Teoretyczne podstawy informatyki
|
|
- Wiktoria Kasprzak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Teoretyczne podstawy informatyki Wykład 2: Struktury danych i algorytmy Prof. dr hab. Elżbieta Richter-Wąs 1
2 Struktury danych i algorytmy Struktury danych to narzędzia do reprezentowania informacji która ma być przetworzona przez program komputerowy, Algorytmy to przepisy wykonania czynności niezbędnych do jej przetworzenia. Wybór algorytmu do rozwiązania konkretnego problemu programistycznego pomaga w ustaleniu, jaką strukturę danych należałoby użyć, ale i odwrotnie wybrana struktura danych ma ogromny wpływ na szczegóły realizacji i efektywności algorytmu. Prof. dr hab. Elżbieta Richter-Wąs 2
3 Struktury danych i algorytmy Badanie modelów danych, ich własności oraz sposobów właściwego wykorzystania, stanowi jeden z filarów informatyki. Drugim, równie ważnym filarem jest uważna analiza algorytmów i powiązanych z nimi struktur danych. Musimy znać najlepsze sposoby wykonywania najczęściej spotykanych żądań, musimy także nauczyć się podstawowych technik projektowania dobrych algorytmów. Musimy zrozumieć w jaki sposób wykorzystywać struktury danych i algorytmy tak, by pasowały do procesu tworzenia przydatnych programów. Prof. dr hab. Elżbieta Richter-Wąs 3
4 Typy danych i struktury danych Dane są to obiekty którymi manipuluje algorytm. Te obiekty to nie tylko dane wejściowe lub wyjściowe (wyniki działania algorytmu), to również obiekty pośrednie tworzone i używane w trakcie działanie algorytmu. Dane mogą by różnych typów, do najpospolitszych należą liczby (całkowite, dziesiętne, ułamkowe) i słowa zapisane w rozmaitych alfabetach. Prof. dr hab. Elżbieta Richter-Wąs 4
5 Typy danych i struktury danych Interesują nas sposoby w jaki algorytmy mogą organizować, zapamiętywać i zmieniać zbiory danych oraz sięgać do nich. Zmienne czyli pudelka w których chwilowo przechowujemy jakąś wartość, Wektory, Listy, Tablice czyli tabele (macierze), w których to możemy odwoływać się do indeksów, Kolejki i stosy, Drzewa, czyli hierarchiczne ułożenie danych, Zbiory. Grafy. Relacje. Prof. dr hab. Elżbieta Richter-Wąs 5
6 Typy danych i struktury danych W wielu zastosowaniach same struktury danych nie wystarczają. Czasami potrzeba bardzo obszernych zasobów danych, stanowiących dla wielu algorytmów potencjalne dane wejściowe, a więc mające ustaloną strukturę i nadające się do odszukiwania i manipulowania nimi. Nazywa się je bazami danych (relacyjne i hierarchiczne). Kolejny krok to bazy wiedzy, których elementami są bazy danych, a które zawierają również informacje o związkach pomiędzy danymi. Prof. dr hab. Elżbieta Richter-Wąs 6
7 Algorytmika Algorytm to przepis postępowania prowadzący do rozwiązania konkretnego zadania; zbiór poleceń dotyczących pewnych obiektów (danych) ze wskazaniem kolejności w jakiej mają być wykonane. Jest jednoznaczną i precyzyjną specyfikacją kroków które mogą być wykonywane mechanicznie. W matematyce algorytm jest pojęciem służącym do formułowania i badania rozstrzygalności problemów i teorii Algorytm odpowiada na pytanie jak to zrobić postawione przy formułowaniu zadania. Istota algorytmu polega na rozpisaniu całej procedury na kolejne, możliwie elementarne kroki. Algorytmiczne myślenie można kształtować niezależnie od programowania komputerów, chociaż każdy program komputerowy jest zapisem jakiegoś algorytmu. Prof. dr hab. Elżbieta Richter-Wąs 7
8 Sposoby zapisu algorytmu Najprostszy sposób zapisu to zapis słowny Pozwala określić kierunek działań i odpowiedzieć na pytanie, czy zagadnienie jest możliwe do rozwiązania. Bardziej konkretny zapis to lista kroków Staramy się zapisać kolejne operacje w postaci kolejnych kroków które należy wykonać. Budowa listy kroków obejmuje następujące elementy: sformułowanie zagadnienia (zadanie algorytmu), określenie zbioru danych potrzebnych do rozwiązania zagadnienia (określenie czy zbiór danych jest właściwy), określenie przewidywanego wyniku (wyników): co chcemy otrzymać i jakie mogą być warianty rozwiązania, zapis kolejnych ponumerowanych kroków, które należy wykonać, aby przejść od punktu początkowego do końcowego. Bardzo wygodny zapis to zapis graficzny, np: Schematy blokowe i grafy. Prof. dr hab. Elżbieta Richter-Wąs 8
9 Rodzaje algorytmów Algorytmy można dzielić ze względu na czas działania. Algorytm liniowy: Ma postać ciągu kroków (których jest liniowa ilość) które muszą zostać bezwarunkowo wykonane jeden po drugim. Algorytm taki nie zawiera żadnych warunków ani rozgałęzień: zaczyna się od podania zestawu danych, następnie wykonywane są kolejne kroki wykonawcze, aż dochodzimy do wyniku Prof. dr hab. Elżbieta Richter-Wąs 9
10 Algorytm liniowy - przykład Przykład: dodanie lub mnożenie dwóch liczb Sformułowanie zadania: oblicz sumę dwóch liczb naturalnych: a,b. Wynik oznacz przez S. Dane wejściowe: dwie liczby a i b Cel obliczeń: obliczenie sumy S = a + b Dodatkowe ograniczenia: sprawdzenie warunku dla danych wejściowych np. czy a, b są naturalne. Ale sprawdzenie pewnych warunków sprawia że algorytm przestaje być liniowy Prof. dr hab. Elżbieta Richter-Wąs 10
11 Algorytm z rozgałęzieniem: Rodzaje algorytmów Większość algorytmów zawiera rozgałęzienia będące efektem sprawdzania warunków. Wyrażenia warunkowe umożliwiają wykonanie zadania dla wielu wariantów danych i rozważanie różnych przypadków. Powtarzanie różnych działań ma dwojaką postać: liczba powtórzeń jest z góry określona (przed rozpoczęciem cyklu), najczęściej związany z działaniami na macierzach, liczba powtórzeń jest nieznana (zależy od spełnienia pewnego warunku), najczęściej związany z obliczeniami typu iteracyjnego. Prof. dr hab. Elżbieta Richter-Wąs 11
12 Algorytm z rozgałęzieniem - przykład Sformułowanie zadania Znajdź rozwiązanie równania liniowego postaci a x + b = 0. Wynikiem jest wartość liczbowa lub stwierdzenie dlaczego nie ma jednoznacznego rozwiązania. Dane wejściowe Dwie liczby rzeczywiste a i b Cel obliczeń (co ma być wynikiem) Obliczenie wartości x lub stwierdzenie, że równanie nie ma jednoznacznego rozwiązania. gdy a = 0 to sprawdź czy b = 0, jeśli tak to równanie sprzeczne lub tożsamościowe gdy a 0 to oblicz x = -b/a Prof. dr hab. Elżbieta Richter-Wąs 12
13 Schematy blokowe i algografy K P WARUNEK????? WE TAK NIE WY Prof. dr hab. Elżbieta Richter-Wąs 13
14 Schemat blokowy rozwiązania równania liniowego P WE a, b Czy b = 0? TAK NIE Czy a = 0? TAK NIE X = - b/a Tożsamość WY Sprzeczność WY K X WY Prof. dr hab. Elżbieta Richter-Wąs 14
15 Grafy Graf składa się z węzłów i gałęzi. Graf symbolizuje przepływ informacji. W przypadku algorytmów graf można wykorzystać aby w uproszczonej formie zilustrować ilość różnych dróg prowadzących do określonego w zadaniu celu. Graf pozwala także wykryćścieżki, które nie prowadzą do punktu końcowego, których to poprawny algorytm nie powinien posiadać. Prof. dr hab. Elżbieta Richter-Wąs 15
16 Graf algorytmu rozwiązania równania liniowego P P początek K koniec D D działanie W W D W warunek D D D Prof. dr hab. Elżbieta Richter-Wąs 16 K
17 Grafy Jeżeli w grafie znajduje się ścieżka, która nie doprowadza do węzła końcowego, to mamy do czynienia z niepoprawnym grafem. W programie przygotowanym na podstawie takiego grafu, mamy do czynienia z przerwaniem próby działania i komunikatem o zaistnieniu jakiegoś błędu w działaniu. Węzeł grafu może mieć dwa wejścia jeżeli ilustruje pętle. Wtedy liczba ścieżek początek-koniec może być nieskończona, gdyż nieznana jest liczba obiegów pętli. Graf to tylko schemat kontrolny służący do sprawdzenia algorytmu Schemat blokowy służy natomiast jako podstawa do tworzenia programów Prof. dr hab. Elżbieta Richter-Wąs 17
18 Algorytmy dziel i zwyciężaj Dzielimy problem na mniejsze części tej samej postaci co pierwotny. Teraz te pod-problemy dzielimy dalej na coraz mniejsze, używając tej samej metody, aż rozmiar problemu stanie się tak mały, że rozwiązanie będzie oczywiste lub będzie można użyć jakiejś innej efektywnej metody rozwiązania. Rozwiązania wszystkich pod-problemów muszą być połączone w celu utworzenia rozwiązania całego problemu. Metoda zazwyczaj implementowana z zastosowaniem technik rekurencyjnych. Prof. dr hab. Elżbieta Richter-Wąs 18
19 Algorytmy dziel i zwyciężaj Jak znaleźć minimum ciągu liczb? Dzielimy ciąg na dwie części, znajdujemy minimum w każdej z nich, bierzemy minimum z obu liczb jako minimum ciągu. Jak sortować ciąg liczb? Dzielimy na dwie części, każdą osobno sortujemy a następnie łączymy dwa uporządkowane ciągi (scalamy). Prof. dr hab. Elżbieta Richter-Wąs 19
20 Algorytmy oparte na programowaniu dynamicznym Można stosować wówczas, kiedy problem daje się podzielić na wiele pod-problemów, możliwych do zakodowania w jedno-, dwu- lub wielowymiarowej tablicy, w taki sposób że w pewnej określonej kolejności można je wszystkie (a więc i cały problem) efektywnie rozwiązać. Jak obliczać ciąg Fibonacciego? 1 jeśli i = 1 F(i) = 1 jeśli i = 2 F(i-2)+F(i-1) jeśli i > 2 Aby obliczyć F(n), wartość F(k), gdzie k<n musimy wyliczyć F(n-k) razy. Liczba ta rośnie wykładniczo. Korzystnie jest więc zachować (zapamiętać w tablicy) wyniki wcześniejszych obliczeń (tu: F(k)). Prof. dr hab. Elżbieta Richter-Wąs 20
21 Jak obliczać liczbę kombinacji? Liczba kombinacji (podzbiorów) r-elementowych ze zbioru n-elementowego, oznaczana, dana jest wzorem: ( ) n r ( ) n r = n!/(r! (n-r)!) Możemy użyć wzorów: n ( r ) ( ) n r = 1, jeśli r = 0 lub n = r ( ) ( ) = n-1 + n-1 dla 0 < r < n r-1 r Obliczamy rząd porzędzie w trójkącie Pascala n r Prof. dr hab. Elżbieta Richter-Wąs 21
22 Algorytmy z powrotami Przykładami tego typu algorytmów są gry. Często możemy zdefiniować jakiś problem jako poszukiwanie jakiegoś rozwiązania wśród wielu możliwych przypadków. Dana jest pewna przestrzeń stanów, przy czym stan jest to sytuacja stanowiąca rozwiązanie problemu albo mogąca prowadzić do rozwiązania oraz sposób przechodzenia z jednego stanu do drugiego. Czasami mogą istnieć stany które nie prowadzą do rozwiązania. Prof. dr hab. Elżbieta Richter-Wąs 22
23 Metoda powrotów Algorytmy z powrotami Wymaga zapamiętania wszystkich wykonanych ruchów czy też wszystkich odwiedzonych stanów aby możliwe było cofanie posunięć. Stanów mogą być tysiące lub miliony więc bezpośrednie zastosowanie metody powrotów, mogące doprowadzić do odwiedzenia wszystkich stanów, może być zbyt kosztowne. Inteligentny wybór następnego posunięcia, funkcja oceniająca, może znacznie poprawić efektywność algorytmu. Np. aby uniknąć przeglądania nieistotnych fragmentów przestrzeni stanów. Prof. dr hab. Elżbieta Richter-Wąs 23
24 Wybór algorytmu Regułą jest że należy implementować algorytmy najprostsze, które wykonują określone zadanie. Prosty algorytm to łatwiejsza implementacja, czytelniejszy kod łatwość testowania łatwość pisania dokumentacji,. Jeśli program ma działać wielokrotnie, jego wydajność i wykorzystywany algorytm stają się bardzo ważne. W ogólności, efektywność wiąże się z czasem potrzebnym programowi na wykonanie danego zadania. Istnieją również inne zasoby, które należy niekiedy oszczędnie wykorzystywać w pisanych programach: ilość przestrzeni pamięciowej wykorzystywanej przez zmienne generowane przez program obciążenie sieci komputerowej ilość danych odczytywanych i zapisywanych na dysku Prof. dr hab. Elżbieta Richter-Wąs 24
25 Wybór algorytmu Zrozumiałość i efektywność to są często sprzeczne cele. Typowa jest sytuacja w której programy efektywne dla dużej ilości danych są trudniejsze do napisania/zrozumienia. Np. sortowanie przez wybieranie (łatwy, nieefektywny dla dużej ilości danych) i sortowanie przez scalanie (trudniejszy, dużo efektywniejszy). Zrozumiałość to pojecie względne, natomiast efektywność można obiektywnie zmierzyć. Metodyka: testy wzorcowe, analiza złożoności obliczeń Prof. dr hab. Elżbieta Richter-Wąs 25
26 Testy wzorcowe: Efektywność algorytmu Podczas porównywania dwóch lub więcej programów zaprojektowanych do wykonywania tego samego zadania, opracowujemy niewielki zbiór typowych danych wejściowych które mogą posłużyć jako dane wzorcowe (ang. benchmark). Powinny być one reprezentatywne i zakłada się że program dobrze działający dla danych wzorcowych będzie też dobrze działał dla wszystkich innych danych. Np. test wzorcowy umożliwiający porównanie algorytmów sortujących może opierać się na jednym małym zbiorze danych, np. zbiór pierwszych 20 cyfr liczby p; jednym średnim, np. zbiór kodów pocztowych województwa krakowskiego; oraz na dużym zbiorze takim jak zbiór numerów telefonów z obszaru Krakowa i okolic. Przydatne jest też sprawdzenie jak algorytm działa dla ciągu już posortowanego (często działają kiepsko). Prof. dr hab. Elżbieta Richter-Wąs 26
27 Czas działania: Efektywność algorytmu Oznaczamy przez funkcje T(n) liczbę jednostek czasu, które zajmuje wykonanie programu lub algorytmu w przypadku problemu o rozmiarze n. Funkcje te nazywamy czasem działania. Dość często czas działania zależy od konkretnych danych wejściowych, nie tylko ich rozmiaru. W takim przypadku, funkcje T(n) definiuje się jako najmniej korzystny przypadek z punktu widzenia kosztów czasowych. Inną wyznaczaną wielkością jest też czas średni, czyli średni dla różnych danych wejściowych. Prof. dr hab. Elżbieta Richter-Wąs 27
28 Uwagi końcowe Na wybór najlepszego algorytmu dla tworzonego programu wpływa wiele czynników, najważniejsze to: prostota, łatwość implementacji efektywność Prof. dr hab. Elżbieta Richter-Wąs 28
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Struktury danych i algorytmy Analiza algorytmów Typy danych i struktury danych Sposoby zapisu algorytmów
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Struktury danych i algorytmy Analiza algorytmów Typy danych i struktury danych Sposoby zapisu algorytmów
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Struktury danych i algorytmy Typy danych i struktury danych Analiza algorytmów Sposoby zapisu algorytmów
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 2: Struktury danych i algorytmy http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2011/tpi-20011 http://th-www.if.uj.edu.pl/~erichter/dydaktyka/dydaktyka2011/tpi-2011
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Napisanie programu komputerowego: Zasada rozwiązania zadania Stworzenie sekwencji kroków algorytmu Przykłady algorytmów z życia codziennego (2/1 6)
INFORMATYKA W SZKOLE. Podyplomowe Studia Pedagogiczne. Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227
INFORMATYKA W SZKOLE Dr inż. Grażyna KRUPIŃSKA grazyna@fis.agh.edu.pl D-10 pokój 227 Podyplomowe Studia Pedagogiczne 2 Algorytmy Nazwa algorytm wywodzi się od nazwiska perskiego matematyka Muhamed ibn
Zapisywanie w wybranej notacji algorytmów z warunkami i iteracyjnych
Temat 2. Zapisywanie w wybranej notacji algorytmów z warunkami i iteracyjnych Cele edukacyjne Usystematyzowanie podstawowych pojęć: algorytm z warunkami, iteracja, algorytm iteracyjny, zmienna sterująca.
Zapisywanie algorytmów w języku programowania
Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym
Programowanie komputerów
Programowanie komputerów Wykład 1-2. Podstawowe pojęcia Plan wykładu Omówienie programu wykładów, laboratoriów oraz egzaminu Etapy rozwiązywania problemów dr Helena Dudycz Katedra Technologii Informacyjnych
Klasa 2 INFORMATYKA. dla szkół ponadgimnazjalnych zakres rozszerzony. Założone osiągnięcia ucznia wymagania edukacyjne na. poszczególne oceny
Klasa 2 INFORMATYKA dla szkół ponadgimnazjalnych zakres rozszerzony Założone osiągnięcia ucznia wymagania edukacyjne na poszczególne oceny Algorytmy 2 3 4 5 6 Wie, co to jest algorytm. Wymienia przykłady
Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu danych
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1.
Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Grażyna Koba MIGRA 2019 Spis treści (propozycja na 2*32 = 64 godziny lekcyjne) Moduł A. Wokół komputera i sieci komputerowych
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Algorytmika i pseudoprogramowanie
Przedmiotowy system oceniania Zawód: Technik Informatyk Nr programu: 312[ 01] /T,SP/MENiS/ 2004.06.14 Przedmiot: Programowanie Strukturalne i Obiektowe Klasa: druga Dział Dopuszczający Dostateczny Dobry
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY ARKUSZ I STYCZEŃ 2014 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania 1 3). Ewentualny brak zgłoś przewodniczącemu
1 Wprowadzenie do algorytmiki
Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności
Technologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
Sortowanie Shella Shell Sort
Sortowanie Shella Shell Sort W latach 50-tych ubiegłego wieku informatyk Donald Shell zauważył, iż algorytm sortowania przez wstawianie pracuje bardzo efektywnie w przypadku gdy zbiór jest w dużym stopniu
Technologia informacyjna Algorytm Janusz Uriasz
Technologia informacyjna Algorytm Janusz Uriasz Algorytm Algorytm - (łac. algorithmus); ścisły przepis realizacji działań w określonym porządku, system operacji, reguła komponowania operacji, sposób postępowania.
Algorytmy, reprezentacja algorytmów.
Algorytmy, reprezentacja algorytmów. Wprowadzenie do algorytmów Najważniejszym pojęciem algorytmiki jest algorytm (ang. algorithm). Nazwa pochodzi od nazwiska perskiego astronoma, astrologa, matematyka
Sposoby przedstawiania algorytmów
Temat 1. Sposoby przedstawiania algorytmów Realizacja podstawy programowej 5. 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych problemów; 2) formułuje ścisły
Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia
Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki
Temat 20. Techniki algorytmiczne
Realizacja podstawy programowej 5. 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych problemów; 2) formułuje ścisły opis prostej sytuacji problemowej, analizuje
3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki.
1. Podaj definicję informatyki. 2. W jaki sposób można definiować informatykę? 3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 4. Co to jest algorytm? 5. Podaj neumanowską architekturę
Wprowadzenie do złożoności obliczeniowej
problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów
Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Wprowadzenie do algorytmiki
Wprowadzenie do algorytmiki Pojecie algorytmu Powszechnie przyjmuje się, że algorytm jest opisem krok po kroku rozwiązania postawionego problemu lub sposób osiągnięcia jakiegoś celu. Wywodzi się z matematyki
Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej
Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w
ALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
ALGORYTMY Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
ALGORYMY Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
Algorytmy komputerowe. dr inŝ. Jarosław Forenc
Rok akademicki 2009/2010, Wykład nr 8 2/24 Plan wykładu nr 8 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2009/2010
EGZAMIN MATURALNY 2012 INFORMATYKA
Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2012 INFORMATYKA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2012 2 Zadanie 1. a) (0 2) Egzamin maturalny z informatyki CZĘŚĆ I Obszar standardów
Programowanie i techniki algorytmiczne
Temat 2. Programowanie i techniki algorytmiczne Realizacja podstawy programowej 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych 2) formułuje ścisły opis prostej
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE
Różnice między podstawą programową z przedmiotu Technologia informacyjna", a standardami wymagań będącymi podstawą przeprowadzania egzaminu maturalnego z przedmiotu Informatyka" I.WIADOMOŚCI I ROZUMIENIE
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
Programowanie dynamiczne
Programowanie dynamiczne Programowanie rekurencyjne: ZALETY: - prostota - naturalność sformułowania WADY: - trudność w oszacowaniu zasobów (czasu i pamięci) potrzebnych do realizacji Czy jest możliwe wykorzystanie
ALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
KONSPEKT ZAJĘĆ KOŁA INFORMATYCZNEGO LUB MATEMATYCZNEGO W KLASIE III GIMNAZJUM LUB I LICEUM ( 2 GODZ.)
Joanna Osio asiaosio@poczta.onet.pl Nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie KONSPEKT ZAJĘĆ KOŁA INFORMATYCZNEGO LUB MATEMATYCZNEGO W KLASIE III GIMNAZJUM LUB I LICEUM ( 2 GODZ.)
TEORETYCZNE PODSTAWY INFORMATYKI: POWTÓRKA CZ. I
1 TEORETYCZNE PODSTAWY INFORMATYKI: POWTÓRKA CZ. I WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Informatyka 2 Zasadniczo informatyka jest: Nauką o abstrakcji, czyli nauką o tworzeniu właściwego
wagi cyfry 7 5 8 2 pozycje 3 2 1 0
Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień
EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 INFORMATYKA
EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 INFORMATYKA POZIOM ROZSZERZONY FORMUŁA OD 2015 ( NOWA MATURA ) ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1,R2 MAJ 2018 Uwaga: Akceptowane są wszystkie odpowiedzi
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 2 Temat: Schemat blokowy (algorytm) procesu selekcji wymiarowej
Definicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Definicje. Algorytm to:
Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi
Sortowanie przez wstawianie Insertion Sort
Sortowanie przez wstawianie Insertion Sort Algorytm sortowania przez wstawianie można porównać do sposobu układania kart pobieranych z talii. Najpierw bierzemy pierwszą kartę. Następnie pobieramy kolejne,
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Efektywność algorytmów
Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów
Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15
Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4: Iteracja, indukcja i rekurencja http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Iteracja, indukcja
Algorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 3 2 Złożoność obliczeniowa algorytmów Notacja wielkie 0 Notacja Ω i Θ Algorytm Hornera Przykłady rzędów
Programowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
SCENARIUSZ LEKCJI. Dzielenie wielomianów z wykorzystaniem schematu Hornera
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki
Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Turbo Pascal jest językiem wysokiego poziomu, czyli nie jest rozumiany bezpośrednio dla komputera, ale jednocześnie jest wygodny dla programisty,
Projektowanie i analiza algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a: Model danych oparty na zbiorach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na zbiorach
Algorytm - pojęcie algorytmu, sposób zapisu, poziom szczegółowości, czynności proste i strukturalne. Pojęcie procedury i funkcji.
Algorytm - pojęcie algorytmu, sposób zapisu, poziom szczegółowości, czynności proste i strukturalne. Pojęcie procedury i funkcji. Maria Górska 9 stycznia 2010 1 Spis treści 1 Pojęcie algorytmu 3 2 Sposób
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Rekurencja - zdolność podprogramu (procedury) do wywoływania samego (samej) siebie Wieże Hanoi dane wejściowe - trzy kołki i N krążków o różniących się średnicach wynik - sekwencja ruchów przenosząca krążki
Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,
wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.
1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji.
Temat: Technologia informacyjna a informatyka 1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji. Technologia informacyjna (ang.) Information Technology, IT jedna
EGZAMIN MATURALNY 2011 INFORMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 INFORMATYKA POZIOM PODSTAWOWY MAJ 2011 2 Zadanie 1. a) (0 1) Egzamin maturalny z informatyki poziom podstawowy CZĘŚĆ I Obszar standardów
Zad. 3: Układ równań liniowych
1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich
Podstawy programowania. Wykład: 13. Rekurencja. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD
Podstawy programowania Wykład: 13 Rekurencja 1 dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Podstawy programowania Rekurencja - pojęcie 2 Rekurencja - pojęcie Rekurencja (rekursja) wywołanie
AiSD zadanie trzecie
AiSD zadanie trzecie Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5 5 czerwca 2008 1 Wstęp Celem postawionym przez zadanie trzecie było tzw. sortowanie topologiczne. Jest to typ sortowania
INFORMATYKA POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2016/2017 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-P1, P2 MAJ 2017 Uwaga: Akceptowane są wszystkie odpowiedzi
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa
KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający
Metodyki i techniki programowania
Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy
Wstęp do programowania
Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej
Programowanie dynamiczne
Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem
Temat 7. Najlżejsze i najcięższe algorytmy sortowania
Temat 7 Najlżejsze i najcięższe algorytmy sortowania Streszczenie Komputery są często używane porządkowania różnych danych, na przykład nazwisk (w porządku alfabetycznym), terminów spotkań lub e-maili
Liczby zmiennoprzecinkowe i błędy
i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan
Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład Funkcje Krzysztof Banaś Podstawy programowania 1 Programowanie proceduralne Pojęcie procedury (funkcji) programowanie proceduralne realizacja określonego zadania specyfikacja
Algorytmy i struktury danych. wykład 2
Plan wykładu: Pojęcie algorytmu. Projektowanie wstępujące i zstępujące. Rekurencja. Pojęcie algorytmu Pojęcie algorytmu Algorytm skończony zbiór operacji, koniecznych do wykonania zadania z pewnej klasy
Podstawy Programowania Algorytmy i programowanie
Podstawy Programowania Algorytmy i programowanie Katedra Analizy Nieliniowej, WMiI UŁ Łódź, 3 października 2013 r. Algorytm Algorytm w matematyce, informatyce, fizyce, itp. lub innej dziedzinie życia,
Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.
Algorytm znaczenie informatyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 2 Temat: Schemat blokowy (algorytm) procesu selekcji wymiarowej
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
ECDL Podstawy programowania Sylabus - wersja 1.0
ECDL Podstawy programowania Sylabus - wersja 1.0 Przeznaczenie Sylabusa Dokument ten zawiera szczegółowy Sylabus dla modułu Podstawy programowania. Sylabus opisuje, poprzez efekty uczenia się, zakres wiedzy
Metodyki i techniki programowania
Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
WYMAGANIA EGZAMINACYJNE Egzamin maturalny z INFORMATYKI
WYMAGANIA EGZAMINACYJNE Egzamin maturalny z INFORMATYKI 1. Cele ogólne Podstawowym celem kształcenia informatycznego jest przekazanie wiadomości i ukształtowanie umiejętności w zakresie analizowania i
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 1. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 1 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan wykładów (1) Algorytmy i programy Proste typy danych Rozgałęzienia
Informatyka klasa III Gimnazjum wymagania na poszczególne oceny
Informatyka klasa III Gimnazjum wymagania na poszczególne oceny Algorytmika i programowanie Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Podstawy informatyki i architektury systemów komputerowych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki Zakład Informatyki
Kurs MATURA Z INFORMATYKI
Kurs MATURA Z INFORMATYKI Cena szkolenia Cena szkolenia wynosi 90 zł za 60 min. Ilość godzin szkolenia jest zależna od postępów w nauce uczestnika kursu oraz ilości czasu, którą będzie potrzebował do realizacji
wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.)
egzamin podstawowy 7 lutego 2017 r. wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek imię, nazwisko i nr indeksu:..............................................................
Z nowym bitem. Informatyka dla gimnazjum. Część II
Z nowym bitem. Informatyka dla gimnazjum. Część II Wymagania na poszczególne oceny szkolne Grażyna Koba Spis treści 1. Algorytmika i programowanie... 2 2. Obliczenia w arkuszu kalkulacyjnym... 4 3. Bazy