Fizyka ciała stałego i promieniotwórczość

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka ciała stałego i promieniotwórczość"

Transkrypt

1 Fizyka ciała stałego i promieniotwórczość Ciała stałe Kryształy Ciała bezpostaciowe amorficzne Polimery Własności: kruchość, spręŝystość, plastyczność Teoria ciała stałego: fizyka kwantowa i statystyczna Krystalografia Nauka o symetrii kryształów opiera się na: analizie rentgenowskiej, analizie neutronowej, badaniach wpływu procesów technologicznych na własności strukturalne kryształów. Kryształ - ciało stałe o periodycznym ułoŝeniu atomów lub cząstek: monokryształ, (bez zrostów), polikryształ Symetrie kryształów: obrót, odbicie, translacja lub ich suma Stopień symetrii (liczba operacji ), oś symetrii 2,3,4 i 6 (obrót o 180 o, 120 o, 90 o,60 o ), płaszczyzna symetrii ( odbicie) 14 nie - równowaŝnych modeli geometrycznych róŝniących się symetrią

2 Rodzaje kryształów Kryształy metaliczne (o liczbie upakowania 12 zajmują 74,1 % przestrzeni, o liczbie upakowania 8-68,1%) Stopy: 1. w kaŝdym składzie identyczne atomy ( róŝnice mniejsze niŝ 15%), te same wartościowości krystalizujące w tym samym układzie (złoto i srebro, miedź i nikiel) 2. inaczej miedź (rozpuszcza 60% cynku) i cynk (rozpuszcza 2,3% miedzi) 3. Stopy międzywęzłowe: stal = węgiel i Ŝelazo Kryształy jonowe związane silnymi siłami elektrostatycznymi twarde o wysokiej temperaturze topnienia, ściśliwe (NaCl, KCl,KBr,MgO, CaO,MgS) Rodzaje kryształów Kryształy walencyjne (złoŝone z tych samych atomów) twarde o wysokiej temperaturze topnienia opis daje mechanika kwantowa, zhybrydyzowane chmury elektronów (diament, krzem, cyna szara) Kryształy molekularne atomy nieaktywne chemicznie związane są słabymi siłami Van der Waalsa miękkie: siła wiązania maleje z 7 potęgą odległości organiczne o niskiej temperaturze topnienia Wiązanie wodorowe lód twarde, ciepło właściwe wody 1,009 cal/g.kelwin, lodu 0,49 cal/g.kelwin, Gęstość lodu mniejsza o 9% niŝ wody, mała gęstość upakowania, kaŝda molekuła ma tylko 4 sąsiadów eci krystaliczne

3 Rodzaje sieci krystalicznej Rodzaje sieci krystalicznej cd Rodzaje sieci krystalicznej cd.

4 Układy krystalograficzne trójskośny a, b, c, α, β, γ jednoskośny a, b, c, α = γ = 90, β rombowy a, b, c, α = β = γ = 90 tetragonalny a, a, c, α = β = γ = 90 heksagonalny a, a, c, α = β = 90, γ = 120 regularny a, a, a, α = β = γ = 90 Upakowanie atomów w sieci krystalicznej Zwarte rozmieszczenie kul ścisłe upakowanie sześcienne (Cu, Ag,Au, CH 4, HCl ścisłe upakowanie naprzemienne Mg, Zn Dziury w warstwach Struktury węgla- diament i grafit

5 Struktury węgla fullereny Defekty kryształów Brak atomu (defekt Schottky ego rośnie z temperaturą), Fonony paczki fal związane z drganiami sieci, Swobodne elektrony i dziury, Ekscytony fotony pobudzonych atomów-przenoszą energię nie przenoszą ładunku, Obce atomy dodatkowe poziomy energetyczne, luminiscencja, Dyslokacje - niedoskonałości wzdłuŝ linii-dyslokacje krawędzioweiśrubowe efekt fałdy na dywanie Kwantowa teoria ciała stałego Zasada ekwipartycji energii mówi, Ŝe na jeden stopień swobody przypada energia = ½ kt swobodne molekuły: E=3/2 NkT=3/2RT=c V T stąd c V =3/2R=3 cal/mol.kelwin W ciele stałym oprócz energii kinetycznej jest jeszcze energia potencjalna prawo Dulonga-Petita c V =2R=6 cal/mol.kelwin Wzór Einsteina 2 θ θ T 3 R e T h ν c v = θ = θ 2 k T 1 e θ gdy T 0 c v 0 T Teoria kwantowa Debye a pozwala np. na wyliczenie ciepła właściwego ciał stałych c v =αt+βt 3

6 Półprzewodniki Przewodnictwo rośnie wraz z temperaturą, w niskich temperaturach półprzewodniki są izolatorami - emisja termiczna przenosi elektrony do pasma przewodnictwa, zaś w paśmie walencyjnym powstają dziury, przewodność :10-8 <σ<10 6 S/m Półprzewodniki samoistne (bez domieszek): german i krzem, (4-wartościowe 4 elektrony ) Półprzewodniki domieszkowe: (arsen i antymon) nadmiar donorów- półprzewodnik n, (gal i ind) nadmiar akceptorów (dziur)- półprzewodnik p Koncentracja nośników prądu : n=p=at 3/2 exp(-e g /2kT) Przykłady: Ge, GaAs, GaP itp. W gazie elektronowym nie ma zaleŝności energii kinetycznej elektronów od temperatury MODEL PASMOWY Teoria pasmowa jest to teoria kwantowa opisująca stany energetyczne elektronów w krysztale. W odróŝnieniu od atomów, w których dozwolone stany energetyczne elektronów stanowią zbiór poziomów dyskretnych, dozwolone elektronowe stany energetyczne w kryształach mają charakter pasm o szerokości kilku elektronowoltów. W Pasmo przewodnictwa Pasmo zabronione W g Pasmo podstawowe X MODEL PASMOWY Przewodnik Półprzewodnik Izolator Pasmo walencyjne Pasmo zabronione Pasmo przewodnictwa

7 Półprzewodniki samoistne Ciała stałe ze względu na ich właściwości elektryczne dzielimy na trzy grupy: 1. przewodniki, w których stany zapełnione sąsiadują bezpośrednio ze stanami pustymi (np. metale), 2. izolatory, w których najmniejsza energetyczna odległość między stanami zapełnionymi elektronami i pustymi zwana przerwą energetyczną (Eg) jest duŝa, tzn. większa niŝ 2 ev (np. dla diamentu wynosi ona 5,4 ev), 3. Półprzewodniki, w których przerwa energetyczna jest mniejsza niŝ 2 ev (np. dla krzemu wynosi 1,1 ev). Na rys. przedstawiono schematycznie strukturę pasmową tych materiałów oraz ich obsadzenie elektronami w temperaturze zera bezwzględnego. W T >0 K Generacja Foton W pr W c Rekombinacja Foton W v 0 L X Półprzewodnik typu n i typu p (półprzewodniki niesamoistne) Półprzewodnik niesamoistny jest wówczas, gdy w sieci krystalicznej monokryształu zamiast atomów pierwiastka materiału półprzewodnikowego znajduje się inny atom (np. w sieci krystalicznej krzemu znajduje się fosfor). Powstaje wówczas tzw. półprzewodnik domieszkowany, a ten inny atom nazywamy domieszką. RozróŜniamy dwa rodzaje domieszek: donorową i akceptorową. Jeśli na skutek nieregularności sieci krystalicznej w półprzewodniku będą przewaŝać nośniki typu dziurowego, to półprzewodnik taki nazywać będziemy półprzewodnikiem typu p (niedomiarowy). A gdy będą przewaŝać nośniki elektronowe, będziemy nazywać je półprzewodnikami typu n (nadmiarowy).

8 Półprzewodnik typu n uzyskuje się przez dodanie w procesie wzrostu kryształu krzemu domieszki pierwiastka pięciowartościowego (np. antymon, fosfor). Niektóre atomy krzemu zostaną zastąpione w sieci krystalicznej atomami domieszki, zwanymi donorami W Pasmo przewodnictwa (nadmiar elektronów) Elektron nadmiarowy P +5 Poziom donorowy Elektrony Pasmo podstawowe X KaŜdy atom domieszki ma pięć elektronów walencyjnych, z których cztery są związane z sąsiednimi atomami krzemu. A piąty elektron jest wolny i moŝe być łatwo oderwany od atomu domieszki jonizując dodatnio. Elektron wówczas przechodzi do pasma przewodnictwa półprzewodnika. Atomy domieszki w modelu pasmowym półprzewodnika znajdują się na tzw. poziomie donorowym, który występuje w pobliŝu dna pasma przewodnictwa półprzewodnika Półprzewodnik typu p uzyskuje się przez zastąpienie niektórych atomów krzemu atomami pierwiastków trójwartościowych (np. glinu, galu). Na rysunku przedstawiono model sieci krystalicznej krzemu z domieszką atomów indu. W Pasmo przewodnictwa In +3 Dziura Poziom akceptorowy Dziury Pasmo podstawowe (nadmiar dziur) X Atom tej domieszki ma trzy elektrony walencyjne, związane z sąsiednimi atomami krzemu. Do wypełnienia czwartego wiązania sąsiadującego krzemu, brakuje w sieci krystalicznej jednego elektronu i zostaje on uzupełniony przez pobranie elektronu z jednego z sąsiednich wiązań, w którym powstaje dziura. Atom pierwiastka trójwartościowego, zwanego akceptorem, po uzupełnieniu elektronu w nieprawidłowym wiązaniu (na skutek niedostatku ładunków dodatnich w jądrze) staje się jonem ujemnym, wywołując lokalną polaryzację kryształu. Elektron ten przechodzi z pasma podstawowego półprzewodnika na poziom akceptorowy, jonizując tym samym ujemnie atom domieszki. Poziom akceptorowy znajduje się w pobliŝu wierzchołka pasma podstawowego półprzewodnika

9 Złącze p-n czyli dioda półprzewodnikowa Dioda półprzewodnikowa powstaje przez zetknięcie dwóch półprzewodników o róŝnych rodzajach przewodności niesamoistnej. Granica zetknięcia półprzewodnika typu p z półprzewodnikiem typu n nosi nazwę złącza p-n. W obszarze złącza p-n elektrony przechodzą z półprzewodnika typy n do p, natomiast dziury w kierunku przeciwnym. Zjawisko to nazywamy dyfuzją nośników ładunku, a jego przyczyną jest róŝnica koncentracji nośników po obu stronach złącza. W ten sposób powstaje warstwa podwójna ładunku o grubości l mniejszej niŝ 1 µm Rozkład ładunku i nośników w niespolaryzowanej diodzie półprzewodnikowej n-p swobodne nośniki ładunku. JeŜeli do złącza p-n przyłoŝyć zewnętrzne pole elektryczne E z w kierunku zgodnym z kierunkiem pola E np (do półprzewodnika typu n biegun dodatni, a do typu p biegun ujemny) (rys.a), to grubość warstwy zaporowej wzrośnie. W wyniku tego rezystancja złącza znacznie wzrośnie i będzie przez niego płynąć stosunkowo słaby prąd. Nosi on nazwę zaporowego, a jego kierunek przepływu kierunku zaporowego. JeŜeli do złącza p-n przyłoŝyć zewnętrzne pole elektryczne E z w kierunku przeciwnym do wewnętrznego pola złącza E np (do typu n biegun ujemny, a do typu p biegun dodatni) (rys.b), to zmniejsza się grubość warstwy zaporowej i jej rezystancja. Przy takiej polaryzacji przez diodę moŝe płynąć prąd o duŝym natęŝeniu, a jego kierunek nazywamy kierunkiem przewodzenia. NatęŜenie prądu I płynącego przez złącze p - n pod wpływem przyłoŝonego z zewnątrz napięcie U Spolaryzowana dioda n p: D wyraŝa się następującym wzorem a) w kierunku zaporowym, U D b) w kierunku przewodzenia. U kt T I = I s ( e 1) gdzie UT = 26mV przy T = 300K e W diodach wyprowadzenie polaryzowane dodatnio dla pracy w kierunku przewodzenia nazywa się anodą A, a drugą końcówkę, polaryzowaną ujemnie, katodą K. Strzałka w symbolu diody wskazuje kierunek przepływu prądu przewodzenia. Charakterystyka diody zgodnie ze zjawiskami występującymi w złączy PN kształtuje się jak na rysunku. Dla przykładu, jeśli diodę włączono w obwód prądy stałego tak, Ŝe wartość prądu płynącego od anody do katody jest równa 10 ma, wówczas (jak widać z wykresu) spadek napięcia na przewodzącej diodzie będzie wynosił 0,5 V. Prąd płynący w kierunku zaporowym, wynoszący dla diod uniwersalnych kilka nanoamperów jest pomijalny, dopóki nie przekroczy się napięcia przebicia. Zakres takiej pracy jest wykorzystywany w diodach Zenera. W diodach często dla uproszczenia pomijany jest teŝ spadek napięcia na przewodzącej diodzie i dioda moŝe być traktowana jako dobre przybliŝenie idealnego elementu przewodzącego prąd tylko w jednym kierunku. Spadek napięcie wynosi dla diod krzemowych od 0,5 do 0,8 V i warto o nim pamiętać, szczególnie podczas dobierania napięć w układach zasilających. I U Przy polaryzacji złącza PN w kierunku zaporowym napięciem większym niŝ pewna charakterystyczna dla danego złącza wartość napięcia nazywana napięciem przebicia, następuje raptowny wzrost prądu płynącego przez złącze. Zjawisko to nosi nazwę przebicia złącza. WyróŜnia się dwa mechanizmy przebicia złącza: przebicie Zenera i przebicie lawinowe. Przebicie Zenera wiąŝe się z jonizacją elektrostatyczną atomów w sieci krystalicznej, natomiast przebicie lawinowe, z jonizacją zderzeniową. Zjawiska przebicia złącza nie naleŝy bezpośrednio wiązać z jego zniszczeniem. JeŜeli prąd wsteczny złącza jest odpowiednio ograniczony, to złącze dowolnie długo moŝe pracować w zakresie przebicia. Dopiero zbyt duŝy prąd wsteczny, powodując nadmierne wydzielanie ciepła, moŝe zniszczyć złącze. Zniszczenie cieplne złącza moŝe spowodować równieŝ zbyt duŝy prąd przewodzenia. W obu przypadkach wiąŝe się to z przekroczeniem dopuszczalnej mocy strat złącza.

10 Diody klasyfikujemy ze względu na: materiał - krzemowe - germanowe konstrukcję - ostrzowe i warstwowe - stopowe i dyfuzyjne - mesa - planarne i epiplanarne strukturę fizyczną złącza - p-n - MS - Heterozłącza zastosowanie - prostownicze - uniwersalne - impulsowe - stabilitrony Zenera - pojemnościowe warikapy i waraktory - tunelowe - mikrofalowe: detekcyjne i mieszające - fotodiody - diody elektroluminescencyjne przebiegające zjawiska - Zenera - Gunna - lawinowe - tunelowe +I (ma) Charakterystyka diody Kierunek przewodzenia I Kierunek zaporowy +U 0 U Obszar przebicia -I (µa) Parametry charakteryzujące diody prostownicze napięcie przewodzenia U F, przy określonym prądzie przewodzenia, prąd wsteczny I R, przy określonym napięciu w kierunku zaporowym, czas ustalania się prądu wstecznego t, pojemność C, przy określonym napięciu przewodzenia. Dopuszczalne (graniczne) parametry: maksymalny prąd przewodzenia I 0 szczytowe napięcie wsteczne U RWM Prostowniki I F[A] 2,2 100 o C 1,8 1,4 1,0 0,6 25 o C -50 o C 0,2 U F[V] 0 0,2 0,4 0,6 1,0 Charakterystyki przewodzenia diody pn dla róŝnych temperatur

11 Prostownik dwupołówkowy u 2 t u 1 t Prostownik mostkowy V ~ 50Hz + _ L 1 U WE UWY U WE C 1 R B U WY Promieniotwórczość

12 Historia W 1895 roku Wilhelm Roentgen odkrył promienie elektromagnetyczne mające zdolność przenikania ciała stałego. Ze względu na ich tajemniczość nazwał je promieniami X. W 1896 roku francuski fizyk Henri Becquerel, badając związek uranu, zauwaŝył, Ŝe klisza fotograficzna znajdująca się w pobliŝu tego związku ściemniała, mimo braku promieni słonecznych. Wyciągnął, więc wniosek, iŝ związki uranu wysyłają promieniowanie same z siebie. Stwierdził on równieŝ, Ŝe uran metaliczny jest źródłem niewidzialnego promieniowania. Maria Curie-Skłodowska i Piotr Curie odkryli promieniotwórczość uranu i toru oraz pierwiastki polon i rad. W 1903 roku Henri Becquerel, Maria Curie-Skłodowska oraz jej mąŝ Piotr Curie zostali uhonorowani Nagrodą Nobla w dziedzinie fizyki za odkrycie radioaktywności i badania w tej dziedzinie. Rodzaje promieniotwórczości Promieniotwórczość - to zjawisko samorzutnego rozpadu jąder połączone z emisją cząstek beta, cząstek alfa, promieniowania gamma. Promieniotwórczość moŝemy podzielić na promieniotwórczość naturalną (towarzysząca przemianom jądrowym izotopów występujących w przyrodzie) promieniotwórczość sztuczną (zachodzącą w jądrach atomów otrzymywanych sztucznie - poprzez bombardowanie jąder trwałych pierwiastków np. cząstkami alfa oraz beta). Własności promieniowania Pierwiastki radioaktywne mają następujące właściwości: a) zaczerniają klisze fotograficzne b) pierwiastki promieniotwórcze wysyłają ciepło, a w stanie czystym świecą w ciemności c) wywołują luminescencję niektórych substancji na przykład siarczku cyjanku. d) Wywołują działanie chemiczne, pod wpływem promieniowania na przykład tlen zamienia się w ozon, woda czy chlorowodór ulegają rozkładowi

13 źródła naturalne Na naturalne źródła promieniowania składają się: a) Ziemia, jest naturalnym źródłem promieniowania, które jest związane z występowaniem w skorupie ziemskiej i glebie naturalnych izotopów promieniotwórczych b) Radon (Rn) w powietrzu, emitowany z niektórych rodzajów wód na przykład mineralnych. c) Radon w budynkach, wydzielany z gleby i gromadzący się w niewietrzonych pomieszczeniach. Ze wszystkich źródeł naturalnych daje największą dawkę promieniowania. Rodzaje źródeł naturalnych Alfa, powstaje w wyniku rozpadu jąder atomowych. Promieniowanie to polega na emisji jąder helu He, składających się z dwóch protonów i dwóch neutronów. Beta, jest to strumień elektronów powstający w wyniku rozpadu beta, który polega na uwolnieniu strumienia elektronów z jądra atomowego. RozróŜniamy dwa promieniowania beta: 1) Promieniowanie beta minus -powstające w wyniku przemiany neutronu w proton w jądrze atomowym. W tym przypadku liczba atomowa powstałego atomu jest zawsze o jeden większa od liczby atomowej jądra macierzystego. 2) Promieniowanie beta plus - w jądrze atomowym dochodzi do zamiany protonu w neutron. W czasie tej przemiany dochodzi właśnie do powstania promieniowania beta plus, po tej przemianie liczba atomowa powstałego atomu jest zawsze o jeden mniejsza od liczby atomowej atomu macierzystego. Jeśli cząstki promieniowania beta plus spotkałyby się z cząstkami promieniowania beta minus doszłoby do natychmiastowej anihilacji, czyli zamiany materii w energię, a takŝe do uwolnienia promieniowania gamma. Gamma to krótkofalowe promieniowanie elektromagnetyczne. Emitowane jest przez promieniotwórcze bądź wzbudzone jądra atomowe.

14 Pochłanianie KaŜdy rodzaj promieniowania charakteryzuje się inną przenikliwością. Największą zdolność przenikania przez materię ma promieniowanie gamma (przechodzi przez grube warstwy ołowiu w powietrzu jest zdolne przebyć nawet setki metrów a ciało ludzkie przenika z łatwością). lniej pochłaniane jest promieniowanie betta. Jest ono zdolne do wniknięcia w głąb ciała do 6 cm, zatrzymuje je płytka aluminiowa o grubości kilku milimetrów a warstwa powietrza około 40 m. Najmniejszą przenikliwością charakteryzują się promieniowanie alfa - nie przechodzi nawet przez kartkę papieru i zatrzymuje je juŝ warstwa powietrza o grubości około 3-10 cm. Przemiany promieniotwórcze JeŜeli z jądra pierwiastka promieniotwórczego wyrzucona zostanie cząstka alfa lub beta to skład jądra ulegnie zmianie. Mówimy, Ŝe jądro ulega przemianie promieniotwórczej. Przemianę promieniotwórcza, której towarzyszy emisja cząstki alfa nazywamy rozpadem cząstki alfa lub cząstki beta - rozpadem beta. Rządzą nimi specjalne reguły; zwane regułami przesunięć Soddy'ego i Fajansa. Rozpad alfa symbolicznie zapisujemy wzorem : Mówimy zatem, Ŝe na skutek rozpadu a pierwiastek przesuwa się o dwa miejsca ku początkowi układu okresowego. Rozpad beta zapisujemy symbolicznie: MoŜemy powiedzieć, Ŝe na skutek rozpadu beta pierwiastek przesuwa się o jedno miejsce ku końcowi układu okresowego. Z równania przemiany beta wynika, Ŝe jądro emituje w tej przemianie elektron. podczas rozpadu beta w jądrze pierwiastka następuje przemiana neutronu w proton i elektron. Proton zostaje w jądrze a elektron jest wyrzucony na zewnątrz.

15 W przemianach promieniotwórczych spełniona jest zasada zachowania ładunku elektrycznego oraz zasada zachowania liczby nukleonów. Rozpad gamma - towarzyszy prawie wszystkim przemianom promieniotwórczym związanym z emisją cząstki alfa i beta. Emisja fotonu promieniowania Y nie zmienia ani ładunku, ani masy jądra rozpadającego się. Często zdarza się, Ŝe pierwiastek pojawiający się w wyniku przemiany promieniotwórczej ulega dalszej przemianie alfa lub beta. Powstaje nowy pierwiastek, który znów ulega przemianie jądrowej itd. Tworzą się wówczas tzw. szeregi promieniotwórcze, czyli rodziny. W przyrodzie istnieją 3 naturalne rodziny promieniotwórcze: rodzina torowa, uranowa i aktynowa oraz jedna wytwarzana sztucznie - rodzina neptunowa Rozpad promieniotwórczy zaleŝność czasowa Doświadczalnie stwierdzono, Ŝe ilość substancji promieniotwórczej zmienia się w czasie ten sposób, Ŝe co pewien czas rozpada się połowa jąder atomowych pierwiastka. Czas ten nazywamy czasem połowicznego rozpadu (T 1/2 ). Czasem połowicznego rozpadu nazywamy czas, po upływie którego połowa atomów danego pierwiastka ulega rozpadowi. JeŜeli np. dla polonu czas połowicznego rozpadu wynosi 138 dni to znaczy, Ŝe po upływie tego czasu pozostanie tylko połowa pierwotnej liczby jąder polonu. Po upływie dalszych l38 dni pozostanie połowa z tej połowy itd. ZaleŜność tę przedstawia Krzywa zaniku promieniotwórczego :

16 Stała rozpadu i połowiczny czas zaniku sąściśle związane N = N o e λt N N = o 2 No = N e 2 λt1/ o 1 ln( ) = λt 2 2 1/ 2 T ln 2 = λ 1 / 2 = 0,693 λ Prawo rozpadu promieniotwórczego brzmi: Ubytek liczby jąder pierwiastka promieniotwórczego w jednostce czasu (aktywność) jest proporcjonalny do liczby jąder, które jeszcze nie uległy rozpadowi. dn A = = λ N dt N = N o e λt Oprócz czasu połowicznego rozpadu drugą wielkością charakteryzującą pierwiastki promieniotwórcze jest stała rozpadu promieniotwórczego oznaczona symbolem λ. Informuje ona nas O tym, Ŝe część początkowej liczby jąder rozpadła się w ciągu jednej sekundy.

MATERIAŁY PÓŁPRZEWODNIKOWE

MATERIAŁY PÓŁPRZEWODNIKOWE MATERIAŁY PÓŁPRZEWODNIKOWE Półprzewodniki obejmują obszerną grupę materiałów, które ze względu na przewodnictwo elektryczne zajmują pośrednie miejsce pomiędzy metalami a izolatorami. Półprzewodniki stanowią

Bardziej szczegółowo

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków. 2. Półprzewodniki 1 Półprzewodniki to materiały, których rezystywność jest większa niż rezystywność przewodników (metali) oraz mniejsza niż rezystywność izolatorów (dielektryków). Przykłady: miedź - doskonały

Bardziej szczegółowo

3.4 Badanie charakterystyk tranzystora(e17)

3.4 Badanie charakterystyk tranzystora(e17) 152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Badanie charakterystyki diody

Badanie charakterystyki diody Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniotwórczość naturalna. Jądro atomu i jego budowa. Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA 3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony

Bardziej szczegółowo

W1. Właściwości elektryczne ciał stałych

W1. Właściwości elektryczne ciał stałych W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Przyrządy i układy półprzewodnikowe

Przyrządy i układy półprzewodnikowe Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15

Bardziej szczegółowo

Podstawy krystalografii

Podstawy krystalografii Podstawy krystalografii Kryształy Pojęcie kryształu znane było już w starożytności. Nazywano tak ciała o regularnych kształtach i gładkich ścianach. Już wtedy podejrzewano, że te cechy związane są ze szczególną

Bardziej szczegółowo

Teoria pasmowa ciał stałych Zastosowanie półprzewodników

Teoria pasmowa ciał stałych Zastosowanie półprzewodników Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa

Bardziej szczegółowo

Poziom nieco zaawansowany Wykład 2

Poziom nieco zaawansowany Wykład 2 W2Z Poziom nieco zaawansowany Wykład 2 Witold Bekas SGGW Promieniotwórczość Henri Becquerel - 1896, Paryż, Sorbona badania nad solami uranu, odkrycie promieniotwórczości Maria Skłodowska-Curie, Piotr Curie

Bardziej szczegółowo

Układy nieliniowe. Stabilizator - dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) Logiczna bramka NAND. w.7, p.1

Układy nieliniowe. Stabilizator - dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) Logiczna bramka NAND. w.7, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Przewodniki, półprzewodniki i izolatory

Przewodniki, półprzewodniki i izolatory Przewodniki, półprzewodniki i izolatory Według współczesnego poglądu na budowę materii zawiera ona w stanie normalnym albo inaczej - obojętnym, równe ilości elektryczności dodatniej i ujemnej. JeŜeli takie

Bardziej szczegółowo

Półprzewodniki samoistne. Struktura krystaliczna

Półprzewodniki samoistne. Struktura krystaliczna Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie

Bardziej szczegółowo

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego

Bardziej szczegółowo

Reakcje jądrowe dr inż. Romuald Kędzierski

Reakcje jądrowe dr inż. Romuald Kędzierski Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane

Bardziej szczegółowo

Przyrządy półprzewodnikowe

Przyrządy półprzewodnikowe Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka

Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka Zakład Inżynierii Materiałowej i Systemów Pomiarowych Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka LABORATORIUM INŻYNIERII

Bardziej szczegółowo

Autorzy: Zbigniew Kąkol, Piotr Morawski

Autorzy: Zbigniew Kąkol, Piotr Morawski Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie

Bardziej szczegółowo

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.1 Model pasmowy przewodników, półprzewodników i dielektryków.

WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.1 Model pasmowy przewodników, półprzewodników i dielektryków. Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 1 str.1/10 ĆWICZENIE 1 WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.CEL ĆWICZENIA: Zapoznanie się z podstawowymi

Bardziej szczegółowo

Instrukcja do ćwiczenia: Badanie diod półprzewodnikowych i LED (wersja robocza)

Instrukcja do ćwiczenia: Badanie diod półprzewodnikowych i LED (wersja robocza) Instrukcja do ćwiczenia: Badanie diod półprzewodnikowych i LED (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel i program ćwiczenia. Celem ćwiczenia jest: zapoznanie się z budową diody półprzewodnikowej

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

Skończona studnia potencjału

Skończona studnia potencjału Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach

Bardziej szczegółowo

Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b)

Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b) Ćwiczenie E11 UKŁADY PROSTOWNIKOWE Elementy półprzewodnikowe złączowe 1. Złącze p-n Złącze p-n nazywamy układ dwóch półprzewodników.jednego typu p w którym nośnikami większościowymi są dziury obdarzone

Bardziej szczegółowo

ELEKTRONIKA I ENERGOELEKTRONIKA

ELEKTRONIKA I ENERGOELEKTRONIKA ELEKTRONIKA I ENERGOELEKTRONIKA wykład 2 PÓŁPRZEWODNIKI luty 2008 - Lublin krzem u ej n o z r o w t rze i p o ytk d u pł m rze k Od m ik ro pr oc es or ET F S MO p rzy rząd Od p iasku do Ten wykład O CZYM

Bardziej szczegółowo

Podstawy działania elementów półprzewodnikowych - diody

Podstawy działania elementów półprzewodnikowych - diody Podstawy działania elementów półprzewodnikowych - diody Wrocław 2010 Ciało stałe Ciało, którego cząstki (atomy, jony) tworzą trwały układ przestrzenny (sieć krystaliczną) w danych warunkach (tzw. normalnych).

Bardziej szczegółowo

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

Równanie Shockley a. Potencjał wbudowany

Równanie Shockley a. Potencjał wbudowany Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i

Bardziej szczegółowo

Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika

Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Tabela I. Metal Nazwa próbki:

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Anna Grych Test z budowy atomu i wiązań chemicznych

Anna Grych Test z budowy atomu i wiązań chemicznych Anna Grych Test z budowy atomu i wiązań chemicznych 1. Uzupełnij tabelkę wpisując odpowiednie dane: Nazwa atomu Liczba nukleonów protonów neutronów elektronów X -... 4 2 Y -... 88 138 Z -... 238 92 W -...

Bardziej szczegółowo

VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY

VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Oporność właściwa (Ωm) 1 VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Cel ćwiczenia: pomiar zależności oporności elektrycznej (rezystancji) metalu i półprzewodnika od temperatury,

Bardziej szczegółowo

1. PÓŁPRZEWODNIKI 1.1. PODSTAWOWE WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW

1. PÓŁPRZEWODNIKI 1.1. PODSTAWOWE WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW 1. PÓŁPRZEWODNIKI 1.1. PODSTAWOWE WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW Najprostsza definicja półprzewodników brzmi: "Półprzewodniki są materiałami, których rezystywność 1 jest większa niż rezystywność przewodników

Bardziej szczegółowo

EL08s_w03: Diody półprzewodnikowe

EL08s_w03: Diody półprzewodnikowe EL08s_w03: Diody półprzewodnikowe Złącza p-n i m-s Dioda półprzewodnikowa ( Zastosowania diod ) 1 Złącze p-n 2 Rozkład domieszek w złączu a) skokowy b) stopniowy 3 Rozkłady przestrzenne w złączu: a) bez

Bardziej szczegółowo

E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5

E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5 1/5 Celem ćwiczenia jest poznanie temperaturowej zależności przepływu prądu elektrycznego przez przewodnik i półprzewodnik oraz doświadczalne wyznaczenie energii aktywacji przewodnictwa dla półprzewodnika

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules

Bardziej szczegółowo

W5. Rozkład Boltzmanna

W5. Rozkład Boltzmanna W5. Rozkład Boltzmanna Podstawowym rozkładem w klasycznej fizyce statystycznej jest rozkład Boltzmanna E /( kt ) f B ( E) Ae gdzie: A jest stałą normalizacyjną, k stałą Boltzmanna 5 k 8.61710 ev / K Został

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

PÓŁPRZEWODNIKI W ELEKTRONICE. Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową.

PÓŁPRZEWODNIKI W ELEKTRONICE. Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową. PÓŁPRZEWODNIKI W ELEKTRONICE Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową. 1 Półprzewodniki Półprzewodniki to ciała stałe nieorganiczne lub organiczne o przewodnictwie

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych

Przewodnictwo elektryczne ciał stałych Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych

Bardziej szczegółowo

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

Pracownia Fizyczna i Elektroniczna Struktura układu doświadczalnego. Wojciech DOMINIK. Zjawisko przyrodnicze

Pracownia Fizyczna i Elektroniczna Struktura układu doświadczalnego. Wojciech DOMINIK. Zjawisko przyrodnicze Pracownia Fizyczna i Elektroniczna 0 http://pe.fuw.edu.pl/ Wojciech DOMNK Struktura układu doświadczalnego Zjawisko przyrodnicze detektor Urządzenie pomiarowe Urządzenie wykonawcze interfejs regulator

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE

Bardziej szczegółowo

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4 MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79

Bardziej szczegółowo

Wykład FIZYKA II. 14. Fizyka ciała stałego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 14. Fizyka ciała stałego.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 14. Fizyka ciała stałego Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MATERIA SKONDENSOWANA Każdy pierwiastek bądź

Bardziej szczegółowo

Ćwiczenie 123. Dioda półprzewodnikowa

Ćwiczenie 123. Dioda półprzewodnikowa Ćwiczenie 123 Ćwiczenie 123. Dioda półprzewodnikowa Cel ćwiczenia Poznanie własności warstwowych złącz półprzewodnikowych typu p-n. Wyznaczenie i analiza charakterystyk stałoprądowych dla różnych typów

Bardziej szczegółowo

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza Elementy półprzewodnikowe i układy scalone 1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza ELEKTRONKA Jakub Dawidziuk sobota,

Bardziej szczegółowo

Elementy elektroniczne Wykłady 3: Półprzewodniki. Teoria złącza PN

Elementy elektroniczne Wykłady 3: Półprzewodniki. Teoria złącza PN Elementy elektroniczne Wykłady 3: Półprzewodniki. Teoria złącza PN Budowa i właściwości elektryczne ciał stałych - wprowadzenie Budowa atomu: a) model starożytny b) model J.J. Thompsona c) model E. Rutherforda

Bardziej szczegółowo

Diody półprzewodnikowe

Diody półprzewodnikowe Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Dr inż. Zbigniew Szklarski

Dr inż. Zbigniew Szklarski Wykład 1: Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Struktura kryształu Ciała stałe o budowie bezpostaciowej

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

Diody półprzewodnikowe

Diody półprzewodnikowe Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki

Bardziej szczegółowo