IV. Metody genetyczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "IV. Metody genetyczne"

Transkrypt

1 SZTUCZNA INTELIGENCJA W FINANSACH IV. Metody genetyczne Jerzy KORCZAK Metody sztucznej ewolucji Algorytmy genetyczne Programowanie genetyczne Systemy klasyfikatorow Strategie ewolucyjne Podstawa symulacji : Ewolucja populacji rozwiazan poprzez procesy selekcji, krzyzowania, mutacji i reprodukcji Ch. DARWIN «On the Origin of Species by Means of Natural Selection», 1859 «surivival of the fittest» J.Korczak, 1 J.Korczak, ULP 2 Algorytm ewolucji t:=0 initpopulation P(t) //initialize a usually random population evaluate P(t) // evaluate fitness of all individuals WHILE not done DO // test for termination criterion t:=t + 1 P := selectparents P(t) // sub-population for offspring production recombine P (t) // recombine the «genes» of selected parents mutate P (t) // perturb the mated population stochastically evaluate P (t) // evaluate new fitness P :=survive P, P (t) // select the survivors OD END EA Prosty przyklad Cel : Maksymalizacja funkcji f(x) = x 2 gdzie x [0...31] 1. Kodowanie Generacja pierwszej populacji (n=4) NoChaîne PopInit x f(x) J.Korczak, ULP 3 J.Korczak, ULP 4 3. Operatory genetyczne - Selekcja : mechanizm «ruletki» Nr PopInit x f(x) fi/s f Suma Srednia Krzyzowanie ,11000,11000,10011 J.Korczak, ULP 5 31% 6% 14% 49% 4. Operatory genetyczne : krzyzowanie, mutacja Nr Rodzice Partner lokx. Dzieci x f(x) Suma 1754 Srednia 439 Max Mutacja : p mut = 1/20 ; nr pozycji -> rand() = J.Korczak, ULP 6 1

2 Fitness function Maksymalizacja funkcji Dany jest model o P parametrach. Jakosc tego modelu mierzy funkcja F(P) Zadanie optymalizacji polega na znalezieniu takiego punktu p* ktory maksymalizuje funkcje oceny. Przyklad: Znalezc taka pare (x m,y m ) ktore maksymalizuje f(x,y) = cos 2 (npr) exp (-r 2 / 2 ), r 2 = x 2 +y 2, x,y [0.0, 1.0] gdzie n oraz sa stalymi. J.Korczak, ULP 7 J.Korczak, ULP 8 Operatory genetyczne: selekcja, mutacja, reprodukcja Selekcja Selekcja proporcjonalna F i /SF i : kolo ruletki Selekcja wg pozycji Selekcja turniejowa, Mutacja Eksploracja przestrzeni rozwiazan Mutacja adaptacyjna, Rekreacja populacji (utworzenie nastepnej populacji) Strategia elitarna Strategia eugeniczna, Operatory genetyczne: Krzyzowanie Krzyzowanie 1-no punktowe AA AAAAA AABBBBB BB BBBBB BBAAAAA Krzyzowanie 2-punktowe AA AAA AA AABBBAA BB BBB BB BBAAABB Krzyzownie wielo-punktowe AAAAAAA BBBBBBB BAABBBA ABBAAAB J.Korczak, ULP 9 J.Korczak, ULP 10 Projekt ibe-realtime Expert Discovery and Database Connections Consulting and simulations Stock trading using genetic algorithms Trading expert model: a subset of trading rules each 5 sec aggregation Database Quotes Experts Clients Supervisor each 1 min provider Oracle ias server Expert Generator Technical trading rules and indicators [W.Colby et T. Meyers, J. Murphy] IF conditions are satisfied THEN decision financial indicators buy, hold or sell Initial wealth of expert: C 0 n 0 P t m Quality of trading expert = F(return, risk) J.Korczak, ULP 11 J.Korczak, ULP 12 2

3 Technical trading rules Rate Of Change (ROC) IF ROC is-greater-than (1+e) THEN BUY, ELSE IF ROC is-less-than (1-e) THEN SELL ELSE HOLD Reguly tradingu : Srednia ruchoma Peugeot Ease of Movement Value (EMV) IF indicator EMV is positive THEN BUY ELSE IF indicator EMV is negative THEN SELL ELSE HOLD Price Channel IF current-price > max of n preceding prices THEN BUY ELSE IF current-price < min of n preceding prices THEN SELL ELSE HOLD Irrational rules: friday 13th, signs of Zodiac, etc. Rgula : Kup : kiedy SR przebija kurs à la hausse Sprzedaj : kiedy SR przebija kurs à la baisse J.Korczak, ULP 13 J.Korczak, ULP 14 Genetic encoding of experts Are some rules more efficient? Each trading expert is encoded as a binary string, a chromosome: R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 Genes represent the rules to be executed while examining financial data. no rule consistently outperforms the others J.Korczak, ULP 15 J.Korczak, ULP 16 Przestrzen rozwiazan population initiale Projekt ibe-realtime Expert Discovery and Database Connections Consulting and simulations each 5 sec provider aggregation each 1 min Database Quotes Experts Clients Oracle ias server Supervisor Expert Generator J.Korczak, ULP 17 J.Korczak, ULP 18 3

4 Bourse-Experts : Real-time stock trading Planowanie zadan: Job Shop Scheduling Dane : zbior zadan do wykonania {J i } na m maszynach {M k }, kazde zadanie J i jest zlozone z m i operacji {o i1, o i2,, o mi }, operacja o ik : { id, czas wykonania t k, maszyna M k } Cel : Minimalizacja calkowitego czasu wykonania T min (T max ) = min (max (t ik ) : J i J, M k M) gdzie T max jest czasem wykonania przy spelnieniu ograniczen nastepstwa zadan i zasobow. Liczba mozliwych planow realizacji zadan: (n!) m J.Korczak, ULP 19 J.Korczak, ULP 20 Przyklad Dane sa 4 zadania (A, B, C, D) do wykonania na 4 maszynach (M1, M2, M3, M4). Kodowanie (reprezentacja) rozwiazan Przyklad : chromozom ADBC A1 (T=2, M1), A2(T=3, M2), A3(T=4, M3), A4(T=5, M4). B1 (T=3, M1), B2(T=4, M3), B3(T=1, M2), B4(T=1, M4). C1 (T=5, M3), C2(T=5, M2), C3(T=2, M1), C4(T=2, M4). D1 (T=1, M1), D2(T=1, M4), D3(T=2, M3), D4(T=9, M2). --- A1 (T=2, M1) oznacza ze A1 wymaga 2 jedn czasu na M1 J.Korczak, ULP 21 J.Korczak, ULP 22 Ocena i kryterium stopu Fitness function: f(plan i) = 1/czas wykonania planu i Kryterium stopu: homogenicznosc populacji otrzymanie satysfakcjonujacego rozwiazania liczba generacji Operatory krzyzowania PMX (Partially Match Crossover) OX (Order Crossover) CX (Cycle Crossover) J.Korczak, ULP 23 J.Korczak, ULP 24 4

5 PMX PMX Etap 2 : Zamienic strefy krzyzowania A : B : Etap 1 : Wybrac losowo strefe krzyzowania Przyklad : A : A : A : B : B : Etap 3: Zachowac geny nie bedace w strefie krzyzowania A : B : J.Korczak, ULP 25 J.Korczak, ULP 26 PMX Mutacja Etap 4: Skompletowac genami homologicznymi A : B : Przypomnienie : Exemple : A : A : A : B : J.Korczak, ULP 27 J.Korczak, ULP 28 J.Korczak, ULP 29 J.Korczak, ULP 30 5

6 TSP: Problem komiwojazera Poszukiwanie najkrotszej marszruty przez dane miasta Zlozonosc: O(n!) Przyklad : Regresja symboliczna Cel : wygenerowanie funkcji przechodzacej przez punkty: (x 1, y 1 ), (x 2, y 2 ),, (x n, y n ), Funkcje elementarne : +,-,*,/, sin, cos, log, exp Terminal : x Fitness : SI(f(x i ) y i )I dla 20 losowych punktow Kryterium stopu : MaxLiczbaGen LUB I(f(x i ) y i )I < W tym przykladzie 20 punktow zostalo wygenerowanych funkcja: f(x) = x 4 + x 3 + x 2 + x J.Korczak, ULP 31 J.Korczak, ULP 32 Programowanie genetyczne : Aproksymacja funkcji Podsumowanie Adaptacyjnosc Modularnosc Robustness Latwosc implementacji Nie jest konieczna doglebna znajomosc dzialania modelu Latwosc hybrydyzacji (sieci neuronowe, heurystyki) Latwosc implementacji rownoleglej algorytmu J.Korczak, ULP 33 J.Korczak, ULP 34 6

Sieci neuronowe i algorytmy ewolucyjne

Sieci neuronowe i algorytmy ewolucyjne Metody sztucznej ewolucji Sieci neuronowe i algorytmy ewolucyjne IV. Algorytmy ewolucyjne Algorytmy genetyczne Programowanie genetyczne Systemy klasyfikatorow Strategie ewolucyjne Podstawa symulacji :

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

ALHE Z11 Jarosław Arabas wykład 11

ALHE Z11 Jarosław Arabas wykład 11 ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement

Bardziej szczegółowo

ALGORYTMY GENETYCZNE ćwiczenia

ALGORYTMY GENETYCZNE ćwiczenia ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Algorytmy genetyczne (AG)

Algorytmy genetyczne (AG) Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,

Bardziej szczegółowo

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM

IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM Artykuł zawiera opis eksperymentu, który polegał na uyciu algorytmu genetycznego przy wykorzystaniu kodowania

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

LABORATORIUM 1: Program Evolutionary Algorithms

LABORATORIUM 1: Program Evolutionary Algorithms Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 1: Program Evolutionary Algorithms opracował:

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Algorytmy ewolucyjne 1

Algorytmy ewolucyjne 1 Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 5fitness f. value EVOLUTIONARY

Bardziej szczegółowo

Algorytmy ewolucyjne `

Algorytmy ewolucyjne ` Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć

Bardziej szczegółowo

Modyfikacje i ulepszenia standardowego algorytmu genetycznego

Modyfikacje i ulepszenia standardowego algorytmu genetycznego Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

Algorytmy ewolucyjne (3)

Algorytmy ewolucyjne (3) Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

Zadanie 5 - Algorytmy genetyczne (optymalizacja)

Zadanie 5 - Algorytmy genetyczne (optymalizacja) Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania

Bardziej szczegółowo

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

Programowanie genetyczne (ang. genetic programming)

Programowanie genetyczne (ang. genetic programming) Programowanie genetyczne (ang. genetic programming) 1 2 Wstęp Spopularyzowane przez Johna Kozę na początku lat 90-tych. Polega na zastosowaniu paradygmatu obliczeń ewolucyjnych do generowania programów

Bardziej szczegółowo

Algorytmy genetyczne w optymalizacji

Algorytmy genetyczne w optymalizacji Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

Algorytmy ewolucyjne NAZEWNICTWO

Algorytmy ewolucyjne NAZEWNICTWO Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne

Bardziej szczegółowo

LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch

LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

Ściągawka z Matlaba / Octave

Ściągawka z Matlaba / Octave Ściągawka z Matlaba / Octave www.mat.uni.torun.pl/~piersaj 2010-10-19 1 2 3 4 Strony domowe środowisk http://www.gnu.org/software/octave/index.html http://www.mathworks.com/ Dokumentacja http://www.mathworks.com/academia/student_center/

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne wprowadzenie Piotr Lipiński lipinski@ii.uni.wroc.pl Piotr Lipiński Algorytmy ewolucyjne p.1/16 Cel wykładu zapoznanie studentów z algorytmami ewolucyjnymi, przede wszystkim nowoczesnymi

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Standardowy algorytm genetyczny

Standardowy algorytm genetyczny Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE

LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE

ALGORYTMY EWOLUCYJNE 1 ALGORYTMY FITNESS F. START COMPUTATION FITNESS F. COMPUTATION EWOLUCYJNE INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f.

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA

ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 0 ALGORYTMY EWOLUCYJNE 2 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie

Bardziej szczegółowo

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU

Bardziej szczegółowo

Zaawansowane programowanie

Zaawansowane programowanie Zaawansowane programowanie wykład 1: wprowadzenie + algorytmy genetyczne Plan wykładów 1. Wprowadzenie + algorytmy genetyczne 2. Metoda przeszukiwania tabu 3. Inne heurystyki 4. Jeszcze o metaheurystykach

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Techniki ewolucyjne - algorytm genetyczny i nie tylko

Techniki ewolucyjne - algorytm genetyczny i nie tylko Reprezentacja binarna W reprezentacji binarnej wybór populacji początkowej tworzymy poprzez tablice genotypów (rys.1.), dla osobników o zadanej przez użytkownika wielkości i danej długości genotypów wypełniamy

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: JIS AD-s Punkty ECTS: 4. Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza danych

Rok akademicki: 2013/2014 Kod: JIS AD-s Punkty ECTS: 4. Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza danych Nazwa modułu: Algorytmy genetyczne i ich zastosowania Rok akademicki: 2013/2014 Kod: JIS-2-201-AD-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność:

Bardziej szczegółowo

ALGORYTMY GENETYCZNE (wykład + ćwiczenia)

ALGORYTMY GENETYCZNE (wykład + ćwiczenia) ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

2014-01-10 ZARZĄDZANIE WIEDZĄ I TECHNOLOGIE WSPOMAGAJĄCE. Plan i cele wykładu. Wprowadzenie. Systemy Informacyjne Zarządzania

2014-01-10 ZARZĄDZANIE WIEDZĄ I TECHNOLOGIE WSPOMAGAJĄCE. Plan i cele wykładu. Wprowadzenie. Systemy Informacyjne Zarządzania Systemy Informacyjne Zarządzania Wprowadzenie ZARZĄDZANIE WIEDZĄ I TECHNOLOGIE WSPOMAGAJĄCE Jerzy Korczak Uniwersytet Ekonomiczny, Wrocław Katedra Technologii Informacyjnych jerzy.korczak at ue.wroc.pl

Bardziej szczegółowo

OPTYMALIZACJA KONFIGURACJI ALGORYTMU EWOLUCYJNEGO DO PLANOWANIA PROCESU MONTAŻU

OPTYMALIZACJA KONFIGURACJI ALGORYTMU EWOLUCYJNEGO DO PLANOWANIA PROCESU MONTAŻU OPTYMALIZACJA KONFIGURACJI ALGORYTMU EWOLUCYJNEGO DO PLANOWANIA PROCESU MONTAŻU Tomasz JANKOWSKI Streszczenie Jednym z pierwszych zadań, jakie należy wykonać w trakcie projektowania procesu technologicznego

Bardziej szczegółowo

Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera

Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera Zastosowanie technologii nvidia CUDA do zrównoleglenia algorytmu genetycznego dla problemu komiwojażera Adam Hrazdil Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V hrazdil@op.pl

Bardziej szczegółowo

Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji

Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji Kolejna metoda informatyczna inspirowana przez Naturę - algorytmy genetyczne Struktura molekuły DNA nośnika informacji genetycznej w biologii Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R.

Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Znaleźć x X taki, że f(x) jest maksimum (minimum) funkcji

Bardziej szczegółowo

LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2

LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Ź Ź Ó Ł Ś Ź Ń Ż Ę Ę ź Ę Ź ĘĄ ż ź Ę Ź Ż ź Ź Ł ź Ę Ż ż Ż Ą ź ż Ż Ż ż Ź ż ć ć ć Ż ż ż Ź ż ż Ź Ź Ż ć ć Ą Ż ć Ż Ń Ó ż ć ż Ż ż Ż Ź Ż ż ż Ę ż Ź Ź Ź Ź Ź ĄĄ ź Ż Ź Ź Ź Ż Ź Ź ź Ż Ź ź ź ź Ś Ź Ę ĘĄ ż Ż Ę ż ć Ś ĄĄ Ę

Bardziej szczegółowo

Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson)

Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson) Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson) 1 2 Wprowadzenie Sztandarowy problem optymalizacji kombinatorycznej. Problem NP-trudny. Potrzeba poszukiwania heurystyk. Chętnie

Bardziej szczegółowo

Na poprzednim wykładzie:

Na poprzednim wykładzie: ALGORYTMY EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3 fitness f. value FITNESS F.

Bardziej szczegółowo

Programowanie genetyczne - gra SNAKE

Programowanie genetyczne - gra SNAKE PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

Obliczenia Naturalne - Strategie ewolucyjne

Obliczenia Naturalne - Strategie ewolucyjne Literatura Historia Obliczenia Naturalne - Paweł Paduch Politechnika Świętokrzyska 3 kwietnia 2014 Paweł Paduch Obliczenia Naturalne - 1 z 44 Plan wykładu Literatura Historia 1 Literatura Historia 2 Strategia

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 20.01.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Obliczenia Naturalne - Algorytmy genetyczne

Obliczenia Naturalne - Algorytmy genetyczne Literatura Kodowanie Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 27 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych

Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022

Bardziej szczegółowo

OPTYMALIZACJA DYSKRETNA I ROBOTYCE W INFORMATYCE, AUTOMATYCE. Wojciecha Bozejki i Jaroslawa Pempery

OPTYMALIZACJA DYSKRETNA I ROBOTYCE W INFORMATYCE, AUTOMATYCE. Wojciecha Bozejki i Jaroslawa Pempery OPTYMALIZACJA DYSKRETNA W INFORMATYCE, AUTOMATYCE I ROBOTYCE Pod redakcja Wojciecha Bozejki i Jaroslawa Pempery B Oficyna Wydawnicza Politechniki Wroclawskiej Wroclaw 2012 Spis tresci Wstep 11 I Metody

Bardziej szczegółowo

Agregacja i Grupowanie Danych. Funkcje Agregacji. Opcje GROUP BY oraz HAVING

Agregacja i Grupowanie Danych. Funkcje Agregacji. Opcje GROUP BY oraz HAVING Agregacja w SQL 1 Bazy Danych Wykład p.t. Agregacja i Grupowanie Danych Funkcje Agregacji. Opcje GROUP BY oraz HAVING Antoni Ligęza ligeza@agh.edu.pl http://galaxy.uci.agh.edu.pl/~ligeza Wykorzystano materiały:

Bardziej szczegółowo

Podstawowe I/O Liczby

Podstawowe I/O Liczby Podstawowe I/O Liczby Informatyka Jolanta Bachan Implementacja algorytmów, cd. I/O: Keyboard in, screen out, no loops Jolanta Bachan 2 Implementacja algorytmów, cd. I/O: Keyboard in, screen out, no loops

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze ztuczna Inteligencja i ystemy Doradcze Przeszukiwanie przestrzeni stanów Przeszukiwanie przestrzeni stanów 1 Postawienie problemu eprezentacja problemu: stany: reprezentują opisy różnych stanów świata

Bardziej szczegółowo

Wyk lad 5: Algorytmy genetyczne

Wyk lad 5: Algorytmy genetyczne Wyk lad 5: Algorytmy genetyczne Nguyen Hung Son son@mimuw.edu.pl Page 1 of 38 Page 2 of 38 1. Wprowadzenie Algorytmy genetyczne stanowia pewna ga l aź dzia lu obliczeń ewolucyjnych, Jest to dynamicznie

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo

PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION

PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION STANISŁAW KRENICH PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION S t r e s z c z e n i e A b s t r a c t W artykule przedstawiono

Bardziej szczegółowo

Programowanie Współbieżne. Algorytmy

Programowanie Współbieżne. Algorytmy Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm : 1. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica

Bardziej szczegółowo

Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna

Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna Problemy multimodalne, rozdzielone populacje oraz optymalizacja wielokryterialna 1 2 Wprowadzenie We wszystkich algorytmach ewolucyjnych omawianych do tej pory, wszystkie osobniki były elementami jednej

Bardziej szczegółowo

Hybrydowy algorytm mrówkowy wykorzystujący algorytm genetyczny do wyznaczania trasy w systemie nawigacji

Hybrydowy algorytm mrówkowy wykorzystujący algorytm genetyczny do wyznaczania trasy w systemie nawigacji Hybrydowy algorytm mrówkowy wykorzystujący algorytm genetyczny do wyznaczania trasy w systemie nawigacji A hybrid ant algorithm using genetic algorithm to determine the route in navigation system Daniel

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA

ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA ZESZYTY NAUKOWE 81-92 Ewa FIGIELSKA 1 ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA Streszczenie: Pojęcie algorytmy ewolucyjne obejmuje metodologie inspirowane darwinowską zasadą doboru naturalnego stosowane

Bardziej szczegółowo

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB...

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB... MIO - LABORATORIUM Temat ćwiczenia: TSP - Problem komiwojażera Imię i nazwisko Rok ak. Gr. Sem. Komputer Data Podpis prowadzącego... 20 / EC3 VIII LAB...... Zadanie Zapoznać się z problemem komiwojażera

Bardziej szczegółowo

Podzapytania. Podzapytania nieskorelowane i skorelowane

Podzapytania. Podzapytania nieskorelowane i skorelowane Podzapytania w SQL 1 Bazy Danych Wykład p.t. Podzapytania. Zagnieżdżanie zapytań. Podzapytania nieskorelowane i skorelowane Antoni Ligęza ligeza@agh.edu.pl http://galaxy.uci.agh.edu.pl/~ligeza Wykorzystano

Bardziej szczegółowo

Informatyka 1. Wyrażenia i instrukcje cd., ręczna symulacja, operacje wejścia/wyjścia

Informatyka 1. Wyrażenia i instrukcje cd., ręczna symulacja, operacje wejścia/wyjścia Informatyka 1 Wykład IV Wyrażenia i instrukcje cd., ręczna symulacja, operacje wejścia/wyjścia Robert Muszyński ZPCiR IIAiR PWr Zagadnienia: instrukcja warunkowa CASE-OF-END, instrukcja pętli REPEAT-UNTIL,

Bardziej szczegółowo

ALGORYTMY IMMUNO- LOGICZNE

ALGORYTMY IMMUNO- LOGICZNE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome wykład AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS 7 VALUE fitness

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta

Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Dr Janusz Miroforidis MGI Metro Group Information Technology Polska Sp. z o.o. listopad 2010 Wprowadzenie Plan prezentacji

Bardziej szczegółowo

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE 1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 FITNESS

Bardziej szczegółowo

Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna)

Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) 1 Zagadnienia Sztucznej Inteligencji laboratorium Wprowadzenie Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) Dana jest funkcja f, jednej lub wielu zmiennych. Należy określić wartości

Bardziej szczegółowo

Laboratorium Programowania Kart Elektronicznych

Laboratorium Programowania Kart Elektronicznych Laboratorium Programowania Kart Elektronicznych Programowanie BasicCard Marek Gosławski Przygotowanie do zajęć dokumentacja ZeitControl BasicCard środowisko programistyczne karta BasicCard Potrzebne wiadomości

Bardziej szczegółowo

PROMOTION - Flexible Ducts and Accessories - FLX-REKU P13.1/2013

PROMOTION - Flexible Ducts and Accessories - FLX-REKU P13.1/2013 PROMOTION - Flexible Ducts and Accessories - FLX-REKU P13.1/2013 Offer conditions: Offer is valid until 08.11.2013 or end of stock The offer quantity is lilited All prices are EXW When placing an order

Bardziej szczegółowo

Nowoczesne techniki informatyczne Program: 1. Sztuczna inteligencja. a) definicja; b) podział: Systemy ekspertowe Algorytmy ewolucyjne Logika rozmyta Sztuczne sieci neuronowe c) historia; 2. Systemy eksperckie

Bardziej szczegółowo