Systemy uczące się. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
|
|
- Joanna Sikora
- 8 lat temu
- Przeglądów:
Transkrypt
1 Systemy uczące się Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl
2 Systemy uczące się Zaliczenie przedmiotu Egzamin Laboratorium kolokwia + zadania projektowe Wykład (obowiązkowy) Obecności
3 Co jest na zdjęciu?
4 Iluzja Thatchera
5 Iluzja Thatchera
6 Systemy uczące się
7 Systemy uczące się
8 Systemy uczące się
9 Systemy uczące się
10 Systemy uczące się
11 Systemy uczące się
12 Systemy uczące się
13 Systemy uczące się
14 Systemy uczące się
15 Systemy uczące się
16 Systemy uczące się
17 Systemy uczące się
18 Systemy uczące się
19 Systemy uczące się
20 Systemy uczące się
21 Literatura
22 Systemy uczące się
23 Systemy uczące się Systemy uczące się Uczenie maszynowe Machine learning "Generating an abstraction from examples and/or past experiences is a well-known paradigm in machine learning. "Machine learning is programming computers to optimize a performance criterion using example data or past experiance."
24 Systemy uczące się Uczenie maszynowe przydaje się gdy: Ciężko o ekspertów w danej dziedzinie lub są oni kosztowni, a dostępne są przykłady Eksperci nie są w stanie wyjaśnid swojej wiedzy Ciężko napisad program gotowy na każdy przypadek Środowisko/warunki ulegają zmianie po uruchomieniu programu musi on posiadad zdolnośd adaptacji Optymalizacja ruchu w sieci komputerowej Niekóre problemy ciężko modelowad bezpośrednio Rozpoznawanie mowy Rozpoznawanie pisma Rozpoznawanie twarzy
25 Systemy uczące się Machine learning terminy pokrewne Sztuczna inteligencja (AI) Pattern recognition (ropoznawanie wzorców) Data mining (drążenie danych) Sieci neuronowe Signal processing Sterowanie
26 Systemy uczące się Użytecznośd metod uczenia maszynowego spowodowana jest również łatwością gromadzenia danych, które cieżko analizowad ręcznie. Przykład: Dane transakcji sieci hipermaketów.
27 Systemy uczące się Przykład: Dane transakcji sieci hipermaketów. Interesujące jest wykrywanie zależności, np. klienci, którzy kupują pewien towar (np. piwo), kupują również inny towar (np. czipsy). Reguła taka nie musi sprawdzad się w 100%, lecz mimo tego może okazad się marketingowo użyteczna.
28 Systemy uczące się Zazwyczaj zakładamy, że istnieje pewien proces (nieznany nam), który odpowiada za zależności między obserwowanymi danymi. (np. Ludzie nie kupują produktów losowo) Zadaniem uczenia maszynowego jest często stworzyd model, który w przybliżony sposób wykryje oraz/lub wyjaśni te zależności (wzorce ang. patterns), czyli będzie pewną aproksymacją (przybliżeniem) rzeczywistego procesu.
29 Systemy uczące się Jeśli metody uczenia maszynowego stosowane są do bardzo dużej ilości danych, mamy wtedy do czynienia z metodami drążenia danych (Data Mining). Duża ilośd danych wprowadza nowe wyzwania, np. możliwe jest zaprezentowanie danych systemowi jedynie raz, podczas gdy niektóre algorytmy wymagają wielu iteracji np. sieci neuronowe Jak wybrad reprezentatywny podzbiór wszystkich dostępnych danych? Dane są rozposzone, np. różne bazy przechowują częśd rekordów częśd atrybutów częśd rekordów z jedynie częścią atrybutów
30 Systemy uczące się Data mining Transakcje konsumenckie Finanse (transakcje bankowe) wykrywanie oszustw Dane z linii produkcyjnej wykrywanie stanów awaryjnych Dane medyczne automatyczna diagnoza, wykrywanie nowych rodzajów chorób Telekomunikacja ruch sieciowy Dane z eksperymentów fizycznych Dane z obserwacji astronomicznych Analiza zawartości Internetu Dane biologiczne - bioinformatyka
31 Data mining Odkrywanie zależności w danych głównie w olbrzymich zbiorach danych, które to zależności charakteryzują się: Dużym zakresem, czyli zachodzą dla wielu rekordów Dużą dokładnością, czyli występują od nich co najwyżej niewielkie odchylenia dla rekordów, dla których zachodzą Dużym poziomem statystycznej istotności, czyli nie są przypadkowe
32 Data mining Problemy Duże zbiory danych Liczne atrybuty Liczne kategorie Nierównomierny rozkład kategorii Inkrementacyjna aktualizacja (wciąż uaktualniane bazy dancyh) Niekompletne dane Niepoprawne dane
33 Systemy uczące się Uczenie maszynowe jest również pokrewne ze sztuczną inteligencją Sztuczna inteligencja musi umied wykonywad czynności, o których powiedzielibyśmy, że wymagają użycia inteligencji, gdyby były wykonywane przez człowieka Zdolnośd uczenia się Zdolnośd adaptacji do zmian Jednak metody sztucznej inteligencji (np. systemy ekspertowe) uwzględniają duży udział wiedzy eksperckiej zakodowanej np. jako zbiór reguł decyzyjnych. W uczeniu maszynowym większy nacisk jest na uczenie się na przykładach.
34 Systemy uczące się Uczenie maszynowe jest również pokrewne pojęciu rozpoznawania wzorców (ang. pattern recognition) Przykład: rozpoznawanie twarzy nieznana twarz ma byd zaklasyfikowana jako należąca do danej osoby Wzorzec to nie tylko obraz 2D lub 3D; jest to dowolny obiekt, który możemy opisad za pomocą np. wektora zmierzonych wartości atrybutów Pattern recognition skupia się przede wszystkim na wykrywaniu wzorców, na podstawie których będzie można przyszłe dane klasyfikowad do znanych klas Wykrywaniu struktury w danych, w których jeszcze nie określono wyraźnie klas klasy te mają zostad określone w wyniku działania algorytmu, np. algorytmu grupowania
35 Systemy uczące się System uczący zazwyczaj startuje z pewnego przyjętego modelu, w którym podczas uczenia optymalizacji podlegad mają pewne parametry tego modelu (np. wagi połączeo między sztucznymi neuronami).
36 Systemy uczące się Tworzony model może mied na celu Predykcję (ang. predictive) chcemy klasyfikowad przyszłe dane Wyjaśnienie zależności w danych (ang. descriptive) zależy nam na zrozumieniu procesu odpowiadającego za dane
37 Systemy uczące się Uwaga: Celem uczenia maszynowego nie jest modelowanie czy też wyjaśnianie procesów uczenia u ludzi czy zwierząt.
38 Systemy uczące się Dopasowywanie modeli do dostępnych danych jest podstawową czynnością nauk przyrodniczych. Indukcja generowanie ogólnych reguł, praw na podstawie przykładów Dedukcja wnioskowanie o konkretnym (nowym) przypadku na podstawie dostępnej wiedzy ogólnej)
39 Systemy uczące się W statystyce mówi się o inferencji (ang. inference) w przypadku generowania ogólnych reguł na podstawie danych. Proces uczenia zwany jest estymacją. Klasyfikacja nazywana jest dyskryminacją. Data mining to często odkrywanie wiedzy w danych (ang. Knowledge discovery in databases, KDD)
40 Systemy uczące się Główne typy uczenia maszynowego Uczenie pod nadzorem (ang. supervised learning) Uczenie się pojęd (klas) Uczenie bez nadzoru (ang. unsupervised learning) Tworzenie pojęd (klas) Uczenie ze wzmocnieniem (ang. reinforcement learning)
41 Systemy uczące się Główne typy uczenia maszynowego Uczenie pod nadzorem (ang. supervised learning) Istnieje z góry zadany zbiór klas, do których należą przykłady Znane są prawidłowe etykiety przykładów w zbiorze uczącym, co można wykorzystad do pomiaru postępów procesu uczenia Cel : predykcja prawidłowych etykiet dla przyszłych, nieznanych przykładów Uwaga: minimalizacja błędu klasyfikacji na zbiorze trenującym nie jest celem sama w sobie Minimalizacja błędu klasyfikacji nie jest jedynym kryterium, które można wykorzystad
42 Systemy uczące się Główne typy uczenia maszynowego Uczenie bez nadzoru (ang. unsupervised learning) Zadany jest zbiór przykładów, jednak nie zbiór klas Celem uczenia jest odnalezienie struktury w danych, tzn. zdefiniowad klasy, które później mogą byd ewentualnei użyte do uczenia pod nadzorem Odnaleziona klas jest zdefiniowana przez podzbiór przykładów, które są wyraźnie bardziej podobne do siebie oraz niepodobne do innych przykładów
43 Metody uczenia maszynowego Uczenie z krytykiem (ze wzmocnieniem, ang. reinforcement learning) Istnieje nauczyciel, ale udziela on odpowiedzi jedynie dobrze lub źle w odpowiedzi na zachowanie systemu Przykład: uczenie się strategi gry Wygrana = dobrze Przegrana = źle
44 Główne typy uczenia maszynowego Systemy uczące się Uczenie ze wzmocnieniem (ang. reinforcement learning) Polega na uczeniu strategii postępowania, rozumianej jako ciąg akcji prowadzącej do celu Pojedyncza akcja nie podlega natychmiastowej ocenie, gdyż wynik działania zależy od koocowego rezultatu całej sekwencji akcji Przykład: gra w szachy pojedynczy ruch cieżko ocenid, jednak wygrana na koocu sprawia, że strategia gry jest oceniona pozytywnie Nadaje się również do bardziej ogólnych przypadków, np. nagrody/kary pojawiają się nie tylko po dotarciu do celu, lecz również w trakcie (np.błądzenie po labiryncie) W skrajnym przypadku ocena całej strategii może nie byd liczbowa, a jedynie dobrze / źle (np. odpowiedź środowiska - organizm przeżył lub nie). Środowisko często jest zmienne a nagrody / kary są często losowe wygodne podejście przy modelowaniu strategii w grach z elementami losowości. Można również uwzględniad strategie kooperujących agentów
45 Metody uczenia maszynowego Uczenie z krytykiem (ze wzmocnieniem, ang. reinforcement learning) Przykład: uczenie strategii gry w Backgammon (tryktrak)
46 Systemy uczące się Typowe zagadnienia uczenia maszynowego Uczenie asocjacji Klasyfikacja Dyskryminacja Predykcja Wykrywanie wzorców (ang. pattern recognition) Okrywanie wiedzy (ang. knowledge extraction) Kompresja Wykrywanie wartości nietypowych (ang. outlier detection) Regresja
47 Systemy uczące się Uczenie asocjacji Interesują nas reguły typu warunkowych prawdopodobieostw P(Y/X) Przykład: basket analysis (analiza koszyka) Ludzie, którzy kupują produkt X zazwyczaj kupują również produkt Y P(czipsy / piwo) = 0.8 Reguła: 80% kupujących piwo kupuje również czipsy Ogólnie: P(Y/D) gdzie D jest pewnym zestawem atrybutów opisujących klienta
48 Systemy uczące się Klasyfikacja Przykład: credit scoring ocena wiarygodności kredytowej Dwie klasy kredytobiorcy {wiarygodny, niewiarygodny} Kredytobiorca opisany za pomocą atrybutów takich jak: wiek, przychód, wydatki miesięczne, oszczędności, zawód, stan cywilny, liczba dzieci, itp. Dyskryminacja oddzielenie dwóch klas Cel: predykcja wiarygodności przyszłych klientów
49 Systemy uczące się Pattern recognition wykrywanie wzorców Face recognition Character recognition Speech recognition
50 Systemy uczące się Okrywanie wiedzy (ang. knowledge extraction) Najlepiej w postaci zrozumiałej przez ludzi reguły Sied neuronowa może dobrze działad (dobra predykcja), ale niczego nie wyjaśniad Kompresja Odkrycie wiedzy często prowadzi do kompresji danych Przykład: wiedząc, że pewien atrybut jest sumą dwóch innych, możemy z niego całkowicie zrezygnowad Wykrywanie wartości nietypowych (ang. outlier detection) Nietypowy przykład wśród np. transakcji finansowych może oznaczad próbę oszustwa
51 Systemy uczące się Regresja Odpowiedzią systemu jest wartośd rzeczywista Przykłady predykcja ceny nieruchomości, predykcja ceny samochodu Model może zakładad pewną zależnośd funkcyjną Cena = w1 * rocznik + w2 * przebieg + w0 Regresja liniowa
52 Systemy uczące się
53 Rozpoznawanie obrazów Pojęcie obrazu to niekoniecznie ilustracja dwuwymiarowa lub scena trójwymiarowa. Obrazy to również inne obiekty, które na pierwszy rzut oka nie wyglądają jak obrazy w klasycznym rozumieniu tego słowa.
54 obiektów, zdarzeo lub innych znaczących regularności za pomocą automatycznych lub półautomatycznych środków. Rozpoznawanie obrazów ROZPOZNAWANIE OBRAZÓW, ROZPOZNAWANIE WZORCÓW (pattern recognition, machine recognition) to: analizowanie opisywanie identyfikowanie klasyfikowanie
55 Rozpoznawanie obrazów Obrazem może byd: zarówno litera jak i linie papilarne, zapis sejsmografu, przebieg elektrokardiogramu, sygnał mowy lub rentgenowskie zdjęcie narządu w organizmie człowieka. zbiór ekonomicznych parametrów opisujących gospodarkę przedsiębiorstwa może byd analizowany jako opis pewnego obiektu, co pozwala go automatycznie zaliczyd do obrazu zakładów rozwojowych, wartych inwestowania albo bliskich bankructwa
56 Rozpoznawanie obrazów INNE NAZWY Rozpoznawanie wzorców, obiektów Pattern recognition Klasyfikacja Klasteryzacja, segmentacja, grupowanie danych
57 Rozpoznawanie obrazów
58 Rozpoznawanie obrazów
59 Rozpoznawanie obrazów Grupowanie, klasteryzacja Ekstrakcja cech Sieci neuronowe Metoda PCA SVM Drzewa decyzyjne Statystyka Redukcja wymiarowości
60 Rozpoznawanie obrazów
61 Typowy problem Klasyfikacja Typowy problem rozpoznawania wzorców Mając zbiór trenujący zdecydowad, które atrybuty opisujące obiekty są wartościowe z punktu widzenia dyskryminacji klas ang. feature selection, feature extraction Zdecydowad jaki klasyfikator powinien byd użyty (jaki da najlepszy wyniki dla przyszłych danych, tzw. testowych, dla których klasa nie jest znana) jak ocenid czy różnice w działaniu klasyfikatorów są statystycznie istotne?
62 Typowy problem Klasyfikacja Typowy problem rozpoznawania wzorców Oszacowad jakiej wielkości błędu możemy się spodziewad po danym klasyfikatorze w przyszłości na nowych nieznanych danych Ocena za pomocą błędu na danych trenujących jest zazwyczaj zbyt optymistyczna
63 Typowy problem Analiza danych, wykrywanie grup / klas Typowy problem wykrywania grup / analizy danych Przykłady w zbiorze trenującym nie mają przypisanej etykiety klasy Celem jest wykrycie czy w całym zbiorze istnieją pewne podgrupy obiektów wyraźnie podobnych do siebie oraz wyraźnie odmiennych od innych przykładów Ponownie: Mając zbiór trenujący zdecydowad, które atrybuty opisujące obiekty są wartościowe z punktu widzenia dyskryminacji klas Zdecydowad jaki algorytm grupowania powinien byd użyty Ile grup szukamy? Jak ocenid jakośd wyników grupowania?
64 Typowy problem Analiza danych, wykrywanie grup / klas Przyszłe dane mogą byd analizowane poprzez sprawdzenie w jakim stopniu należą do wyszczególnionych grup. Przykłady: Mając do dyspozycji historie zakupów pewnej liczby klientów, znaleźd grupy podobnie zachowujących się osób. Grupy takie mogą stad się celem specjalnie przygotowanej akcji marketingowej. Mając do dyspozycji opisy przebiegu chorób wielu pacjentów, znaleźd grupy podobnych przypadków, wyraźnie odróżniających się od pozostałych. Może to sugerowad występowanie szczególnego podtypu danej choroby. Można wtedy próbowad opracowywad specjalne terapie.
65 Rozpoznawanie obrazów Pokrewne pojęcia Data mining (drążenie danych) Machine learning (uczenie maszynowe) uczenie się pojęd (uczenie pod nadzorem, z nauczycielem) tworzenie pojęd (analiza skupieo, grupowanie) aproksymacja funkcji Metody sztucznej inteligencji Soft computing (obliczenia miękkie) Sieci neuronowe Algorytmy ewolucyjne
66 Rozpoznawanie obrazów Obiekt Aby klasyfikowad obiekty muszą one byd w jakiś sposób opisane, zmierzone, itd. Mierzone cechy (atrybuty): szerokośd wysokośd
67 Rozpoznawanie obrazów Jak rozpoznawad prawdziwe obrazy, zdefiniowane jako zbiór wartości pikseli? (Sama zmiana oświetlenia przy obrazie tego samego obiektu wprowadza ogromne zmiany.) Co trzeba zrobid by proces klasyfikacji był możliwy? Jakich metod użyd?
68 Trudności w rozwiązywaniu problemów Problem Model Rozwiązanie Jak bardzo uproszczony może byd model, by rozwiązanie było wciąż użyteczne?
69 Trudności w rozwiązywaniu problemów Problem Model Rozwiązanie Co jest lepsze: -Dokładne rozwiązanie przybliżonego (czyli prostszego) modelu czy - Przybliżone rozwiązanie dokładnego modelu?
70 Trudności w rozwiązywaniu problemów Rozwiązania optymalne nie są wymagane! W praktyce priorytetem jest posiadanie dobrego, lecz niekoniecznie optymalnego rozwiązania, lecz odpowiednio szybko np. przed konkurencją
71 Rozpoznawanie wzorców Ludzie mają wielką zdolnośd dostrzegania zależności i wzorców. Była to, i jest nadal, zdolnośd warunkująca przetrwanie. Czasami jednak natrafiamy na pewne problemy w interpretacji faktów, używamy schematów myślenia, uproszczeo, nawyków, błędnego wnioskowania, dostrzegamy zależności tam gdzie ich nie ma.
72 Paradoksy W pewnym teleturnieju główną nagrodą jest samochód. Jest on ukryty za jedną z trzech bramek. Pozostałe dwie bramki są puste. Uczestnik obstawia jedną z bramek. Następnie prowadzący teleturniej otwiera jedna z pozostałych dwóch ujawniając, że jest ona pusta. Proponuje uczestnikowi zmianę wyboru bramki. Co powinien uczynid uczestnik teleturnieju, by prawdopodobieostwo wygranej było jak największe? Pozostad przy swoim poprzednim wyborze? Zamienid bramkę? Czy ma to jakiekolwiek znaczenie? A =? B =? C =?
73 Paradoksy Co powinien uczynid uczestnik teleturnieju, by prawdopodobieostwo wygranej było jak największe? Pozostad przy swoim poprzednim wyborze? Zamienid bramkę? Czy ma to jakiekolwiek znaczenie? Bramka C okazuje się byd pusta. A =? B =? C = puste Uczestnik wybiera bramkę A
74 Paradoksy Rozwiązanie: Uczestnik powinien zmienid swój wybór na bramkę B. A =? B =? C =? Prawdopodobieostwo wygranej = 1/3 Prawdopodobieostwo wygranej = 2/3
75 Paradoksy Rozwiązanie: Uczestnik powinien zmienid swój wybór na bramkę B. A =? B =? C = pusta Prawdopodobieostwo wygranej = 1/3 Prawdopodobieostwo wygranej = 2/3
76 Paradoksy Rozwiązanie: Paradoks Monty'ego Halla Uczestnik powinien zmienid swój wybór na bramkę B. A =? B =? Prawdopodobieośtwo wygranej = 1/3 Prawdopodobieośtwo wygranej = 2/3 Wybór większego prawdopodobieostwa wygranej.
77 Paradoksy W celi znajdują się trzej więźniowie. Dwóch z nich rano zostanie straconych. Strażnik wie jaka jest decyzja.
78 Paradoksy Jednym z więźniów jest matematyk Oblicza szanse na przeżycie i wychodzi mu 1/3 A B M 1 E E U 2 U E E 3 E U E
79 Paradoksy Matematyk pyta strażnika, który z jego towarzyszy umrze bo przecież wiadomo, że któryś z nich na pewno jest w dwójce skazanych. A B M 1 E E U 2 U E E 3 E U E Strażnik mówi, że umrze A (dla B jest sytuacja symetryczna)
80 Paradoksy Matematyk cieszy się i twierdzi, że jego szanse na przeżycie wzrosły i wynoszą teraz ½!! Czy Matematyk popełnił błąd w swoim rozumowaniu? A B M 1 E E U 2 U E E 3 E U E Strażnik mówi, że umrze A (dla B jest sytuacja symetryczna)
81 Paradoksy Przestrzeo wyników eksperymentu jest zdefiniowana w kategoriach tego, na kogo wskaże strażnik.
82 Paradoksy Wiemy, że strażnik nigdy nie wskaże na M; załóżmy że wskazał A, ograniczając możliwe przypadki do dwóch: p(egzekuja A + M) = 1/3 p(egzakuja A + B) = 1/3 * ½ = 1/6 Matematyka interesuje ten drugi przypadek szansa na jego zajście jest: 1/ 6 1 1/ 6 1/ 3 3
83 Paradoksy 1/3 1/3 1/3 A+M B+M A+B 1 1 1/2 1/2 A B A B
84 Paradoksy 1/3 1/3 A+M A+B A 1 1/2 A Matematyka interesuje to zdarzenie Strażnik wskazując na A eliminuje częśd możliwości. 1/ 6 1/ 6 1/ 3 1 3
85 Paradoksy A Starsi 2/10 30/90 Młodsi 48/90 10/10 Dwie metody leczenia: A i B Dwie grupy wiekowe: Starsi i Młodsi Ułamki pokazują jaka częśd pacjentów z danej grupy wiekowej leczonych daną metodą powróciła do zdrowia. Widad, że metoda B góruje na metodą A w każdej grupie wiekowej. B
86 Paradoksy Ogółem 50/100 40/100 A B Rezultat całościowy wskazuje na to, iż leczenie metodą A jest lepsze. Jest to tzw. paradoks Simpsona (1951).
87 Duża korelacja Korelacja a przyczynowośd
88 Słaba korelacja Korelacja a przyczynowośd
89 Brak korelacji Korelacja a przyczynowośd
90 Korelacja a przyczynowośd Bardzo łatwo nabrad błędnego przekonania o zależności przyczynowej między zmiennymi. Przykład: Wśród chorujących na raka płuc u 95% pacjentów zobserwowano żółtą skórę na palcach dłoni. Czy jest to przyczyna choroby? Czy jest to raczej współwystępowanie, a prawdziwą przyczyną jest inny, nieuwzględniony jeszcze czynnik? (Palenie papierosów).
91 Korelacja a przyczynowośd Duża korelacja między zmiennymi nie oznacza występowania między nimi związku przyczynowego.
92 Wnioskowanie Jeśli świeci słooce, to jest jasno Jeśli uznajemy prawdziwośd powyższej reguły, które z poniższych reguł są również logicznie prawdziwe? Jeśli jest jasno, to świeci słooce Jeśli nie świeci słooce, to nie jest jasno Jeśli nie jest jasno, to nie świeci słooce
93 Wnioskowanie Reguła wnoiskowania modus ponens Reguła wnioskowania modus tollens
94 Metoda NN Nearest Neighbor (Najbliższego sąsiada) x2 Zbiór uczący Przykłady z dwóch klas x1
95 Metoda NN Nearest Neighbor (Najbliższego sąsiada) x2 W metodzie NN, nieznany obiekt jest przyporządkowany do tej klasy, z której pochodzi najbliższy w sensie pewnej miary odległości przykład ze zbioru uczącego. Nieznany obiekt, który należy zaklasyfikowad do którejś z klas. x1
96 Metoda NN Nearest Neighbor (Najbliższego sąsiada) Cechy metody NN: Wielka czułośd na błędy i przekłamania w zbiorze uczącym. Brak prawdziwego uczenia, uogólnienia wiedzy Uczenie zastąpione zapamiętaniem zbioru uczącego Metody te są popularne ze względu na prostotę i intuicyjnośd oraz dają stosunkowo dobre wyniki. Metody oparte na minimalnej odległości są jednak kosztowne w realizacji ze względu na koniecznośd archiwizowania ciągu uczącego w pamięci oraz czasochłonnego obliczania odległości rozpoznawanego obiektu od wszystkich elementów ciągu uczącego, co sprawia, że konieczne jest zastosowanie dużych mocy obliczeniowych lub godzenie się z długim czasem rozpoznawania.
97 Metoda αnn Na początku określany jest parametr α, potem pojawia się obiekt rozpoznawania i obliczane są wartości jego odległości od wszystkich obiektów ciągu uczącego. Następnie dokonywane jest uporządkowanie ciągu uczącego według rosnących odległości. Później wybiera się α początkowych obiektów ciągu, tworząc podzbiór, który następnie rozbijany jest na podzbiory związane z poszczególnymi klasami. Funkcje przynależności mogą byd teraz wyznaczone na podstawie liczebności tych podzbiorów. Metoda ta zapobiega błędom wynikającym z pomyłek w ciągu uczącym ale ogranicza czułośd metody.
98 Metoda j N NN Określa się tu przynależnośd nieznanego obiektu do tej klasy, do której należy j N -ty w kolejności element uporządkowanego zbioru ciągu uczącego.
99 Metody wzorców 1. Z najprostszym przypadkiem rozpoznawania obrazów mamy do czynienia wtedy, gdy klasy podobieostwa są reprezentowane przez wektory wzorcowe. 2. Są one odpowiednikami klas, są to zbiory nieuporządkowane, a wektory wzorcowe są numerowane w poszczególnych klasach. 3. Założono, że każdą klasę reprezentuje co najmniej jeden wektor wzorcowy, lecz zbiory takich wektorów są skooczone.
100 Metody wzorców Metoda uogólnionych wzorców i otoczeń kulistych
101 Metody wzorców Metoda uogólnionych wzorców i otoczeń kulistych
102 Metody wzorców Metoda uogólnionych wzorców i otoczeń kulistych
103 Metody liniowe Funkcja decyzyjna
104 Metody liniowe Perceptron Działa, jeśli dane są liniowo separowalne (tzn. jeśli istnieje rozwiązanie). System liniowy uczy się uogólnia wiedzę. Cała wiedza zawarta jest w wartościach wag.
105 Metody liniowe Co jeśli granice między klasami nie dadzą się opisad w sposób liniowy?
106 Które atrybuty wybrad? Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji
107 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Co zrobid jeśli atrybutów jest bardzo dużo? (piksele w obrazach) Curse of dimentionality - Przekleostwo wymiarowości Im więcej wymiarów tym więcej potrzeba przykładów by stworzyd dobry klasyfikator. Odległośd rośnie wraz ze wzrostem liczby wymiarów! Przykład: Odległośd między punktami początku układu współrzęnych oraz (1,1,...) w 2D (0,0) oraz (1,1) dist = sqrt(2) < w 3D (0,0,0) oraz (1,1,1) dist = sqrt(3)
108 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Curse of dimentionality - Przekleostwo wymiarowości Z drugiej strony, zgodnie z twierdzeniem Cover a, dla złożonego problemu klasyfikacji w wielowymiarowej przestrzeni jest bardziej prawdopodobne, że będzie on liniowo separowalny w przestrzeni o większej ilości wymiarów niż w przestrzeni o mniejszej ilości wymiarów. Sied neuronowa robi użytek dokładnie z tej własności. Przy większej liczbie neuronów radialnych niż wymiarowości wektora wejciowego (co w praktyce często, jeśli nie zawsze, jest spełnione) w warstwie radialnej następuje zwiększenie wymiarowości, co zwiększa prawdopodobieostwo, że dane zostaną liniowo odseparowane przez liniowe powierzchnie decyzyjne generowane przez neurony wyjściowe. Geometrycznie działanie sieci RBF polega na podziale przestrzeni wejściowej na podobszary, w których działają poszczególne neurony radialne.
109 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Curse of dimentionality - Przekleostwo wymiarowości W celu zmniejszenia liczby wymiarów z jednoczesnym zachowaniem wartościowych informacji w danych, stosuje się różne transformacje oryginalnych danych. W wyniku tej operacji problem klasyfikacyjny jest przeniesiony do nowej przestrzeni, w której prawdopodobnie łatwiej go rozwiązad. Niektóre metody uczenia (sieci neuronowe, SVM) w trakcie uczenia klasyfikatora wyznaczają jednocześnie takie transformacje.
110 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Które przykłady spośród wszystkich dostępnych wybrad do uczenia klasyfikatora? GIGO Garbage In, Garbage Out Śmieci na wejściu, śmieci na wyjściu Problem ten jest szczególnie istotny jeśli jest bardzo dużo dostępnych przykładów lub jeśli istnieje niebezpieczeostwo, że niektóre z nich są błędne.
111 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Jak uzyskad dobre efekty nauki, jeśli przykładów jest zbyt mało? Jak uzyskad dobrą generalizację stworzonego systemu? Przykład: Jak nauczyd system diagnozowad rzadką chorobę?
112 Rozpoznawanie obrazów Problemy w zadaniach rozpoznawania i klasyfikacji Inne problemy Duże bazy danych Przekłamania w danych Mieszanie się danych - nakładanie się klas
113 Rozpoznawanie obrazów Jakie są cele nauki? Minimalizacja błędów na zbiorze trenującym nie oznacza małej liczby przyszłych błędów na nieznanych danych, a to właśnie jest celem. Pożądane jest przyszłe dobre działanie klasyfikatora, tzn. dobra generalizacja nabytej wiedzy.
114 Rozpoznawanie obrazów Możliwośd osiągnięcia dobrej generalizacji jest związana z wielkością PRZESTRZENI HIPOTEZ. np. przestrzeo hipotez reprezentowanych przez klasyfikatory liniowe jest dużo mniejsza niż przestrzeo hipotez wielowarstwowych sieci neuronowych. Klasyfikatory liniowe nie są tak elastyczne jak sieci neuronowe, wiec nie będą w stanie nauczyd się niektórych problemów. Z drugiej strony sieci mogą się przeuczyd i źle generalizowad.
115 Vapnik-Chervonenkis dimension Wymiar VC Vapnik-Chervonenkis dimension Maksymalny rozmiar zbioru, na którego elementach można dokonad wszystkich możliwych dychotomicznych podziałów.
116 Generalizacja klasyfikatora liniowego x2 Słaba generalizacja x1
117 Generalizacja klasyfikatora liniowego x2 Dobra generalizacja x1
118 Metoda SVM Support Vector Machines W procesie nauki nie jest minimalizowany błąd na zbiorze uczącym, a raczej maksymalizowany margines co czasami dopuszcza popełnianie błędów.
119 Metoda SVM Support Vector Machines W procesie nauki nie jest minimalizowany błąd na zbiorze uczącym, a raczej maksymalizowany margines co czasami dopuszcza popełnianie błędów.
120 Metoda SVM Support Vector Machines W procesie nauki nie jest minimalizowany błąd na zbiorze uczącym, a raczej maksymalizowany margines co czasami dopuszcza popełnianie błędów.
121 Metoda SVM Support Vector Machines
122 Metoda SVM Support Vector Machines Problem optymalizacji z ograniczeniami.
123 Metoda SVM Support Vector Machines Równoważne sformułowanie w tzw. dualnej formie. Dużo wygodniejsze praktycznie.
124 Metoda SVM Support Vector Machines Wektory podpierające definiują granice decyzyjne pozostały dane są nieistotne.
125 Problemy nieliniowe Jak rozwiązywad problemy nieliniowe? Oryginalną przestrzeo 2D zastępujemy nową Tworzymy model który uwzględnia nieliniowe zależności między atrybutami, ale jest nadal liniowy względem parametrow w, więc można użyd znanych algorytmów do problemów liniowych by znaleźd odpowiednie wartości w.
126 Problemy nieliniowe XOR x y x xor y Nie istnieje jedna linia prosta, która oddziela te dwie klasy.
127 Problemy nieliniowe Wiele metod (sieci neuronowe, SVM) najpierw przenosi problem do przestrzeni gdzie zadanie klasyfikacji jest latwiejsze (liniowe), a potem rozwiązuje go w tej nowej przestrzeni. Takie jest między innymi zadanie kolejnych warstw w sieciach neuronowych.
128 Sieci radialne
129 Sieci radialne
130 Sieci radialne i problem XOR r2 Liniowa granica decyzyjna w nowej przestrzeni ,4 1 r1 Tu umieszczamy dwa neurony radialne r1 oraz r2 W tej przestrzeni problem jest liniowy!
131 SVM w problemach nieliniowe Przeniesienie do nowej przestrzeni przez użycie kernel function K
132 SVM w problemach nieliniowe
133 Komitety klasyfikatorów Czy grupa słabych klasyfikatorów może razem osiągnąd lepsze wyniki? Słaby klasyfikator to taki, który nie myli się w niewielu ponad 50% przypadkach działa niewiele lepiej niż klasyfikator losowy. Okazuje się, że tak. Na takiej zasadzie działają algorytmy BAGGING BOOSTING RANDOM FORESTS Aby działały dobrze, takie klasyfikatory powinny byd niezależne. W praktyce ciężko to spełnid klasyfikatory nie będą niezależne, jeśli zostały wytrenowane na tych samych danych.
134 Modele czarnej skrzynki Modele tzw. czarnej skrzynki nie objaśniają swego działania, nie wiadomo dlaczego klasyfikują tak a nie inaczej. Do takich metod należą sieci neuronowe wiedza nabyta w trakcie uczenia jest zaszyta w wartościach wag, ale one same nie wyjaśniają dlaczego decyzje są takie a nie inne, które atrybuty o tym decydują, itd. Jeśli celem jest nie tylko poprawna klasyfikacja ale również zrozumienie problemu, to użyteczne są inne metody, jak np. Reguły decyzyjne ( Jeśli coś jest takie i coś innego jest takie to wtedy...) Reguły lingwistyczne (logika rozmyta, Fuzzy Logic) Drzewa decyzyjne
135 Metody Bayesowskie
136 Analiza danych Analiza danych ma za zadanie wykrycie istniejących w danych grup podobnych przykładów, sytuacji, itp. Każda grupa zawiera przykłady, które są podobne bardziej do siebie nawzajem niż do przykładów z innych grup. Częstym zadaniem jest również streszczenie danego zbioru danych.
137 Analiza danych Problemy: Ile grup szukamy? Jak mierzyd podobieostwo? Jak sobie radzied z danymi o dużej wymiarowości (duża liczba parametrów opisujących każdy przykład)? Jak sobie radzid w dużymi zbiorami danych?
138 Analiza danych Problemy: Dane niekompletne Dane zaszumione (z błędami) Problemy dynamiczne (zmieniające się w czasie) Dane rozproszone w wielu bazach danych Przykłady znajdują się w różnych miejscach Atrybuty znajdują się w różnych miejscach Rozproszone są zarówno przykłady jak i atrybuty
139 Analiza danych Problemy: Czego tak napradę szukamy? Innych danych podobnych do znanego nam przypadku? Najbardziej podobny przykład do naszego może byd mimo wszystko bardzo odmienny Wyróżniających się grup (np. klientów)? Zmian, nowości, informacji o łączenia się grup wcześniej wyraźnie oddzielonych?
140 Analiza danych Problemy z wizualizacją i weryfikacją wyników w problemach wielowymiarowych
141 Analiza danych Trzy wyraźnie grupy (rozkład sferyczny)
142 Analiza danych
143 Czy to są oddzielne grupy? Analiza danych
144 Grupy czy "szumy"? Analiza danych
145 Analiza danych Algorytm k-średnich (K-means) Określ liczbę szukanych grup Zainicjuj centra grup losowo lub za pomocą wybranych przykładów Powtarzaj dopóki centra ulegają zmianie: Dla każdego centrum określ zbiór przykładów, dla których jest to najbliższe centrum (przy danej mierze odległości) Wylicz nowe centrum jako średnia z przykładów z poprzedniego punktu
146 Analiza danych Problemy z algorytmem k-średnich Jak dobrad liczbę grup? Zastosowad współczynniki jakości grupowania Który współczynnik jakości wybrad? Algorytm może utknąd (centrum ustala się w miejscu gdzie nie ma żadnych danych) Dobrze działa dla danych, w których istnieją wyraźnie grupy sferyczne
147 Analiza danych Algorytm rozmytych k-średnich (fuzzy k- means) Każdy przykład może należed jednocześnie do więcej niż jednej grupy, ale z różnych stopniem przynależności Brak ostrego przydziału do wybranej grupy Może byd zaletą wykrycie wątpliwych przypadków na granicy Ostry podział łatwy do otrzymania z podziału rozmytego
148 Analiza danych Duża liczba innych algorytmów Possibility clustering Algorytmy grupowania hierachicznego Sieci Kohonena Algorytm gazu neuronowego Sztuczne systemy immunologiczne Sieci diotypowe
Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Co jest na zdjęciu? Iluzja Thatchera Iluzja Thatchera Rozpoznawanie
Metody klasyfikacji i rozpoznawania wzorców
Metody klasyfikacji i rozpoznawania wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Rozpoznawanie wzroców Zaliczenie przedmiotu
Metody klasyfikacji i rozpoznawania wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Metody klasyfikacji i rozpoznawania wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl www.michalbereta.pl Rozpoznawanie wzroców Zaliczenie przedmiotu Egzamin Laboratorium
Algorytmy immunologiczne. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Algorytmy immunologiczne Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Metody uczenia maszynowego Uczenie z nauczycielem Uczenie
Odkrywanie wiedzy w danych
Inżynieria Wiedzy i Systemy Ekspertowe Odkrywanie wiedzy w danych dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Data Mining W pewnym teleturnieju
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Twierzdzenie: Prawdopodobieostwo, że n obserwacji wybranych
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Prawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska
Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
SPOTKANIE 2: Wprowadzenie cz. I
Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
w ekonomii, finansach i towaroznawstwie
w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
data mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
Adrian Horzyk
Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Sztuczne sieci neuronowe (SNN)
Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe
Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta
Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta www.michalbereta.pl W tej części: Zachowanie wytrenowanego modelu w celu późniejszego użytku Filtrowanie danych (brakujące etykiety
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW
Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,
Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów
Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski
Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra
Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2
Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł
dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych
- Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym
Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród
Data Mining z wykorzystaniem programu Rapid Miner
Data Mining z wykorzystaniem programu Rapid Miner Michał Bereta www.michalbereta.pl Program Rapid Miner jest dostępny na stronie: http://rapid-i.com/ Korzystamy z bezpłatnej wersji RapidMiner Community
Analiza składowych głównych
Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska
Systemy ekspertowe i sztuczna inteligencja dr Agnieszka Nowak Brzezioska Email: agnieszka.nowak@us.edu.pl Architektura SE Pojęcia z dziedziny systemów ekspertowych Inżynieria wiedzy - dziedzina sztucznej
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
R-PEARSONA Zależność liniowa
R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe
Klasyfikacja metodą Bayesa
Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru