieć. Analogia do klasycznego momentu pędu obrotu wokół własnej osi jest wysoce niedoskonała. Np. cząstka nie może stracić lub zyskać spinu, może jedynie zmienić jego kierunek. Jest to jedna z podstawowych cech cząstek (podobnie jak masa i ładunek). FERMIONY mają spin połówkowy (2n+1)½ (elektron, neutron, proton itd.) BOZONY mają spin całkowity (foton, pion itd.)

9 Spin elektronu Spin elektronu jest skwantowany i jego wartość wynosi: S 1 1 = s(s + 1) h = 1 + h 2 2 Gdzie s=½ jest spinową liczbą kwantową. Również rzut spinu na oś z (np. kierunek pola magnetycznego) jest skwantowany: S z = m s h Gdzie m s przyjmuje 2s+1 wartości, co znaczy że może wynosić +½ i -½.

10 Spiny mogą być różnie uporządkowane

11 Prąd elektryczny i prąd spinowy Elektryczny Jest prąd ładunku, ale spiny są nieuporządkowa ne Nie ma przepływu ładunku, ale jest strumień spinowy

12 Spinowy efekt Halla Assumption: we take the existence of the effect in ferromagnetic metals as experimental proof that electrons carrying a spin and associated magnetic moment experience a transverse force when they are moving in a longitudinal electric field, for any of the reasons listed above or others. D yakonov and Perel, 1971, Hirsch, 1999, Hu et al 2003 Murakami et al, 2003, Sinova et al, 2004, Shen, 2004

13 Jak można wpływać na kierunek spinu elektronu: pole magnetyczne; rozpraszanie na domieszkach magnetycznych; optycznie;

14 Pole magnetyczne W polu magnetycznym spin wykonuje precesję wokół kierunku pola z częstością Larmora; ω L B S ω L =gb N ds dt N = S B = γ S B = S ω L

15 Rozpraszanie na domieszkach magnetycznych e - W niektórych metalach z domieszkami magnetycznymi

16 Optycznie Magnetyzm generowany optycznie Koshihara PRL (1997) InMnAs ħω GaSb B (mt)

17 Magnetoopór Z magnetooporem mamy do czynienia, gdy opór zależy od pola magnetycznego. Współczynnik magnetooporu (H) zdefiniowany jest następująco: ρ ( 2 ) ( B ) = ρ(0)1+ HB Gdzie B indukcja pola magnetycznego, ρ(b) opór właściwy w polu magnetycznym, ρ(0) opór właściwy bez pola.

18 Magnetoopór Zależność oporu od pola magnetycznego pojawia się w zwykłych metalach i półprzewodnikach w silnych polach magnetycznych. Te materiały nie nadają się do stosowania w spintronice (chyba, że w innych, pomocniczych celach).

19 Anizotropowy magnetoopór W metalach ferromagnetycznych (szczególnie metalach przejściowych) opór zależy od kierunku prądu względem kierunku namagnesowania anizotropowy magnetoopór. Największy efekt w Ni 1-x Co x zx około 0.2 (6%) i permalloyuni 80 Fe 20 (4%).

20 Anizotropowy magnetoopór Anizotropowy magnetoopór wynika z obecności elektronów 3d. Namagnesowanie wpływa na orbitale 3d (sprzężenie spin - orbita). Orbitale zmieniają orientację w polu magnetycznym. http: / / ~phys533/notes / week14_lectures.pdf

21 Anizotropowy magnetoopór Elektrony są silniej rozpraszane gdy poruszają się równolegle do pola magnetycznego.

22 Efekt Kondo e - Już niewielka ilość domieszek magnetycznych w stopach ze zwykłymi metalami powoduje pojawienie się magnetooporu. Metal z domieszkami magnetycznymi

23 Magnetoopór: domieszki magnetyczne Znane są również półprzewodniki ferromagnetyczne (z domieszkami magnetycznymi). Sądzi się, że są to najważniejsze dla spintroniki materiały, gdyż łączą one zalety półprzewodników i ferromagnetyków.

24 Zagadnienia technologiczne spintroniki Nowe materiały magnetyczne; Sposoby wstrzykiwania spinu tak, aby polaryzacja nie zanikała zbyt szybko; Istniejące i przyszłe urządzenia spintroniczne.

25 Materiały: metale ferromagnetczne. Raczej nie są to nowe materiały magnetyczne, ale w spintronice są stosowane, gdyż: 1 Oddziaływanie wymiany powoduje, że koncentracja elektronów o spinie i spinie może być różna. 2. Mają anizotropowy magnetoopór.

26 Materiały: półprzewodniki magnetyczne

27 Materiały: półprzewodniki magnetyczne (perowskity)

28 Materiały: półprzewodniki magnetyczne (perowskity) Perowskity manganowe: A 1-x B x MnO 3, gdzie A to La, Nd lub Pr, natomiast B = Ca, Ba lub Sr. Materiały te, w pobliżu temperatury Curie wykazują tzw kolosalny magnetoopór (CMR) Top:Magnetization against temperature for La 0.75 Ca 0.25 MnO 3 for various field values Middle: resisitivity against temperature Bottom: magnetoresistance against temperature

29 Materiały: półprzewodniki magnetyczne (perowskity) Przewodzenie odbywa się w nich poprzez hopping między jonami Mn 3+ imn 4+, Momenty magnetyczne muszą być równoległe aby to było możliwe tzn. potrzebny jest stan ferromagnetyczny Top:Magnetization against temperature for La 0.75 Ca 0.25 MnO 3 for various field values Middle: resisitivity against temperature Bottom: magnetoresistance against temperature

30 Materiały: półprzewodniki magnetyczne (perowskity) W T c zachodzi przemiana izolator-metal Pole magnetyczne zwiększa uporządkowanie ferromagnetyczne opór maleje Top:Magnetization against temperature for La 0.75 Ca 0.25 MnO 3 for various field values Middle: resisitivity against temperature Bottom: magnetoresistance against temperature

31 Materiały: półprzewodniki magnetyczne (perowskity)

32 Materiały: półprzewodniki magnetyczne (EuX) We wczesnych latach 1960 badano związki typu: EuX, gdzie X = O, S, Se, Te, w których jon magnetyczny Eu 2+ zajmował położenia w każdym węźle sieci. inne materiały: GdS,EuSei spinele CdCr 2 Se 4.

33 Materiały: półprzewodniki magnetyczne (EuX) Półprzewodniki magnetyczne typu EuX, chociaż ciekawe, mają małe szanse na zastosowanie ich w spintronice, ponieważ: Temperatura Curie około wynosi 80K, trudna synteza; Struktura krystaliczna jest inna niż Si i GaAs; Małe nadzieje na poprawę własności.

34 Materiały: półprzewodniki magnetyczne (DMS) Lata 1980: Diluted Magnetic Semiconductors Są to półprzewodniki, w których atomy III grupy w związkach typu III-V są częściowo zastąpione przez jony magnetyczne, np.- Mn, Co. Mogą to być również półprzewodniki typu II-VI

35 Materiały: półprzewodniki magnetyczne (DMS) ferromagnetyzm za pośrednictwem dziur

36 Materiały: półprzewodniki magnetyczne (DMS) Uporządkowanie spinów pomiędzy jonami Mn następuje za pośrednictwem swobodnych dziur

37 Materiały: półprzewodniki magnetyczne (DMS) Problem polega na tym, że bardzo trudna jest synteza takich półprzewodników i jeszcze trudniej jest je domieszkować, tak aby otrzymać półprzewodniki magnetyczne typu n i p i aby można je było zastosować w elektronice.

38 Materiały: półprzewodniki magnetyczne (DMS) Mn jest akceptorem CB Mn 3d VB GaSb GaAs GaP GaN

39 Materiały: półprzewodniki magnetyczne (DMS) Inny problem utrudniający stosowanie półprzewodników magnetycznych DMS to bardzo niskie temperatury Curie.

40 Temperatura Curie Różne półprzewodniki magnetyczne zawierające 5% Mn GaN GaSb GaAs Temp pokojowa InAs ZnO Dietl et al., Science, (2000)

41 Przykład: (Ga,Mn)As Ga: [Ar] 3d 10 4s 2 4p 1 Mn: [Ar] 3d 5 4s 2 Mn 2+ ma lokalny moment magnetyczny odpowiadający spinowi S = 5/2 [Ohno i Matsukura, SSC 117, 179 (2001); Ohno, JMMM 200, 110 (1999)]

42 Ograniczenie: Tylko półprzewodnik typu p Przykład: (Ga,Mn)As

43 Przykład: (Ga,Mn)As x = Własności magnetyczne: T c ~ 60 K x = T c ~ 110 K [Ohno, JMMM 200, 110(1999)]

44 Materiały: półprzewodniki magnetyczne Z przewidywanych temperatur Curie wynika, że nadzieje budzą GaN oraz ZnO. I rzeczywiście, potwierdzono ostatnio, że GaMnN jest ferromagnetykiem w temperaturze około 300K (obliczona temperatura Curie = 940K).

45 Materiały: półprzewodniki magnetyczne Intensywne prace toczą się nad zastosowaniem krzemu w urządzeniach spintronicznych. Krzemu o właściwościach magnetycznych. Badania prowadzone przez Vincenta LaBella i Martina Bolduc, pokazały, że Si implantowany Mn (koncentracja do 1%) ma właściwości magnetyczne aż do 127 o C

46 Materiały: półprzewodniki magnetyczne Ciekawostka: niezwykle ciekawą grupę materiałów magnetycznych stanowią niedawno odkryte materiały, które nie zawierają pierwiastków magnetycznych, ale wykazują spontaniczne namagnesowanie poniżej 300K. Należą do nich (Ca,La)B 6 oraz polimeryzowany C 60.

47 Wstrzykiwanie i manipulowanie spinem Aby urządzenia spintroniczne były użyteczne, musi istnieć możliwość wstrzykiwania i kontrolowania spinu. Najlepiej znanym źródłem elektronów o spolaryzowanym spinie są metale ferromagnetyczne.

48 Wstrzykiwanie i manipulowanie spinem Wstrzykiwanie spinu z metalu do metalu

49 Wstrzykiwanie i manipulowanie spinem Najprostszą i wydającą się oczywistą metodą jest wstrzykiwanie elektronów z ferromagnetyka (w którym pewien kierunek spinu dominuje) do niemagnetycznego półprzewodnika poprzez kontakt elektryczny. Nic podobnego: efektywność jest rzędu kilku %. Zbyt duże jest niedopasowanie pasm energetycznych, a co za tym idzie energii nośników oraz ich koncentracji.

50 Inny problem: Relaksacja Uporządkowanie spinów (jak i każde inne) zanika w czasie.

51 Wstrzykiwanie i manipulowanie spinem Lepszym rozwiązaniem jest stworzenie złącz ferromagnetycznego metalu i półprzewodnika, takich przez które elektrony tunelują. E F ferromagnetyk

52 Prąd spinowy w złączu Ferromagnetyk-Tlenek- Półprzewodnik W przypadku cienkich warstw tlenku, elektrony w warstwie inwersyjnej są sprzężone z ferromagnetykiem w sposób zależny od spinu.

53 Ferromagnetyzm wywołany światłem W przypadku heterostruktur możemy mieć do czynienia z takim zjawiskiem: AlGaMnSb AlGaMnSb InAs InAs hν Bez światła E g (InAs) < hν < E g (AlGaMnSb) Munekata et al, PRL 78, 4617 (1997) (InMnAs)

54 Urządzenia i potencjalne urządzenia spintroniczne

55 Nagroda Nobla 2007 Peter Grünberg of Forschungszentrum Jülich GmbH Institut für Festkkörperforschung in Germany Albert Fert of Unité Mixte de Physique CNRS/ THALES Université Paris-Sud in France.

56 R/R H = (R 0 -R H )/R H Grünberg et al. (1989) trilayer system Fe/Cr/Fe Fert et al. (1988) Im więcej warstw, tym większa zmiana oporu

57 Gigantyczny magnetoopór w metalach: początki spintroniki. Opór układów wielowarstwowych złożonych z magnetyka przedzielonego warstwą niemagnetyka silnie zależy od pola magnetycznego.

58 Gigantyczny magnetoopór w metalach Źródłem fizycznym GMR jest zależność rozpraszania elektronów od spinu. Elektrony Elektrony Warstwa niemagnetyczna (np. Cu) Elektrony o danej orientacji spinu są silnie rozpraszane w warstwie o pewnym kierunku namagnesowania, a słabo w warstwie o przeciwnym namagnesowaniu.

59 Gigantyczny magnetoopór w metalach Sprzężenie ferromagnetyczne warstw Elektrony o spinie mogą przepływać przez układ Sprzężenie antyferromagnetyczne warstw Elektrony o spinie nie mogą przepływać przez układ [Prinz, Science 282, 1660 (1998)]

60 Gigantyczny magnetoopór w metalach Różnica oporów, dla układów wielowarstwowych może sięgać kilkudziesięciu procent.

61 Gigantyczny magnetoopór w metalach Gdy prąd płynie równolegle do warstw, jest podobnie: układ ma mały opór, gdy warstwy są namagnesowane zgodnie.

62 Gigantyczny magnetoopór w metalach Układ ma duży opór, gdy warstwy są namagnesowane przeciwnie.

63 Gigantyczny magnetoopór w metalach GMR występuje również, w różnych innych geometriach. Warunek, który musi być spełniony: Warstwy niemagnetyczne muszą być wąskie (węższe niż droga swobodna elektronu). Schematic representation of the array of nanowires in an insulating polymer matrix

64 Tunelowy magnetoopór (TMR) Dwie warstwy ferromagnetyczne są oddzielone od siebie cienką warstwą izolatora. Tunelowanie zachodzi zazwyczaj bez zmiany orientacji spinu. Większość elektronów na poziomie Fermiego (te głównie tunelują) ferromagnetyka ma jeden kierunek spinu, zatem prąd tunelowy jest spolaryzowany pod tym względem. E F ferromagnetyk

65 Tunelowy magnetoopór (TMR) Opór złącza tunelowego też zależy od tego, czy ferromagnetyczne warstwy są namagnesowane zgodnie, czy przeciwnie (mechanizm fizyczny jest podobny do mechanizmu odpowiedzialnego za GMR). Metale przejściowe: TMR 65% w T=4.2K, 40% w temperaturze pokojowej

66 Tunelowy magnetoopór (TMR) W złączu z MgO jako barierą magnetoopór wynosił 230%

67 TMR: przykłady Gigantic effect with halfmetallic ferromagnets La 2/3 Sr 1/3 MnO 3 /SrTiO % Recent successes at room temperature Parkin et al, Nature Materials 3, 862 (Dec 2004) 120% to 220% at room temperature CoFe/MgO/CoFe (001) Yuasa et al., Nature Materials 3, 868 (Dec 2004) 180% at room temperature Fe/MgO/Fe M.Bowen et al., Appl. Phys. Lett. 82, 233 (2003) Djayaprawira et al, Appl. Phys. Lett., Feb.(2005) 230% at room temperature CoFeB/MgO/CoFeB (001)

68 Mamy zatem dużą zmianę oporu w zależności od orientacji namagnesowania warstw. Jeśli będziemy umieli sterować namagnesowaniem, to będziemy mieć urządzenie spintroniczne: tzw zawór spinowy (spin valve)

69 Można to robić tak: Schematic cross-section of a simple exchange-biased spinvalve layered structure Zewnętrzne pole magnetyczne zmienia kierunek F magnetically very soft namagnesowania tylko jednej warstwy, druga, ma namagnesowanie stałe (albo jakoś zakotwiczone poprzez podłoże, albo duża koercja) pole zewnętrzne zmienia względną orientację namagnesowania warstw. Schematic curves of the magnetic moment (a) and resistance (b of a simple exchange-biased spinvalve layered structure

70 Zastosowania GMR Pomiar pola magnetycznego w sterownikach dysków, magnetometrach, kompasach Detekcja położenia Sensor mierzy zmianę pola magnetycznego związaną z przemieszczeniem czegoś, co wytwarza znane pole. Np. magnes na wale silnika spalinowego (obecnie stosuje się sondy hallowskie). Comparison of performance of magnetic-field sensors based on GMR and AMR effects

71 Twarde dyski Od głowic indukcyjnych, do zaawansowanych głowic GMR.

72 Twarde dyski: historia pierwszy twardy dysk o nowoczesnej konstrukcji: model IBM 3340 "Winchester o pojemności 60 MB; 1983: pierwsza 3.5" dyskietka; 1990: pierwsze magnetorezystywne głowice;

73 1. Głowice indukcyjne (1986 ~ 94) Lubricant ~ 20 Å Carbon overcoat ~ 275 Å Magnetic layer~500 Å CoX, CoCrY NiP~500 Å Al substrate

74 2. Głowice magnetorezystywne (MR : 1991 ~ 2000) Bazują na anizotropowym magnetooporze Wprowadzone przez IBM w R/R=2~5%,c daje 1~5Gb/sq.inch R=R 0 + Rcos 2 θ

75 2. Głowice magnetorezystywne (MR : 1991 ~ 2000) Typowy materiał: stopy Ni- Fe

76 3. Głowice z gigantycznym magnetooporem (od 1997) R/R=10~50%, co daje 10Gb/sq.inch

77 Głowica: zapis podłużny S. Khizroev and D. Litvinov, J.A.P Vol 95,Num 9, May 2004

78 Głowica: zapis poprzeczny S. Khizroev and D. Litvinov, J.A.P Vol 95,Num 9, May 2004 The first one use perpendicular is Toshiba s mini hard drive MK8007GAH, which will be used in IPod, 80GB 1.8in

79 Wymagania materiałowe Lubricant ~ 20 Å Carbon overcoat ~ 70 Å Top magnetic layer ~ 100 Å Spacer layer ~ 0-20 Å Bottom magnetic layer ~ 100 Å Intermediate layer ~ 50 Å Under layer ~ 100 Å Seed layer ~ 100 Å Substrate Jako magnetyk stosuje się np. CoCrPtTa, CoCrPtB Magnetyk o małym ziarnie krystalicznym Przekrój przez materiał głowicy

80 Porównanie

81 Druga strona medalu: materiał dysku

82 Wielkość bitu

83 Materiały twardego dysku Przerwa między powierzchnią dysku a głowicą wynosi około 15 nm. Gładkość powierzchni: kilka nanometrów. Tradycyjnie podłożem jest Al-Mg z warstwą Ni-P. Obecnie używa się również szkła. Na podłoże nanosi się Cr lub stop Cr-V aby zapewnić odpowiednią orientację krystalograficzną warstwy magnetycznej. Warstwa magnetyczna: stop Co o grubości10~30nm.

84 Materiały twardego dysku Topography AFM picture RMS is about 8-12Å MFM image, dark and white Represents the bit information

85 Gdzie jest granica możliwości? Każdy bit zawiera setki ziaren krystalicznych. Zapis magnetyczny polega na uśrednieniu namagnesowania wszystkich ziaren. Gdy bity maleją, ziarna też muszą. W końcu stają się super paramagnetyczne.

86 Superparamagnetyzm Superparamagnetyzm polega na tym, że magnetyczna informacja zawarta w ziarnie ulega, z pomocą energii termicznej, spontanicznemu przełączaniu. Niech: M s ----namagnesowanie nasycenia; V --- objetość ziarna; K u V---magnetyczna anizotropia ziarna; Aby zachować informację dłużej niż10 lat, K u V>40~50kT. Oznacza to, że gdy V maleje, K u musi rosnąć.

87 Superparamagnetyzm Sposoby walki z superparamagnetyzmem: Magnetyczna anizotropia może być zwiększona poprzez wytwarzanie materiałów o małym rozrzucie wielkości ziarna. Zapis prostopadły pozwala na użycie większego pola zapisu. Zapis wspomagany termicznie (lokalne ogrzewanie materiału dysku za pomocą lasera) obniża pole koercji.

88 Co dalej? Np. zapis informacji w jedno-domenowej cząstce magnetycznej. Sieć punktów odległych o 50 nm-daje 250 Gb /sq.inch http: / /eltweb.mit.edu /3.063/lecturenotes /Lec pdf

89 Co dalej? Balistyczny magnetoopór może mieć R/R ponad 300%. Edward Price, CMRR& UCSD Physics.

90 MRAM MRAM wykorzystuje złącza tunelowe TMR do zapisu informacji, przy czym 0 odpowiada najczęściej równoległemu namagnesowaniu, a 1 antyrównoległemu.

Przyszłość i prawie teraźniejszość ZWYKŁA ELEKTRONIKA

Przyszłość i prawie teraźniejszość ZWYKŁA ELEKTRONIKA SPINTRONIKA Przyszłość i prawie teraźniejszość ZWYKŁA ELEKTRONIKA Wykorzystuje ładunek elektronu jako cechę użyteczną pozwalającą tworzyć rozmaite układy elektroniczne. Przykładów istnieje mnóstwo. Powszechnie

Bardziej szczegółowo

Badanie czujników pola magnetycznego wykorzystujących zjawisko gigantycznego magnetooporu

Badanie czujników pola magnetycznego wykorzystujących zjawisko gigantycznego magnetooporu Badanie czujników pola magnetycznego wykorzystujących zjawisko gigantycznego magnetooporu Uczestnicy: Łukasz Grabowski Barbara Latacz Kamil Mrzygłód Michał Papaj Opiekunowie naukowi: prof. dr hab. Jan

Bardziej szczegółowo

Siła magnetyczna działająca na przewodnik

Siła magnetyczna działająca na przewodnik Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach

Bardziej szczegółowo

Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej

Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej Monika Cecot, Witold Skowroński, Sławomir Ziętek, Tomasz Stobiecki Wisła, 13.09.2016 Plan prezentacji Spinowy efekt Halla

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Zastosowanie GMR w dyskach twardych HDD i pamięci MRAM

Zastosowanie GMR w dyskach twardych HDD i pamięci MRAM Część 3 Zastosowanie GMR w dyskach twardych HDD i pamięci MRAM wiadomości wstępne krótka historia dysków od czasu odkrycia GMR rozwój głowic MR i GMR odczyt danych, ogólna budowa głowicy budowa i działanie

Bardziej szczegółowo

Zapis i przekazywanie informacji

Zapis i przekazywanie informacji Zapis i przekazywanie informacji Szybkość przekazywania informacji 3*10 9 m/s elektroniczne: telegraf, radio 3*10 9 m/s optyczne: semafory, ogniska, sygnały dymne 300 m/s dźwiękowe: bębny, rogi, gwizdki

Bardziej szczegółowo

30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych

30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych Wykład XII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu

Bardziej szczegółowo

Wykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład XIII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Teraźniejszość i przyszłość

Teraźniejszość i przyszłość SPINTRONIKA Teraźniejszość i przyszłość Wstęp Elektrony mają i ładunek, i spin, ale do niedawna obie właściwości rozważano i wykorzystywano wyłącznie oddzielnie. Konwencjonalna elektronika wykorzystuje

Bardziej szczegółowo

Własności magnetyczne materii

Własności magnetyczne materii Własności magnetyczne materii Ośrodek materialny wypełniający solenoid (lub cewkę) wpływa na wartość indukcji magnetycznej, strumienia, a także współczynnika indukcji własnej solenoidu. Trzy rodzaje materiałów:

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm

Wykład FIZYKA II. 5. Magnetyzm Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 5. Magnetyzm.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Własności magnetyczne materii

Własności magnetyczne materii Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego

Bardziej szczegółowo

Podstawy Mikroelektroniki

Podstawy Mikroelektroniki Akademia Górniczo-Hutnicza w Krakowie Wydział IEiT Katedra Elektroniki Podstawy Mikroelektroniki Temat ćwiczenia: Nr ćwiczenia 1 Pomiary charakterystyk magnetoelektrycznych elementów spintronicznych-wpływ

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

MATERIAŁY XXXVI ZJAZDU FIZYKÓW POLSKICH TORUŃ 2001 WYKŁADY PLENARNE. Spin w elektronice. Józef Barnaś

MATERIAŁY XXXVI ZJAZDU FIZYKÓW POLSKICH TORUŃ 2001 WYKŁADY PLENARNE. Spin w elektronice. Józef Barnaś Spin w elektronice Józef Barnaś Wydział Fizyki, Uniwersytet im. Adama Mickiewicza, Poznań oraz Instytut Fizyki Molekularnej PAN, Poznań 1. Wstęp W konwencjonalnych układach elektronicznych aktywnym elementem

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Oddziaływania w magnetykach

Oddziaływania w magnetykach 9 Oddziaływania w magnetykach Zjawiska dia- i paramagnetyzmu są odpowiedzią indywidualnych (nieskorelowanych) jonów dia- i paramagnetycznych na działanie pola magnetycznego. Z drugiej strony spontaniczne

Bardziej szczegółowo

Nagroda Nobla 2007 efekt GMR

Nagroda Nobla 2007 efekt GMR Nagroda Nobla 2007 efekt GMR Wykład wygłoszony na AGH przez prof. Józefa Barnasia z Uniwersytetu im. A. Mickiewicza z Poznania w styczniu 2008. Prof. J. Barnaś jest współautorem wielu wspólnych publikacji

Bardziej szczegółowo

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują

Bardziej szczegółowo

Magnetyczny Rezonans Jądrowy (NMR)

Magnetyczny Rezonans Jądrowy (NMR) Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Laureaci Nagrody Nobla z fizyki w 2007 r.

Laureaci Nagrody Nobla z fizyki w 2007 r. Witold Szmaja, Leszek Wojtczak Nagroda Nobla z fizyki w 2007 r. zjawisko gigantycznego magnetooporu i jego praktyczne wykorzystanie Łódź 2008 Laureaci Nagrody Nobla z fizyki w 2007 r. Peter Grünberg (Centrum

Bardziej szczegółowo

NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były

NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były FIZYKA I TECHNIKA NISKICH TEMPERATUR NADPRZEWODNICTWO NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli nadprzewodnictwo w złożonym tlenku La 2 CuO 4 (tlenku miedziowo-lantanowym,

Bardziej szczegółowo

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO

WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO Moment magnetyczny atomu Polaryzacja magnetyczna Podatność magnetyczna i namagnesowanie Klasyfikacja materiałów magnetycznych Diamagnetyzm, paramagnetyzm, ferromagnetyzm

Bardziej szczegółowo

Przyrządy półprzewodnikowe

Przyrządy półprzewodnikowe Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

Materiały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych. Jacek Mostowicz

Materiały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych. Jacek Mostowicz Materiały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych Jacek Mostowicz Plan seminarium Wstęp Materiały magnetycznie miękkie Podstawowe pojęcia Prądy wirowe Lepkość magnetyczna

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

S r Spin wewnętrzny moment pędu (kręt) cząstki kwantowej. m s magnetyczna spinowa liczba kwantowa. Spin to kręt wewnętrzny (kwantowy)

S r Spin wewnętrzny moment pędu (kręt) cząstki kwantowej. m s magnetyczna spinowa liczba kwantowa. Spin to kręt wewnętrzny (kwantowy) 3.7. Spin wewnętrzny moment pędu (kręt) cząstki kwantowej Wynika z praw relatywistycznej mechaniki kwantowej z równania Diraca. Reguły kwantowania: S = h s ( s +1) s spinowa liczba kwantowa, r S z = m

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

i elementy z półprzewodników homogenicznych część II

i elementy z półprzewodników homogenicznych część II Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Równanie Shockley a. Potencjał wbudowany

Równanie Shockley a. Potencjał wbudowany Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i

Bardziej szczegółowo

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem

Bardziej szczegółowo

Zjawisko magnetooporu

Zjawisko magnetooporu Maciej Misiorny Seminarium do przedmiotu Teoria Ciała Stałego Wydział Fizyki UAM Zakład Fizyki Mezoskopowej Poznań, 31.03.2005 Celem tego seminarium jest zaprezentowanie podstaw teoretycznych zjawiska

Bardziej szczegółowo

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne

Bardziej szczegółowo

Przejścia kwantowe w półprzewodnikach (kryształach)

Przejścia kwantowe w półprzewodnikach (kryształach) Przejścia kwantowe w półprzewodnikach (kryształach) Rozpraszanie na nieruchomej sieci krystalicznej (elektronów, neutronów, fotonów) zwykłe odbicie Bragga (płaszczyzny krystaliczne odgrywają rolę rys siatki

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2. Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze

Bardziej szczegółowo

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA 3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony

Bardziej szczegółowo

Spintronika fotonika: analogie

Spintronika fotonika: analogie : analogie Paweł Wójcik, Maciej Wołoszyn, Bartłomiej Spisak W oparciu o wykład wygłoszony podczas konferencji 2nd World Congress of Smart Materials, Singapur, March 2-6, 2016 Wprowadzenie dla niespecjalistów

Bardziej szczegółowo

Przyrządy i układy półprzewodnikowe

Przyrządy i układy półprzewodnikowe Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Teoria pasmowa ciał stałych Zastosowanie półprzewodników

Teoria pasmowa ciał stałych Zastosowanie półprzewodników Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa

Bardziej szczegółowo

IV. TRANZYSTOR POLOWY

IV. TRANZYSTOR POLOWY 1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z

Bardziej szczegółowo

Czy warto jeszcze badad efekt magnetokaloryczny? O nowym kierunku prac nad magnetycznym chłodzeniem

Czy warto jeszcze badad efekt magnetokaloryczny? O nowym kierunku prac nad magnetycznym chłodzeniem Czy warto jeszcze badad efekt magnetokaloryczny? O nowym kierunku prac nad magnetycznym chłodzeniem Piotr Konieczny Zakład Materiałów Magnetycznych i Nanostruktur NZ34 Kraków 22.06.2017 Efekt magnetokaloryczny

Bardziej szczegółowo

Elektronika spinowa i główne kierunki jej rozwoju

Elektronika spinowa i główne kierunki jej rozwoju NAUKA 4/2012 87-99 JÓZEF BARNAŚ Elektronika spinowa i główne kierunki jej rozwoju Od dawna już wiadomo, że prąd elektryczny płynący w układach przewodzących, na przykład w metalach lub półprzewodnikach,

Bardziej szczegółowo

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4 MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych

Przewodnictwo elektryczne ciał stałych Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Henryk Szymczak Instytut Fizyki PAN

Henryk Szymczak Instytut Fizyki PAN NNnnNowe kwazicząstki w magnetykach Henryk Szymczak Instytut Fizyki PAN Zjazd Fizyków 2015 1 Enrico Fermi: nigdy nie należy lekceważyć przyjemności, jaką każdy z nas odczuwa, słysząc coś, o czym już wie

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Pole magnetyczne w ośrodku materialnym

Pole magnetyczne w ośrodku materialnym Pole magnetyczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pole magnetyczne w materii

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

Stanowisko do pomiaru magnetorezystancji elementu odczytowego głowicy dysku twardego

Stanowisko do pomiaru magnetorezystancji elementu odczytowego głowicy dysku twardego Stanowisko do pomiaru magnetorezystancji elementu odczytowego głowicy dysku twardego Opracował : Witold Skowroński Konsultacja: prof. Tomasz Stobiecki Dr Maciej Czapkiewicz Dr inż. Mirosław Żołądź 1. Opis

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16 20 Półprzewodniki Materiały, w których

Bardziej szczegółowo

Badanie charakterystyki diody

Badanie charakterystyki diody Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,

Bardziej szczegółowo

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

Jak zmieścid 50 TB na twardym dysku, czyli o fizyce zapisu informacji. Michał Krupioski

Jak zmieścid 50 TB na twardym dysku, czyli o fizyce zapisu informacji. Michał Krupioski Jak zmieścid 50 TB na twardym dysku, czyli o fizyce zapisu informacji Michał Krupioski Instytut Fizyki Jądrowej im. H. Niewodniczaoskiego, 2010 O czym jest ta prezentacja? Jak działają twarde dyski? Jak

Bardziej szczegółowo

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1)

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) 1. Wymagane zagadnienia - klasyfikacja rodzajów magnetyzmu - własności magnetyczne ciał stałych, wpływ temperatury - atomistyczna

Bardziej szczegółowo

Półprzewodniki samoistne. Struktura krystaliczna

Półprzewodniki samoistne. Struktura krystaliczna Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki Wykład dwudziesty piąty 6 czerwca 2017 Z poprzedniego wykładu Prawo Curie i Curie-Weissa Model paramagnetyzmu

Bardziej szczegółowo

Menu. Badające rozproszenie światła,

Menu. Badające rozproszenie światła, Menu Badające rozproszenie światła, Instrumenty badające pole magnetyczne Ziemi Pole magnetyczne Ziemi mierzy się za pomocą magnetometrów. Instrumenty badające pole magnetyczne Ziemi Rodzaje magnetometrów:»

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Pytania z przedmiotu Inżynieria materiałowa

Pytania z przedmiotu Inżynieria materiałowa Pytania z przedmiotu Inżynieria materiałowa 1.Podział materiałów elektrotechnicznych 2. Potencjał elektryczny, różnica potencjałów 3. Związek pomiędzy potencjałem i natężeniem pola elektrycznego 4. Przewodzenie

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo