Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
|
|
- Grażyna Dominika Kulesza
- 8 lat temu
- Przeglądów:
Transkrypt
1 Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl
2 Co jest na zdjęciu?
3 Iluzja Thatchera
4 Iluzja Thatchera
5 Rozpoznawanie obrazów Pojęcie obrazu to niekoniecznie ilustracja dwuwymiarowa lub scena trójwymiarowa. Obrazy to również inne obiekty, które na pierwszy rzut oka nie wyglądają jak obrazy w klasycznym rozumieniu tego słowa.
6 obiektów, zdarzeo lub innych znaczących regularności za pomocą automatycznych lub półautomatycznych środków. Rozpoznawanie obrazów ROZPOZNAWANIE OBRAZÓW, ROZPOZNAWANIE WZORCÓW (pattern recognition, machine recognition) to: analizowanie opisywanie identyfikowanie klasyfikowanie
7 Rozpoznawanie obrazów Obrazem może byd: zarówno litera jak i linie papilarne, zapis sejsmografu, przebieg elektrokardiogramu, sygnał mowy lub rentgenowskie zdjęcie narządu w organizmie człowieka. zbiór ekonomicznych parametrów opisujących gospodarkę przedsiębiorstwa może byd analizowany jako opis pewnego obiektu, co pozwala go automatycznie zaliczyd do obrazu zakładów rozwojowych, wartych inwestowania albo bliskich bankructwa
8 Rozpoznawanie obrazów INNE NAZWY Rozpoznawanie wzorców, obiektów Pattern recognition Klasyfikacja Klasteryzacja, segmentacja, grupowanie danych
9 Rozpoznawanie obrazów
10 Rozpoznawanie obrazów
11 Rozpoznawanie obrazów Grupowanie, klasteryzacja Ekstrakcja cech Sieci neuronowe Metoda PCA SVM Drzewa decyzyjne Statystyka Redukcja wymiarowości
12 Rozpoznawanie obrazów
13 Program
14 Program
15 Program
16 Literatura
17 Program Zasady zaliczenia Egzamin Wykład obowiązkowy Laboratorium Kolokwia z dwóch ostatnich wykładów na początku zajęd Kolokwia praktyczne Małe projekty
18 Typowy problem Klasyfikacja Typowy problem rozpoznawania wzorców Mając zbiór trenujący zdecydowad, które atrybuty opisujące obiekty są wartościowe z punktu widzenia dyskryminacji klas ang. feature selection, feature extraction Zdecydowad jaki klasyfikator powinien byd użyty (jaki da najlepszy wyniki dla przyszłych danych, tzw. testowych, dla których klasa nie jest znana) jak ocenid czy różnice w działaniu klasyfikatorów są statystycznie istotne?
19 Typowy problem Klasyfikacja Typowy problem rozpoznawania wzorców Oszacowad jakiej wielkości błędu możemy się spodziewad po danym klasyfikatorze w przyszłości na nowych nieznanych danych Ocena za pomocą błędu na danych trenujących jest zazwyczaj zbyt optymistyczna
20 Typowy problem Analiza danych, wykrywanie grup / klas Typowy problem wykrywania grup / analizy danych Przykłady w zbiorze trenującym nie mają przypisanej etykiety klasy Celem jest wykrycie czy w całym zbiorze istnieją pewne podgrupy obiektów wyraźnie podobnych do siebie oraz wyraźnie odmiennych od innych przykładów Ponownie: Mając zbiór trenujący zdecydowad, które atrybuty opisujące obiekty są wartościowe z punktu widzenia dyskryminacji klas Zdecydowad jaki algorytm grupowania powinien byd użyty Ile grup szukamy? Jak ocenid jakośd wyników grupowania?
21 Typowy problem Analiza danych, wykrywanie grup / klas Przyszłe dane mogą byd analizowane poprzez sprawdzenie w jakim stopniu należą do wyszczególnionych grup. Przykłady: Mając do dyspozycji historie zakupów pewnej liczby klientów, znaleźd grupy podobnie zachowujących się osób. Grupy takie mogą stad się celem specjalnie przygotowanej akcji marketingowej. Mając do dyspozycji opisy przebiegu chorób wielu pacjentów, znaleźd grupy podobnych przypadków, wyraźnie odróżniających się od pozostałych. Może to sugerowad występowanie szczególnego podtypu danej choroby. Można wtedy próbowad opracowywad specjalne terapie.
22 Rozpoznawanie obrazów Pokrewne pojęcia Data mining (drążenie danych) Machine learning (uczenie maszynowe) uczenie się pojęd (uczenie pod nadzorem, z nauczycielem) tworzenie pojęd (analiza skupieo, grupowanie) aproksymacja funkcji Metody sztucznej inteligencji Soft computing (obliczenia miękkie) Sieci neuronowe Algorytmy ewolucyjne
23 Rozpoznawanie obrazów Obiekt Aby klasyfikowad obiekty muszą one byd w jakiś sposób opisane, zmierzone, itd. Mierzone cechy (atrybuty): szerokośd wysokośd
24 Rozpoznawanie obrazów Jak rozpoznawad prawdziwe obrazy, zdefiniowane jako zbiór wartości pikseli? (Sama zmiana oświetlenia przy obrazie tego samego obiektu wprowadza ogromne zmiany.) Co trzeba zrobid by proces klasyfikacji był możliwy? Jakich metod użyd?
25 Trudności w rozwiązywaniu problemów Problem Model Rozwiązanie Jak bardzo uproszczony może byd model, by rozwiązanie było wciąż użyteczne?
26 Trudności w rozwiązywaniu problemów Problem Model Rozwiązanie Co jest lepsze: -Dokładne rozwiązanie przybliżonego (czyli prostszego) modelu czy - Przybliżone rozwiązanie dokładnego modelu?
27 Trudności w rozwiązywaniu problemów Rozwiązania optymalne nie są wymagane! W praktyce priorytetem jest posiadanie dobrego, lecz niekoniecznie optymalnego rozwiązania, lecz odpowiednio szybko np. przed konkurencją
28 Rozpoznawanie wzorców Ludzie mają wielką zdolnośd dostrzegania zależności i wzorców. Była to, i jest nadal, zdolnośd warunkująca przetrwanie. Czasami jednak natrafiamy na pewne problemy w interpretacji faktów, używamy schematów myślenia, uproszczeo, nawyków, błędnego wnioskowania, dostrzegamy zależności tam gdzie ich nie ma.
29 Paradoksy W pewnym teleturnieju główną nagrodą jest samochód. Jest on ukryty za jedną z trzech bramek. Pozostałe dwie bramki są puste. Uczestnik obstawia jedną z bramek. Następnie prowadzący teleturniej otwiera jedna z pozostałych dwóch ujawniając, że jest ona pusta. Proponuje uczestnikowi zmianę wyboru bramki. Co powinien uczynid uczestnik teleturnieju, by prawdopodobieostwo wygranej było jak największe? Pozostad przy swoim poprzednim wyborze? Zamienid bramkę? Czy ma to jakiekolwiek znaczenie? A =? B =? C =?
30 Paradoksy Co powinien uczynid uczestnik teleturnieju, by prawdopodobieostwo wygranej było jak największe? Pozostad przy swoim poprzednim wyborze? Zamienid bramkę? Czy ma to jakiekolwiek znaczenie? Bramka C okazuje się byd pusta. A =? B =? C = puste Uczestnik wybiera bramkę A
31 Paradoksy Rozwiązanie: Uczestnik powinien zmienid swój wybór na bramkę B. A =? B =? C =? Prawdopodobieostwo wygranej = 1/3 Prawdopodobieostwo wygranej = 2/3
32 Paradoksy Rozwiązanie: Uczestnik powinien zmienid swój wybór na bramkę B. A =? B =? C = pusta Prawdopodobieostwo wygranej = 1/3 Prawdopodobieostwo wygranej = 2/3
33 Paradoksy Rozwiązanie: Paradoks Monty'ego Halla Uczestnik powinien zmienid swój wybór na bramkę B. A =? B =? Prawdopodobieośtwo wygranej = 1/3 Prawdopodobieośtwo wygranej = 2/3 Wybór większego prawdopodobieostwa wygranej.
34 Paradoksy W celi znajdują się trzej więźniowie. Dwóch z nich rano zostanie straconych. Strażnik wie jaka jest decyzja.
35 Paradoksy Jednym z więźniów jest matematyk Oblicza szanse na przeżycie i wychodzi mu 1/3 A B M 1 E E U 2 U E E 3 E U E
36 Paradoksy Matematyk pyta strażnika, który z jego towarzyszy umrze bo przecież wiadomo, że któryś z nich na pewno jest w dwójce skazanych. A B M 1 E E U 2 U E E 3 E U E Strażnik mówi, że umrze A (dla B jest sytuacja symetryczna)
37 Paradoksy Matematyk cieszy się i twierdzi, że jego szanse na przeżycie wzrosły i wynoszą teraz ½!! Czy Matematyk popełnił błąd w swoim rozumowaniu? A B M 1 E E U 2 U E E 3 E U E Strażnik mówi, że umrze A (dla B jest sytuacja symetryczna)
38 Paradoksy Przestrzeo wyników eksperymentu jest zdefiniowana w kategoriach tego, na kogo wskaże strażnik.
39 Paradoksy Wiemy, że strażnik nigdy nie wskaże na M; załóżmy że wskazał A, ograniczając możliwe przypadki do dwóch: p(egzekuja A + M) = 1/3 p(egzakuja A + B) = 1/3 * ½ = 1/6 Matematyka interesuje ten drugi przypadek szansa na jego zajście jest: 1/ 6 1 1/ 6 1/ 3 3
40 Paradoksy 1/3 1/3 1/3 A+M B+M A+B 1 1 1/2 1/2 A B A B
41 Paradoksy 1/3 1/3 A+M A+B A 1 1/2 A Matematyka interesuje to zdarzenie Strażnik wskazując na A eliminuje częśd możliwości. 1/ 6 1/ 6 1/ 3 1 3
42 Paradoksy A Starsi 2/10 30/90 Młodsi 48/90 10/10 Dwie metody leczenia: A i B Dwie grupy wiekowe: Starsi i Młodsi Ułamki pokazują jaka częśd pacjentów z danej grupy wiekowej leczonych daną metodą powróciła do zdrowia. Widad, że metoda B góruje na metodą A w każdej grupie wiekowej. B
43 Paradoksy Ogółem 50/100 40/100 A B Rezultat całościowy wskazuje na to, iż leczenie metodą A jest lepsze. Jest to tzw. paradoks Simpsona (1951).
44 Duża korelacja Korelacja a przyczynowośd
45 Słaba korelacja Korelacja a przyczynowośd
46 Brak korelacji Korelacja a przyczynowośd
47 Korelacja a przyczynowośd Bardzo łatwo nabrad błędnego przekonania o zależności przyczynowej między zmiennymi. Przykład: Wśród chorujących na raka płuc u 95% pacjentów zobserwowano żółtą skórę na palcach dłoni. Czy jest to przyczyna choroby? Czy jest to raczej współwystępowanie, a prawdziwą przyczyną jest inny, nieuwzględniony jeszcze czynnik? (Palenie papierosów).
48 Korelacja a przyczynowośd Duża korelacja między zmiennymi nie oznacza występowania między nimi związku przyczynowego.
49 Wnioskowanie Jeśli świeci słooce, to jest jasno Jeśli uznajemy prawdziwośd powyższej reguły, które z poniższych reguł są również logicznie prawdziwe? Jeśli jest jasno, to świeci słooce Jeśli nie świeci słooce, to nie jest jasno Jeśli nie jest jasno, to nie świeci słooce
50 Wnioskowanie Reguła wnoiskowania modus ponens Reguła wnioskowania modus tollens
51 Metoda NN Nearest Neighbor (Najbliższego sąsiada) x2 Zbiór uczący Przykłady z dwóch klas x1
52 Metoda NN Nearest Neighbor (Najbliższego sąsiada) x2 W metodzie NN, nieznany obiekt jest przyporządkowany do tej klasy, z której pochodzi najbliższy w sensie pewnej miary odległości przykład ze zbioru uczącego. Nieznany obiekt, który należy zaklasyfikowad do którejś z klas. x1
53 Metoda NN Nearest Neighbor (Najbliższego sąsiada) Cechy metody NN: Wielka czułośd na błędy i przekłamania w zbiorze uczącym. Brak prawdziwego uczenia, uogólnienia wiedzy Uczenie zastąpione zapamiętaniem zbioru uczącego Metody te są popularne ze względu na prostotę i intuicyjnośd oraz dają stosunkowo dobre wyniki. Metody oparte na minimalnej odległości są jednak kosztowne w realizacji ze względu na koniecznośd archiwizowania ciągu uczącego w pamięci oraz czasochłonnego obliczania odległości rozpoznawanego obiektu od wszystkich elementów ciągu uczącego, co sprawia, że konieczne jest zastosowanie dużych mocy obliczeniowych lub godzenie się z długim czasem rozpoznawania.
54 Metoda αnn Na początku określany jest parametr α, potem pojawia się obiekt rozpoznawania i obliczane są wartości jego odległości od wszystkich obiektów ciągu uczącego. Następnie dokonywane jest uporządkowanie ciągu uczącego według rosnących odległości. Później wybiera się α początkowych obiektów ciągu, tworząc podzbiór, który następnie rozbijany jest na podzbiory związane z poszczególnymi klasami. Funkcje przynależności mogą byd teraz wyznaczone na podstawie liczebności tych podzbiorów. Metoda ta zapobiega błędom wynikającym z pomyłek w ciągu uczącym ale ogranicza czułośd metody.
55 Metoda j N NN Określa się tu przynależnośd nieznanego obiektu do tej klasy, do której należy j N -ty w kolejności element uporządkowanego zbioru ciągu uczącego.
56 Metody wzorców 1. Z najprostszym przypadkiem rozpoznawania obrazów mamy do czynienia wtedy, gdy klasy podobieostwa są reprezentowane przez wektory wzorcowe. 2. Są one odpowiednikami klas, są to zbiory nieuporządkowane, a wektory wzorcowe są numerowane w poszczególnych klasach. 3. Założono, że każdą klasę reprezentuje co najmniej jeden wektor wzorcowy, lecz zbiory takich wektorów są skooczone.
57 Metody wzorców Metoda uogólnionych wzorców i otoczeń kulistych
58 Metody wzorców Metoda uogólnionych wzorców i otoczeń kulistych
59 Metody wzorców Metoda uogólnionych wzorców i otoczeń kulistych
60 Metody liniowe Funkcja decyzyjna
61 Metody liniowe Perceptron Działa, jeśli dane są liniowo separowalne (tzn. jeśli istnieje rozwiązanie). System liniowy uczy się uogólnia wiedzę. Cała wiedza zawarta jest w wartościach wag.
62 Metody liniowe Co jeśli granice między klasami nie dadzą się opisad w sposób liniowy?
63 Które atrybuty wybrad? Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji
64 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Co zrobid jeśli atrybutów jest bardzo dużo? (piksele w obrazach) Curse of dimentionality - Przekleostwo wymiarowości Im więcej wymiarów tym więcej potrzeba przykładów by stworzyd dobry klasyfikator. Odległośd rośnie wraz ze wzrostem liczby wymiarów! Przykład: Odległośd między punktami początku układu współrzęnych oraz (1,1,...) w 2D (0,0) oraz (1,1) dist = sqrt(2) < w 3D (0,0,0) oraz (1,1,1) dist = sqrt(3)
65 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Curse of dimentionality - Przekleostwo wymiarowości Z drugiej strony, zgodnie z twierdzeniem Cover a, dla złożonego problemu klasyfikacji w wielowymiarowej przestrzeni jest bardziej prawdopodobne, że będzie on liniowo separowalny w przestrzeni o większej ilości wymiarów niż w przestrzeni o mniejszej ilości wymiarów. Sied neuronowa robi użytek dokładnie z tej własności. Przy większej liczbie neuronów radialnych niż wymiarowości wektora wejciowego (co w praktyce często, jeśli nie zawsze, jest spełnione) w warstwie radialnej następuje zwiększenie wymiarowości, co zwiększa prawdopodobieostwo, że dane zostaną liniowo odseparowane przez liniowe powierzchnie decyzyjne generowane przez neurony wyjściowe. Geometrycznie działanie sieci RBF polega na podziale przestrzeni wejściowej na podobszary, w których działają poszczególne neurony radialne.
66 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Curse of dimentionality - Przekleostwo wymiarowości W celu zmniejszenia liczby wymiarów z jednoczesnym zachowaniem wartościowych informacji w danych, stosuje się różne transformacje oryginalnych danych. W wyniku tej operacji problem klasyfikacyjny jest przeniesiony do nowej przestrzeni, w której prawdopodobnie łatwiej go rozwiązad. Niektóre metody uczenia (sieci neuronowe, SVM) w trakcie uczenia klasyfikatora wyznaczają jednocześnie takie transformacje.
67 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Które przykłady spośród wszystkich dostępnych wybrad do uczenia klasyfikatora? GIGO Garbage In, Garbage Out Śmieci na wejściu, śmieci na wyjściu Problem ten jest szczególnie istotny jeśli jest bardzo dużo dostępnych przykładów lub jeśli istnieje niebezpieczeostwo, że niektóre z nich są błędne.
68 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Jak uzyskad dobre efekty nauki, jeśli przykładów jest zbyt mało? Jak uzyskad dobrą generalizację stworzonego systemu? Przykład: Jak nauczyd system diagnozowad rzadką chorobę?
69 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Inne problemy Duże bazy danych Przekłamania w danych Mieszanie się danych - nakładanie się klas
70 Rozpoznawanie obrazów Jakie są cele nauki? Minimalizacja błędów na zbiorze trenującym nie oznacza małej liczby przyszłych błędów na nieznanych danych, a to właśnie jest celem. Pożądane jest przyszłe dobre działanie klasyfikatora, tzn. dobra generalizacja nabytej wiedzy.
71 Rozpoznawanie obrazów Możliwośd osiągnięcia dobrej generalizacji jest związana z wielkością PRZESTRZENI HIPOTEZ. np. przestrzeo hipotez reprezentowanych przez klasyfikatory liniowe jest dużo mniejsza niż przestrzeo hipotez wielowarstwowych sieci neuronowych. Klasyfikatory liniowe nie są tak elastyczne jak sieci neuronowe, wiec nie będą w stanie nauczyd się niektórych problemów. Z drugiej strony sieci mogą się przeuczyd i źle generalizowad.
72 Vapnik-Chervonenkis dimension Wymiar VC Vapnik-Chervonenkis dimension Maksymalny rozmiar zbioru, na którego elementach można dokonad wszystkich możliwych dychotomicznych podziałów.
73 Generalizacja klasyfikatora liniowego x2 Słaba generalizacja x1
74 Generalizacja klasyfikatora liniowego x2 Dobra generalizacja x1
75 Metoda SVM Support Vector Machines W procesie nauki nie jest minimalizowany błąd na zbiorze uczącym, a raczej maksymalizowany margines co czasami dopuszcza popełnianie błędów.
76 Metoda SVM Support Vector Machines W procesie nauki nie jest minimalizowany błąd na zbiorze uczącym, a raczej maksymalizowany margines co czasami dopuszcza popełnianie błędów.
77 Metoda SVM Support Vector Machines W procesie nauki nie jest minimalizowany błąd na zbiorze uczącym, a raczej maksymalizowany margines co czasami dopuszcza popełnianie błędów.
78 Metoda SVM Support Vector Machines
79 Metoda SVM Support Vector Machines Problem optymalizacji z ograniczeniami.
80 Metoda SVM Support Vector Machines Równoważne sformułowanie w tzw. dualnej formie. Dużo wygodniejsze praktycznie.
81 Metoda SVM Support Vector Machines Wektory podpierające definiują granice decyzyjne pozostały dane są nieistotne.
82 Problemy nieliniowe Jak rozwiązywad problemy nieliniowe? Oryginalną przestrzeo 2D zastępujemy nową Tworzymy model który uwzględnia nieliniowe zależności między atrybutami, ale jest nadal liniowy względem parametrow w, więc można użyd znanych algorytmów do problemów liniowych by znaleźd odpowiednie wartości w.
83 Problemy nieliniowe XOR x y x xor y Nie istnieje jedna linia prosta, która oddziela te dwie klasy.
84 Problemy nieliniowe Wiele metod (sieci neuronowe, SVM) najpierw przenosi problem do przestrzeni gdzie zadanie klasyfikacji jest latwiejsze (liniowe), a potem rozwiązuje go w tej nowej przestrzeni. Takie jest między innymi zadanie kolejnych warstw w sieciach neuronowych.
85 Sieci radialne
86 Sieci radialne
87 Sieci radialne i problem XOR r2 Liniowa granica decyzyjna w nowej przestrzeni ,4 1 r1 Tu umieszczamy dwa neurony radialne r1 oraz r2 W tej przestrzeni problem jest liniowy!
88 SVM w problemach nieliniowe Przeniesienie do nowej przestrzeni przez użycie kernel function K
89 SVM w problemach nieliniowe
90 Komitety klasyfikatorów Czy grupa słabych klasyfikatorów może razem osiągnąd lepsze wyniki? Słaby klasyfikator to taki, który nie myli się w niewielu ponad 50% przypadkach działa niewiele lepiej niż klasyfikator losowy. Okazuje się, że tak. Na takiej zasadzie działają algorytmy BAGGING BOOSTING RANDOM FORESTS Aby działały dobrze, takie klasyfikatory powinny byd niezależne. W praktyce ciężko to spełnid klasyfikatory nie będą niezależne, jeśli zostały wytrenowane na tych samych danych.
91 Modele czarnej skrzynki Modele tzw. czarnej skrzynki nie objaśniają swego działania, nie wiadomo dlaczego klasyfikują tak a nie inaczej. Do takich metod należą sieci neuronowe wiedza nabyta w trakcie uczenia jest zaszyta w wartościach wag, ale one same nie wyjaśniają dlaczego decyzje są takie a nie inne, które atrybuty o tym decydują, itd. Jeśli celem jest nie tylko poprawna klasyfikacja ale również zrozumienie problemu, to użyteczne są inne metody, jak np. Reguły decyzyjne ( Jeśli coś jest takie i coś innego jest takie to wtedy...) Reguły lingwistyczne (logika rozmyta, Fuzzy Logic) Drzewa decyzyjne
92 Metody Bayesowskie
93 Data mining Data mining Drążenie danych Eksploracja danych Odkrywanie wiedzy w danych
94 Data mining Odkrywanie zależności w danych głównie w olbrzymich zbiorach danych, które to zależności charakteryzują się: Dużym zakresem, czyli zachodzą dla wielu rekordów Dużą dokładnością, czyli występują od nich co najwyżej niewielkie odchylenia dla rekordów, dla których zachodzą Dużym poziomem statystycznej istotności, czyli nie są przypadkowe
95 Data mining Problemy Duże zbiory danych Liczne atrybuty Liczne kategorie Nierównomierny rozkład kategorii Inkrementacyjna aktualizacja (wciąż uaktualniane bazy dancyh) Niekompletne dane Niepoprawne dane
96 Metody uczenia maszynowego Uczenie z nauczycielem Uczenie bez nadzoru Uczenie z krytykiem (ze wzmocnieniem, ang. reinforcement learning)
97 Metody uczenia maszynowego Uczenie z nauczycielem Nauczyciel: prezentuje przykłady, z którymi związana jest prawidłowa odpowiedź etykieta klasy (w przypadku klasyfikacji) wartośd rzeczywista (w przypadku zadania regresji) zna poprawną odpowiedź jest w stanie ukierunkowad naukę np. uczenie sieci neuronowych (algorytm backpropagation)
98 Metody uczenia maszynowego Uczenie bez nadzoru Do dyspozycji systemu uczącego się jest jedynie zbiór danych bez wskazania do jakich klas te dane należą Częstym zadaniem jest automatyczne wykrycie tych klas, jeśli one istnieją
99 Metody uczenia maszynowego Uczenie z krytykiem (ze wzmocnieniem, ang. reinforcement learning) Istnieje nauczyciel, ale udziela on odpowiedzi jedynie dobrze lub źle w odpowiedzi na zachowanie systemu Przykład: uczenie się strategi gry Wygrana = dobrze Przegrana = źle
100 Metody uczenia maszynowego Uczenie z krytykiem (ze wzmocnieniem, ang. reinforcement learning) Przykład: uczenie strategii gry w Backgammon (tryktrak)
101 Analiza danych Analiza danych ma za zadanie wykrycie istniejących w danych grup podobnych przykładów, sytuacji, itp. Każda grupa zawiera przykłady, które są podobne bardziej do siebie nawzajem niż do przykładów z innych grup. Częstym zadaniem jest również streszczenie danego zbioru danych.
102 Analiza danych Problemy: Ile grup szukamy? Jak mierzyd podobieostwo? Jak sobie radzied z danymi o dużej wymiarowości (duża liczba parametrów opisujących każdy przykład)? Jak sobie radzid w dużymi zbiorami danych?
103 Analiza danych Problemy: Dane niekompletne Dane zaszumione (z błędami) Problemy dynamiczne (zmieniające się w czasie) Dane rozproszone w wielu bazach danych Przykłady znajdują się w różnych miejscach Atrybuty znajdują się w różnych miejscach Rozproszone są zarówno przykłady jak i atrybuty
104 Analiza danych Problemy: Czego tak napradę szukamy? Innych danych podobnych do znanego nam przypadku? Najbardziej podobny przykład do naszego może byd mimo wszystko bardzo odmienny Wyróżniających się grup (np. klientów)? Zmian, nowości, informacji o łączenia się grup wcześniej wyraźnie oddzielonych?
105 Analiza danych Problemy z wizualizacją i weryfikacją wyników w problemach wielowymiarowych
106 Analiza danych Trzy wyraźnie grupy (rozkład sferyczny)
107 Analiza danych
108 Czy to są oddzielne grupy? Analiza danych
109 Grupy czy "szumy"? Analiza danych
110 Analiza danych Algorytm k-średnich (K-means) Określ liczbę szukanych grup Zainicjuj centra grup losowo lub za pomocą wybranych przykładów Powtarzaj dopóki centra ulegają zmianie: Dla każdego centrum określ zbiór przykładów, dla których jest to najbliższe centrum (przy danej mierze odległości) Wylicz nowe centrum jako średnia z przykładów z poprzedniego punktu
111 Analiza danych Problemy z algorytmem k-średnich Jak dobrad liczbę grup? Zastosowad współczynniki jakości grupowania Który współczynnik jakości wybrad? Algorytm może utknąd (centrum ustala się w miejscu gdzie nie ma żadnych danych) Dobrze działa dla danych, w których istnieją wyraźnie grupy sferyczne
112 Analiza danych Algorytm rozmytych k-średnich (fuzzy k- means) Każdy przykład może należed jednocześnie do więcej niż jednej grupy, ale z różnych stopniem przynależności Brak ostrego przydziału do wybranej grupy Może byd zaletą wykrycie wątpliwych przypadków na granicy Ostry podział łatwy do otrzymania z podziału rozmytego
113 Analiza danych Duża liczba innych algorytmów Possibility clustering Algorytmy grupowania hierachicznego Sieci Kohonena Algorytm gazu neuronowego Sztuczne systemy immunologiczne Sieci diotypowe
Systemy uczące się. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Systemy uczące się Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Systemy uczące się Zaliczenie przedmiotu Egzamin Laboratorium
Metody klasyfikacji i rozpoznawania wzorców
Metody klasyfikacji i rozpoznawania wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Rozpoznawanie wzroców Zaliczenie przedmiotu
Metody klasyfikacji i rozpoznawania wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Metody klasyfikacji i rozpoznawania wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl www.michalbereta.pl Rozpoznawanie wzroców Zaliczenie przedmiotu Egzamin Laboratorium
Algorytmy immunologiczne. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Algorytmy immunologiczne Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Metody uczenia maszynowego Uczenie z nauczycielem Uczenie
Odkrywanie wiedzy w danych
Inżynieria Wiedzy i Systemy Ekspertowe Odkrywanie wiedzy w danych dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Data Mining W pewnym teleturnieju
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska
Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Twierzdzenie: Prawdopodobieostwo, że n obserwacji wybranych
Prawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów
Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
Adrian Horzyk
Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
R-PEARSONA Zależność liniowa
R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta
Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta www.michalbereta.pl W tej części: Zachowanie wytrenowanego modelu w celu późniejszego użytku Filtrowanie danych (brakujące etykiety
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW
Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym
Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie
Data Mining z wykorzystaniem programu Rapid Miner
Data Mining z wykorzystaniem programu Rapid Miner Michał Bereta www.michalbereta.pl Program Rapid Miner jest dostępny na stronie: http://rapid-i.com/ Korzystamy z bezpłatnej wersji RapidMiner Community
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
Metody klasyfikacji i rozpoznawania wzorców. Najważniejsze rodzaje klasyfikatorów
Metody klasyfikacji i rozpoznawania wzorców www.michalbereta.pl Najważniejsze rodzaje klasyfikatorów Dla określonego problemu klasyfikacyjnego (tzn. dla danego zestawu danych) należy przetestować jak najwięcej
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.
mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni
Co to jest grupowanie
Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji
Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody
Klasyfikacja LDA + walidacja
Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja
SPOTKANIE 2: Wprowadzenie cz. I
Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych
Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych WMIM, Uniwersytet Warszawski ul. Banacha 2, 02-097 Warszawa, Polska andrzejanusz@gmail.com 13.06.2013 Dlaczego
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
Reprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
Metody wypełniania braków w danych ang. Missing values in data
Analiza danych wydobywanie wiedzy z danych III Metody wypełniania braków w danych ang. Missing values in data W rzeczywistych zbiorach danych dane są często nieczyste: - niekompletne (brakujące ważne atrybuty,
Analiza składowych głównych
Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:
Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa.
GLM (Generalized Linear Models) Data Mining Wykład 6 Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa Naiwny klasyfikator Bayesa jest klasyfikatorem statystycznym -
Jeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow
UCZENIE MASZYNOWE III - SVM mgr inż. Adam Kupryjanow Plan wykładu Wprowadzenie LSVM dane separowalne liniowo SVM dane nieseparowalne liniowo Nieliniowy SVM Kernel trick Przykłady zastosowań Historia 1992
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
Drzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
SIECI RBF (RADIAL BASIS FUNCTIONS)
SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe. Krzysztof Regulski, WIMiIP, KISiM, B5, pok. 408
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe Krzysztof Regulski, WIMiIP, KISiM, regulski@aghedupl B5, pok 408 Inteligencja Czy inteligencja jest jakąś jedną dziedziną, czy też jest to nazwa