ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI
|
|
- Sebastian Klimek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku: 140 ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI Podręczniki i książki pomocnicze wydane przez GWO: Matematyka 6. Podręcznik. Nowa wersja, M. Dobrowolska, M. Karpiński, P. Zarzycki (nr dopuszczenia.) Matematyka 6. Zeszyty ćwiczeń: Liczby i wyrażenia algebraiczne, część 1, Z. Bolałek, M. Dobrowolska, M. Jucewicz, A. Mysior, A. Sokołowska, P. Zarzycki, Liczby i wyrażenia algebraiczne, część 2, A. Demby, M. Dobrowolska, M. Jucewicz, Geometria, M. Dobrowolska, M. Jucewicz, P. Zarzycki Matematyka 6. Podręcznik. Wersja dla nauczyciela, praca zbiorowa Matematyka 6. Zbiór zadań. Nowa wersja, K. Zarzycka, P. Zarzycki Matematyka 6. Sprawdziany dla klasy szóstej szkoły podstawowej ( wersja dostosowana do obowiązującej podstawy programowej), M. Grochowalska Matematyka 6. Sprawdziany dla klasy szóstej szkoły podstawowej. Druga wersja ( wersja dostosowana do obowiązującej podstawy programowej), M. Karnowska Matematyka 6. Lekcje powtórzeniowe, M. Grochowalska Matematyka 6. Kalendarz szóstoklasisty, Marcin Braun Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra (4) D dopełniający ocena bardzo dobra (5) W wykraczający ocena celująca (6) Tematy nieobowiązkowe oznaczono szarym paskiem.
2 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI JEDNOSTKA TEMATYCZNA KATEGORIA A UCZEŃ ZNA: CELE KSZTAŁCENIA W UJĘCIU OPERACYJNYM WRAZ Z OKREŚLENIEM WYMAGAŃ KATEGORIA B KATEGORIA C UCZEŃ ROZUMIE: UCZEŃ UMIE: KATEGORIA D UCZEŃ UMIE: Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. Działania pisemne na ułamkach dziesiętnych. Potęgowanie liczb* nazwy działań algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000,.. kolejność wykonywania działań pojęcie potęgi algorytmy czterech działań pisemnych pojęcie potęgi potrzebę stosowania działań pamięciowych związek potęgi z iloczynem potrzebę stosowania działań pisemnych związek potęgi z iloczynem zaznaczyć i odczytać na osi liczbowej: liczbę naturalną ułamek dziesiętny (P- pamięciowo wykonać każde z czterech działań na ułamkach dziesiętnych i liczbach naturalnych obliczyć kwadrat i sześcian: liczby naturalnej ułamka dziesiętnego arytmetycznego zawierającego działania na liczbach naturalnych i ułamkach dziesiętnych tworzyć wyrażenia arytmetyczne na podstawie treści zadań i obliczać wartości tych wyrażeń (P- z zastosowaniem działań na liczbach naturalnych i ułamkach dziesiętnych pisemnie wykonać każde z czterech działań na ułamkach dziesiętnych obliczyć kwadrat i sześcian ułamka dziesiętnego arytmetycznego zawierającego działania na liczbach naturalnych i ułamkach dziesiętnych tworzyć wyrażenia arytmetyczne na podstawie treści zadań i obliczać wartości tych wyrażeń (P- z zastosowaniem działań na liczbach naturalnych i ułamkach dziesiętnych obliczyć kwadrat i sześcian: liczby naturalnej ułamka dziesiętnego zapisać liczbę w postaci potęgi porównać potęgi o równych podstawach, jeśli: podstawa jest liczbą naturalną podstawa jest ułamkiem dziesiętnym (P- porównać potęgi o równych wykładnikach, jeśli: podstawa jest liczbą naturalną podstawa jest ułamkiem dziesiętnym (P- tworzyć wyrażenia arytmetyczne na podstawie treści zadań i obliczać wartości tych wyrażeń arytmetycznego zawierającego działania na liczbach naturalnych i ułamkach dziesiętnych z zastosowaniem działań na liczbach naturalnych i ułamkach dziesiętnych tworzyć wyrażenia arytmetyczne na podstawie treści zadań i obliczać wartości tych wyrażeń arytmetycznego zawierającego działania na liczbach naturalnych i ułamkach dziesiętnych z zastosowaniem działań na liczbach naturalnych i ułamkach dziesiętnych określić ostatnią cyfrę potęgi z potęgami zapisać daną liczbę używając tylko jednej, określonej cyfry, czterech działań i potęgowania
3 Działania na ułamkach zwykłych. Ułamki zwykłe i dziesiętne. Rozwinięcia dziesiętne ułamków zwykłych. Proste, odcinki, okręgi, koła. zasadę skracania i rozszerzania ułamków zwykłych pojęcie ułamka nieskracalnego pojęcie ułamka jako: ilorazu dwóch liczb naturalnych części całości algorytm zamiany liczby mieszanej na ułamek niewłaściwy i odwrotnie algorytmy 4 działań na ułamkach zwykłych zasadę zamiany ułamka zwykłego na ułamek dziesiętny metodą rozszerzania lub skracania ułamka zasadę zamiany ułamka dziesiętnego na ułamek zwykły zasadę zamiany ułamka zwykłego na ułamek dziesiętny metodą dzielenia licznika przez mianownik pojęcie rozwinięcia dziesiętnego skończonego i rozwinięcia dziesiętnego nieskończonego okresowego warunek konieczny zamiany ułamka zwykłego na ułamek dziesiętny skończony (D) pojęcia: prosta, półprosta, odcinek, koło i okręg wzajemne położenie prostych i odcinków, prostej i okręgu (P), okręgów (P) definicje odcinków prostopadłych i odcinków równoległych elementy koła i okręgu zależność między długością promienia i średnicy zasadę skracania i rozszerzania ułamków zwykłych pojęcie ułamka jako: ilorazu dwóch liczb naturalnych części całości zasadę zamiany ułamka zwykłego na ułamek dziesiętny metodą rozszerzania lub skracania ułamka zasadę zamiany ułamka zwykłego na ułamek dziesiętny metodą dzielenia licznika przez mianownik różnicę między kołem i okręgiem, prostą i odcinkiem, prostą i półprostą konieczność stosowania odpowiednich przyrządów do rysowania figur geometrycznych arytmetycznego zawierającego potęgi (P- z potęgami (P- zaznaczyć i odczytać ułamek na osi liczbowej (K- skrócić i rozszerzyć ułamki zwykłe przez daną liczbę uzupełnić brakujący licznik lub mianownik w równościach ułamków zwykłych dodawać, odejmować, mnożyć i dzielić ułamki zwykłe potęgować ułamki zwykłe (K- obliczyć ułamek z liczby (P) arytmetycznego zawierającego 4 działania oraz potęgowanie ułamków zwykłych z zastosowaniem działań na ułamkach zwykłych (P- zamienić ułamek zwykły na ułamek dziesiętny i odwrotnie porównać ułamek zwykły z ułamkiem dziesiętnym (P- porządkować ułamki (P- zaznaczyć i odczytać ułamki zwykłe i dziesiętne na osi liczbowej (K- wykonać działania na liczbach wymiernych dodatnich (P- z działaniami na ułamkach zwykłych i dziesiętnych podać rozwinięcie dziesiętne ułamka zwykłego (R-D) określić kolejną cyfrę rozwinięcia dziesiętnego nieskończonego okresowego na podstawie skróconego zapisu porównać rozwinięcia dziesiętne nieskończone okresowe liczb podanych w skróconym zapisie (R-D) narysować za pomocą ekierki i linijki proste i odcinki prostopadłe oraz proste i odcinki równoległe narysować za pomocą ekierki i linijki proste równoległe o danej odległości od siebie (P) wskazać poszczególne elementy w okręgu i w kole kreślić koło i okrąg o danym promieniu lub średnicy z kołem, okręgiem i innymi figurami (P- obliczyć wartość ułamka piętrowego (R-D) arytmetycznego zawierającego 4 działania oraz potęgowanie ułamków zwykłych z zastosowaniem działań na ułamkach zwykłych arytmetycznego zawierającego działania na liczbach wymiernych dodatnich (R-W) z działaniami na ułamkach zwykłych i dziesiętnych określić rodzaj rozwinięcia dziesiętnego ułamka z kołem, okręgiem i innymi figurami Trójkąty, rodzaje trójkątów pochodzenie nazw poszczególnych rodzajów narysować poszczególne rodzaje
4 czworokąty i inne wielokąty. Kąty. Kąty w trójkątach i czworokątach. Konstrukcje geometryczne (część 1). nazwy boków w trójkącie równoramiennym nazwy boków w trójkącie prostokątnym zależność między bokami w trójkącie równoramiennym (P) nazwy czworokątów własności czworokątów definicję przekątnej, obwodu wielokąta zależność między liczbą boków, wierzchołków i kątów w wielokącie pojęcie kąta pojęcie wierzchołka i ramion kąta rodzaje kątów ze względu na miarę: prosty, ostry, rozwarty, pełny, półpełny wypukły, wklęsły (P) rodzaje kątów ze względu na położenie: przyległe, wierzchołkowe odpowiadające, naprzemianległe (P) zapis symboliczny kąta i jego miary sumę miar kątów wewnętrznych trójkąta miary kątów w trójkącie równobocznym (P) zależność między kątami w trójkącie równoramiennym (P) sumę miar kątów wewnętrznych czworokąta zależność między kątami w równoległoboku, trapezie (P) pojęcie konstrukcji warunek konstruowalności trójkąta trójkątów związki miarowe poszczególnych rodzajów kątów zasady konstrukcji (P) trójkątów narysować trójkąt w skali obliczyć obwód trójkąta, czworokąta wskazać na rysunku wielokąt o określonych cechach obliczyć długość boku trójkąta równobocznego, znając jego obwód (P) obliczyć długość boku trójkąta, znając długość obwodu i długości dwóch pozostałych boków (P) sklasyfikować czworokąty (P- narysować czworokąt, mając informacje o: bokach (K- przekątnych (P- z obwodem czworokąta (P- zmierzyć kąt narysować kąt o określonej mierze rozróżniać poszczególne rodzaje kątów (K- obliczyć brakujące miary kątów przyległych, wierzchołkowych (P) obliczyć brakujące miary kątów odpowiadających, naprzemianległych obliczyć brakujące miary kątów trójkąta obliczyć brakujące miary kątów czworokątów (P- obliczyć brakujące miary kątów trójkąta lub czworokąta na rysunku z wykorzystaniem miar kątów przyległych, wierzchołkowych, naprzemianległych, odpowiadających oraz własności trójkątów lub czworokątów przenieść konstrukcyjnie odcinek skonstruować odcinek jako: sumę odcinków różnicę odcinków (P) wykorzystać przenoszenie odcinków w zadaniach konstrukcyjnych (P- skonstruować trójkąt o danych trzech bokach (P) skonstruować równoległobok, znając dwa boki i przekątną sprawdzić, czy z odcinków o danych długościach można zbudować trójkąt z obwodem trójkąta, czworokąta lub innego wielokąta (R-W) rozwiązać zadanie związane z zegarem określić miarę kąta przyległego, wierzchołkowego, odpowiadającego, naprzemianległego na podstawie danych kątów na rysunku lub treści zadania obliczyć brakujące miary kątów trójkąta z wykorzystaniem miar kątów przyległych, wierzchołkowych, naprzemianległych, odpowiadających oraz sumy miar kątów wewnętrznych trójkąta z miarami kątów w trójkątach i czworokątach obliczyć brakujące miary kątów czworokąta na rysunku z wykorzystaniem miar kątów przyległych, wierzchołkowych, naprzemianległych, odpowiadających oraz własności czworokątów wykorzystać przenoszenie odcinków w zadaniach konstrukcyjnych związane z konstrukcją trójkąta o danych bokach
5 Konstrukcje geometryczne (część 2). Kalendarz i czas. Jednostki długości i jednostki masy. Skala na planach i mapach. Zaokrąglanie liczb. Kalkulator. związane z konstrukcją trójkąta o danych bokach pojęcie symetralnej odcinka pojęcie symetralnej odcinka wyznaczyć środek odcinka (P) podzielić odcinek na 4 równe części (P) skonstruować prostą prostopadłą do danej, przechodzącą przez dany punkt (P) związane z symetralną odcinka związane z prostą prostopadłą zasady dotyczące lat przestępnych (K- P) jednostki czasu jednostki długości jednostki masy pojęcie skali i planu sposób zaokrąglania liczb (P) symbol przybliżenia (P) pojęcie przybliżenia z niedomiarem i nadmiarem (W) funkcje podstawowych klawiszy funkcje klawiszy pamięci kalkulatora konieczność wprowadzenia lat przestępnych (P) możliwość i potrzebę stosowania różnorodnych jednostek długości i masy potrzebę stosowania odpowiedniej skali na mapach i planach potrzebę zaokrąglania liczb (P) korzyści płynące z umiejętności stosowania do obliczeń kalkulatora podać przykładowe lata przestępne obliczyć upływ czasu między wydarzeniami porządkować wydarzenia w kolejności chronologicznej zamienić jednostki czasu (K- z kalendarzem i czasem (P- wykonać obliczenia dotyczące długości wykonać obliczenia dotyczące masy (K- P) zamienić jednostki długości i masy porządkować wielkości podane w różnych jednostkach (P- szacować długości i masy (P- z jednostkami długości i masy (P- obliczyć skalę obliczyć długości odcinków w skali lub w rzeczywistości odczytać dane z mapy lub planu ze skalą (P- zaokrąglić liczbę do danego rzędu (P- zaokrąglić liczbę zaznaczoną na osi liczbowej wskazać liczby o podanym zaokrągleniu zaokrąglić liczbę po zamianie jednostek sprawdzić, czy kalkulator zachowuje kolejność działań wykonać obliczenia za pomocą kalkulatora (K- za pomocą kalkulatora (P- rozwiązać zadanie, odczytując dane z tabeli i korzystając z kalkulatora (P- wyznaczyć środek narysowanego okręgu skonstruować kąt 60º, 120º, 90º, 270º z symetralną odcinka wyznaczyć środek narysowanego okręgu związane z prostą prostopadłą z kalendarzem i czasem z jednostkami długości i masy ze skalą określić ilość liczb o podanym zaokrągleniu, spełniających dane warunki wykonać obliczenia za pomocą kalkulatora za pomocą kalkulatora rozwiązać zadanie, odczytując dane z tabeli i korzystając z kalkulatora (D)
6 Odczytywanie informacji z tabel i diagramów. Odczytywanie danych przedstawionych na wykresach Droga. Prędkość. Czas. Droga, prędkość, czas. Pole prostokąta. jednostki prędkości algorytm zamiany jednostek prędkości (P-D) jednostki miary pola wzór na obliczanie pola prostokąta i kwadratu znaczenie podstawowych symboli występujących w instrukcjach i opisach: diagramów map planów schematów innych rysunków zasadę sporządzania wykresów (P) znaczenie pojęcia droga w ruchu jednostajnym znaczenie pojęcia prędkość w ruchu jednostajnym potrzebę stosowania różnych jednostek prędkości (P) znaczenie pojęcia czas w ruchu jednostajnym znaczenie pojęć prędkość, droga, czas w ruchu jednostajnym pojęcie miary pola jako liczby kwadratów jednostkowych zasadę zamiany jednostek pola odczytać dane z: tabeli planu mapy diagramu znalezionych danych (K- przedstawić dane w postaci diagramu słupkowego, prostego schematu (K- odczytać dane z wykresu znalezionych danych (K- przedstawić dane w postaci wykresu (P- porównać informacje oczytane z dwóch wykresów (P- na podstawie podanej prędkości wyznaczać długość drogi przebytej w jednostce czasu obliczyć drogę w ruchu jednostajnym, znając prędkość i czas (K- z obliczaniem drogi w ruchu jednostajnym (P- porównać prędkości dwóch ciał, które przebyły jednakowe drogi w różnych czasach obliczyć prędkość w ruchu jednostajnym, znając drogę i czas zamieniać jednostki prędkości (P- porównać prędkości wyrażane w różnych jednostkach (P- z obliczaniem prędkości w ruchu jednostajnym (P- obliczyć czas w ruchu jednostajnym, znając drogę i prędkość (P- z obliczaniem czasu w ruchu jednostajnym odczytać z wykresu zależności drogi od czasu lub prędkości od czasu potrzebne dane (P- obliczyć prędkość na podstawie wykresu zależności drogi od czasu w ruchu jednostajnym (P- typu prędkość droga czas obliczyć pole prostokąta i kwadratu obliczyć pole kwadratu o danym obwodzie i odwrotnie (P- obliczyć bok prostokąta, znając jego pole i długość drugiego boku z polem prostokąta (P- zamienić jednostki pola (K- znalezionych danych przedstawić dane w postaci diagramu słupkowego, prostego schematu (D) porównać informacje oczytane z dwóch wykresów (R-W) znalezionych danych dopasować wykres do opisu sytuacji z obliczaniem drogi w ruchu jednostajnym z obliczaniem prędkości w ruchu jednostajnym (R-W) z obliczaniem prędkości w ruchu jednostajnym obliczyć prędkości na podstawie wykresu zależności drogi od czasu typu prędkość droga czas obliczyć pole figury jako sumę lub różnicę pól prostokątów (R-D) z polem prostokąta
7 Pole równoległoboku i rombu. wzór na obliczanie pola równoległoboku i rombu wyprowadzenie wzoru na obliczanie pola równoległoboku (P) zależność doboru wzoru na obliczanie pola rombu od danych Pole trójkąta. wzór na obliczanie pola trójkąta wyprowadzenie wzoru na obliczanie pola trójkąta (P) Pole trapezu. wzór na obliczanie pola trapezu wyprowadzenie wzoru na obliczanie pola trapezu (P) Rozpoznawanie figur przestrzennych. Prostopadłościany i sześciany. pojęcia: graniastosłup, ostrosłup, walec, stożek, kula elementy budowy graniastosłupa, ostrosłupa, walca, stożka, kuli pojęcie prostopadłościanu pojęcie sześcianu elementy budowy prostopadłościanu pojęcie siatki bryły wzór na obliczanie pola powierzchni prostopadłościanu i sześcianu pojęcia: graniastosłup, ostrosłup, walec, stożek, kula pojęcie prostopadłościanu pojęcie sześcianu pojęcie siatki prostopadłościanu obliczyć pole równoległoboku o danej wysokości i podstawie obliczyć pole rombu o danych przekątnych obliczyć pole narysowanego równoległoboku narysować równoległobok o danym polu (P) obliczyć długość podstawy równoległoboku, znając jego pole i wysokość opuszczoną na tę podstawę (P- obliczyć wysokość równoległoboku, znając jego pole i długość podstawy, na którą opuszczona jest ta wysokość (P- z polem równoległoboku i rombu (P- obliczyć pole trójkąta o danej wysokości i podstawie narysować trójkąt o danym polu (P- obliczyć pole narysowanego trójkąta (K- z polem trójkąta (P- obliczyć pole trapezu, mając dane długości podstaw i wysokość obliczyć pole narysowanego trapezu (K- z polem trapezu (P- wskazać graniastosłup, ostrosłup, walec, stożek, kulę wśród innych brył wskazać elementy brył na modelach wskazać w otoczeniu przedmioty przypominające kształtem walec, stożek, kulę określić rodzaj bryły na podstawie jej rzutu (P- nawiązujące do elementów budowy danej bryły (P- wskazać sześcian i prostopadłościan wśród innych brył określić liczbę poszczególnych ścian, wierzchołków, krawędzi prostopadłościanu wskazać w prostopadłościanie ściany i krawędzie prostopadłe oraz równoległe wskazać w prostopadłościanie krawędzie o jednakowej długości wskazać w prostopadłościanie ściany przystające narysować równoległobok o polu równym polu danego czworokąta (R-D) obliczyć długość przekątnej rombu, znając jego pole i długość drugiej przekątnej z polem równoległoboku i rombu podzielić trójkąt na części o równych polach (R-D) obliczyć pole figury jako sumę lub różnicę pól trójkątów i czworokątów (R-W) obliczyć wysokości trójkąta, znając długość podstawy, na którą opuszczona jest ta wysokość i pole trójkąta (R-D) obliczyć długość podstawy trójkąta, znając wysokość i pole trójkąta (R-D) narysować trójkąt o polu równym polu danego czworokąta (R-D) z polem trójkąta podzielić trapez na części o równych polach z polem trapezu obliczyć pole figury jako sumę lub różnicę pól znanych wielokątów (R-W) nawiązujące do elementów budowy danej bryły (R-W) dotyczące długości krawędzi prostopadłościanu i sześcianu (R-W) dotyczące pola powierzchni prostopadłościanu i sześcianu (R-W) dotyczące cięcia prostopadłościanu i sześcianu (W)
8 Graniastosłupy proste. Objętość graniastosłupa. Ostrosłupy. pojęcie graniastosłupa prostego nazwy graniastosłupów prostych w zależności od podstawy elementy budowy graniastosłupa prostego wzór na obliczanie pola powierzchni graniastosłupa prostego (P) pojęcie siatki graniastosłupa prostego pojęcie objętości figury jednostki objętości wzór na obliczanie objętości prostopadłościanu i sześcianu wzór na obliczanie objętości graniastosłupa prostego (P) pojęcie ostrosłupa nazwy ostrosłupów w zależności od podstawy elementy budowy ostrosłupa pojęcie wysokości ostrosłupa (P) pojęcie siatki ostrosłupa wzór na obliczanie pola powierzchni ostrosłupa (P) pojęcie czworościanu foremnego (P) pojęcie graniastosłupa prostego sposób obliczania pola powierzchni graniastosłupa prostego jako pola jego siatki różnicę między polem powierzchni a objętością zasadę zamiany jednostek objętości (P) pojęcie ostrosłupa sposób obliczania pola powierzchni jako pola siatki obliczyć sumę krawędzi prostopadłościanu i sześcianu wskazać siatkę sześcianu i prostopadłościanu na rysunku kreślić siatkę prostopadłościanu i sześcianu obliczyć pole powierzchni sześcianu obliczyć pole powierzchni prostopadłościanu wskazać graniastosłup prosty wśród innych brył określić liczbę poszczególnych ścian, wierzchołków, krawędzi graniastosłupa (P) wskazać w graniastosłupie ściany i krawędzie prostopadłe i równoległe (P) wskazać w graniastosłupie krawędzie o jednakowej długości wskazać na rysunku siatki graniastosłupa prostego kreślić siatki graniastosłupa prostego obliczyć pole powierzchni graniastosłupa prostego z zastosowaniem pól powierzchni graniastosłupów prostych rysować rzut równoległy graniastosłupa podać objętość bryły na podstawie zawartej w niej liczby sześcianów jednostkowych obliczyć objętość sześcianu o danej krawędzi obliczyć objętość prostopadłościanu o danych krawędziach obliczyć objętość graniastosłupa prostego, którego dane są: - pole podstawy i wysokość - elementy podstawy i wysokość (P- zamienić jednostki objętości (P- z objętością graniastosłupa (P- wskazać ostrosłup wśród innych brył określić liczbę poszczególnych ścian, wierzchołków, krawędzi ostrosłupa (P) obliczyć sumę długości krawędzi ostrosłupa (P) wskazać siatkę ostrosłupa (K-D) narysować siatkę ostrosłupa (P- obliczyć pole powierzchni całkowitej ostrosłupa (P-D) wskazać podstawę i ściany boczne na siatce ostrosłupa (P) rysować rzut równoległy ostrosłupa z ostrosłupem (P- z zastosowaniem pól powierzchni graniastosłupów prostych z objętością graniastosłupa prostego z ostrosłupem
9 Liczby dodatnie i liczby ujemne. Dodawanie i odejmowanie. Mnożenie i dzielenie. Zapisywanie wyrażeń algebraicznych. Obliczanie wartości wyrażeń algebraicznych. Sumy algebraiczne. Upraszczanie wyrażeń algebraicznych. Mnożenie i dzielenie wyrażeń algebraicznych przez liczby. pojęcie liczby ujemnej pojęcie liczb przeciwnych pojęcie liczb wymiernych (P) pojęcie wartości bezwzględnej (P) zasadę dodawania liczb o jednakowych znakach zasadę dodawania liczb o różnych znakach zasadę zastępowania odejmowania dodawaniem liczby przeciwnej zasadę ustalania znaku iloczynu i ilorazu pojęcia: suma, różnica, iloczyn, iloraz, kwadrat liczby pojęcie wartości liczbowej wyrażenia algebraicznego pojęcie sumy algebraicznej (P) pojęcie wyrazu sumy algebraicznej (P) pojęcie współczynnika liczbowego wyrazu sumy algebraicznej (P) pojęcie wyrazów podobnych (P) zasadę mnożenia sumy algebraicznej przez liczbę (P) zasadę dzielenia sumy algebraicznej przez liczbę (P) rozszerzenie osi liczbowej na liczby ujemne i potrafi podać przykłady liczb ujemnych zasadę dodawania liczb o jednakowych znakach zasadę dodawania liczb o różnych znakach zasadę zastępowania odejmowania dodawaniem liczby przeciwnej zasadę ustalania znaku iloczynu i ilorazu potrzebę tworzenia wyrażeń algebraicznych pojęcie sumy algebraicznej (P) pojęcie wyrazu sumy algebraicznej (P) pojęcie współczynnika liczbowego wyrazu sumy algebraicznej (P) zasadę przeprowadzania redukcji wyrazów podobnych (P) zasadę mnożenia sumy algebraicznej przez liczbę (P) zasadę dzielenia sumy algebraicznej przez liczbę (P) zaznaczyć i odczytać liczbę ujemną na osi liczbowej wymienić kilka liczb wymiernych większych lub mniejszych od danej porównać liczby wymierne zaznaczyć liczby przeciwne na osi liczbowej porządkować liczby wymierne (P- określić ilość liczb spełniających podany warunek obliczyć wartość bezwzględną liczby (P) obliczyć sumę i różnicę liczb całkowitych obliczyć sumę i różnicę liczb wymiernych obliczyć sumę wieloskładnikową (P- korzystać z przemienności i łączności dodawania (P) powiększyć lub pomniejszyć liczbę wymierną o daną liczbę uzupełnić brakujące składniki, odjemną lub odjemnik w działaniu (P- obliczyć iloczyn i iloraz liczb całkowitych obliczyć iloczyn i iloraz liczb wymiernych ustalić znak iloczynu i ilorazu złożonego (P) arytmetycznego zawierającego 4 działania na liczbach wymiernych (P- zbudować wyrażenie algebraiczne (K- obliczyć wartość liczbową wyrażenia bez jego przekształcenia (K- z obliczaniem wartości wyrażeń wskazać sumę algebraiczną wyróżnić wyrazy sumy algebraicznej wskazać współczynnik liczbowy wyrazu sumy algebraicznej zredukować wyrazy podobne (P-D) z sumą algebraiczną mnożyć sumę algebraiczną przez liczbę (P- dzielić sumę algebraiczną przez liczbę (P- z mnożeniem i dzieleniem sumy przez liczbę (P- rozwiązać zadanie związane z liczbami wymiernymi (D) rozwiązać zadanie związane z wartością bezwzględną z dodawaniem i odejmowaniem liczb wymiernych (R-W) arytmetycznego zawierającego 4 działania na liczbach wymiernych obliczyć potęgę liczby wymiernej z mnożeniem i dzieleniem liczb wymiernych zbudować wyrażenie algebraiczne (D) z budowaniem wyrażeń algebraicznych z obliczaniem wartości wyrażeń algebraicznych podać przykład wyrażenia algebraicznego przyjmującego określoną wartość dla danych wartości występujących w nim liter (R-W) z sumą algebraiczną z mnożeniem i dzieleniem sumy algebraicznej przez liczbę zapisać wyrażenie algebraiczne w prostszej postaci (R-D) Zapisywanie pojęcie równania pojęcie rozwiązania równania podać rozwiązanie prostego równania zapisać zadanie w postaci równania
10 równań. Liczba spełniająca równanie. Rozwiązywanie równań. Rozwiązywanie zadań tekstowych z zastosowaniem równań. Procenty i ułamki. Jaki to procent? Diagramy procentowe. Obliczanie procentu danej liczby. Obliczanie liczby, gdy dany jest jej procent. pojęcie rozwiązania równania zapisać zadanie w postaci równania (K- sprawdzić, czy liczba spełnia równanie odgadnąć rozwiązanie równania doprowadzić równanie do prostszej postaci (P- metodę równań równoważnych metodę równań równoważnych rozwiązać równanie bez przekształcania wyrażeń (K- rozwiązać równanie z przekształcaniem wyrażeń (R-D) zapisać zadanie tekstowe za pomocą równania i rozwiązać je (K- wyrazić treść zadania za pomocą równania (P- sprawdzić poprawność rozwiązania zadania za pomocą równania (P- pojęcie procentu algorytm zamiany ułamków na procenty pojęcie diagramu algorytm obliczania ułamka liczby (P) algorytm obliczania procentu liczby (P) potrzebę stosowania procentów w życiu codziennym równoważność wyrażania części liczby ułamkiem lub procentem (P) znaczenie podstawowych symboli występujących w opisach diagramów potrzebę stosowania różnych diagramów (P) pojęcie procentu liczby jako jej części określić w procentach, jaką część figury zacieniowano zapisać ułamek o mianowniku 100 w postaci procentu zamienić ułamek na procent (K- zamienić procent na ułamek (K- porównać dwie liczby, z których jedna jest zapisana w postaci procentu (P- z procentami (P- określić, jakim ułamkiem jednej liczby jest druga (K- zamienić ułamek na procent (K- określić, jakim procentem jednej liczby jest druga (P- z określeniem, jakim procentem jednej liczby jest druga (P- odczytać dane z diagramu (K- znalezionych danych (K- przedstawić dane w postaci diagramu słupkowego (K- obliczyć % z liczby naturalnej (P) obliczyć % z liczby wymiernej wykorzystać dane z diagramów do obliczania procentu liczby (P- z obliczaniem procentu danej liczby (P- obliczyć liczbę na podstawie danego jej procentu (P- z obliczaniem liczby na podstawie danego jej procentu zapisać zadanie tekstowe za pomocą równania i rozwiązać to równanie rozwiązać równanie tożsamościowe lub sprzeczne, stosując przekształcanie wyrażeń algebraicznych, oraz zinterpretować rozwiązanie (W) za pomocą równania z procentami określić wartość licznika lub mianownika ułamka spełniającego podany warunek (R-D) z określeniem jakim procentem jednej liczby jest druga znalezionych danych z obliczaniem procentu danej liczby z obliczaniem liczby na podstawie danego jej procentu
11 Punkty w układzie współrzędnych. Długości odcinków i pola figur. Proste równoległe. Przenoszenie kątów. Konstrukcje różnych trójkątów. Dwusieczna kąta. Konstrukcje różnych kątów. pojęcie układu współrzędnych numery poszczególnych ćwiartek (P) pojęcie dwusiecznej kąta pojęcie układu współrzędnych zastosowanie jednostek układu współrzędnych narysować układ współrzędnych odczytać współrzędne punktów zaznaczyć w układzie punkty o danych współrzędnych wskazać, do której ćwiartki układu należy punkt, gdy dane są jego współrzędne (P) wyznaczyć współrzędne czwartego wierzchołka czworokąta, mając dane trzy podać długość odcinka w układzie współrzędnych obliczyć pole: czworokąta w układzie współrzędnych wielokąta w układzie współrzędnych (P- narysować w układzie współrzędnych figurę o danym polu (P- podać odległość punktu o danych współrzędnych od osi układu współrzędnych skonstruować prostą równoległą do danej, przechodzącą przez dany punkt skonstruować trapez (R-D) związane z prostą równoległą przenieść kąt (P) sprawdzić równość kątów (P) skonstruować kąt będący sumą kątów skonstruować kąt będący różnicą kątów związane z przenoszeniem kątów skonstruować trójkąt o danych dwóch bokach i kącie zawartym między nimi (D) skonstruować trójkąt, gdy dany jest bok i dwa kąty do niego przyległe (D) związane z konstrukcją różnych trójkątów podzielić kąt na połowy związane z dwusieczną kąta skonstruować kąt będący połową kąta 60º, 90º lub ich sumą (R-D) z układem współrzędnych (R-W) podać współrzędne końca odcinka spełniającego dane warunki obliczyć pole wielokąta w układzie współrzędnych związane z prostą równoległą związane z przenoszeniem kątów związane z konstrukcją różnych trójkątów związane z dwusieczną kąta
Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI
Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Ocena dopuszczająca: - nazwy działań - algorytm mnożenia i dzielenia
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI NA OCENĘ DOPUSZCZAJĄCĄ : UCZEŃ zna nazwy działań (K) DZIAŁ I : LICZBY NATURALNE I UŁAMKI zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10,
Bardziej szczegółowoWymagania edukacyjne z matematyki dla kl. VI
Wymagania edukacyjne z matematyki dla kl. VI Semestr I Wymagane wiadomości i umiejętności (uczeń zna, umie, potrafi) na ocenę: dopuszczającą: nazwy argumentów działań algorytmy czterech działań pisemnych
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie VI szkoły podstawowej w roku szkolnym 2016/2017
Wymagania edukacyjne z matematyki w klasie VI szkoły podstawowej w roku szkolnym 2016/2017 I. LICZBY NATURALNE I UŁAMKI Zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000,.. Zna
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015
Wymagania konieczne (ocena dopuszczająca): nazwy działań (K) algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000,.. (K) kolejność wykonywania działań (K) pojęcie potęgi (K) algorytmy
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 6 PROGRAM NAUCZANIA:
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 6 PROGRAM NAUCZANIA: Matematyka z plusem. (nauczyciel prowadzący: Anna Posak-Fąs) Ocena dopuszczająca: nazwy działań algorytm mnożenia i dzielenia ułamków dziesiętnych
Bardziej szczegółowoSZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KL VI SZKOŁY PODSTAWOWEJ
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KL VI SZKOŁY PODSTAWOWEJ LICZBY NATURALNE I UŁAMKI - zna nazwy argumentów działań - zna algorytmy czterech działań pisemnych - zna algorytm mnożenia i
Bardziej szczegółowoWymagania programowe matematyka kl. VI. Okres I. Na dopuszczający: Uczeń zna:
Wymagania programowe matematyka kl. VI Okres I Na dopuszczający: nazwy działań; algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000, ; kolejność wykonywania działań; algorytmy czterech
Bardziej szczegółowoWYMAGANIA EDUKACYJNE
SZKOŁA PODSTAWOWA W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie 6 Szkoły Podstawowej str. 1 Liczby naturalne
Bardziej szczegółowoWYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR. I. Liczby naturalne i ułamki. Na ocenę dopuszczającą uczeń:
WYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR I. Liczby naturalne i ułamki - zna nazwy argumentów działań zna kolejność wykonywania działań zna algorytmy czterech działań pisemnych potrafi pamięciowo
Bardziej szczegółowoZałącznik 3 Szczegółowe wymagania edukacyjne kl. VI DZIAŁ PROGRAMOWY
Załącznik 3 Szczegółowe wymagania edukacyjne kl. VI DZIAŁ PROGRAMOWY JEDNOSTKA TEMATYCZNA KATEGORIA A UCZEŃ ZNA: CELE KSZTAŁCENIA W UJĘCIU OPERACYJNYM WRAZ Z OKREŚLENIEM WYMAGAŃ KATEGORIA B KATEGORIA C
Bardziej szczegółowoSzczegółowe wymagania edukacyjne z matematyki klasa 6
Szczegółowe wymagania edukacyjne z matematyki klasa 6 Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra (4) D dopełniający
Bardziej szczegółowoSzczegółowe kryteria wymagań z matematyki klasa VI SP
Szczegółowe kryteria wymagań z matematyki klasa VI SP Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Z PLUSEM KLASA VI Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej LICZBY NATURALNE I UŁAMKI: nazwy argumentów działań algorytmy czterech działań
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI
Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy wymagań edukacyjnych:
Bardziej szczegółowoPLAN WYNIKOWY Z MATEMATYKI DLA KLASY VI
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY VI Program nauczania: Matematyka z plusem Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych
Bardziej szczegółowoWYMAGANIA EDUKACYJNE - MATEMATYKA klasa 6
Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBY NATURALNE I UŁAMKI zaznaczyć i odczytać na osi liczbowej ułamek dziesiętny (P-R) obliczyć wartość wyrażenia arytmetycznego zawierającego
Bardziej szczegółowoWymagania edukacyjne z matematyki KLASA VI
Wymagania edukacyjne z matematyki KLASA VI Ocena dopuszczająca Uczeń: zna nazwy argumentów działań, algorytmy czterech działań pisemnych, algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100,
Bardziej szczegółowoOcena: dopuszczający. zasadę zamiany ułamka dziesiętnego na ułamek zwykły (K)
Wymagania edukacyjne na poszczególne stopnie - klasa VI Matematyka z plusem M. Jucewicz, M. Karpiński, J. Lech Wydawnictwo GWO, nr dopuszczenia: DKOS 5002 37/08 Ocena: dopuszczający Dział: LICZBY NATURALNE
Bardziej szczegółowoZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI
Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku: 140 ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI Podręczniki i książki pomocnicze
Bardziej szczegółowoMatematyka 6. Sprawdziany dla klasy szóstej szkoły podstawowej ( wersja dostosowana do obowiązującej podstawy programowej),
ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku: 140 Podręczniki i książki pomocnicze
Bardziej szczegółowoKRYTERIA WYMAGAŃ Z MATEMATYKI DLA KLASY VI ocena dopuszczająca (treści konieczne)
KRYTERIA WYMAGAŃ Z MATEMATYKI DLA KLASY VI ocena dopuszczająca (treści konieczne) DZIAŁ PROGRAMU JEDNOSTKA TEMATYCZNA KATEGORIA A UCZEŃ ZNA: CELE KSZTAŁCENIA W UJĘCIU OPERACYJNYM WRAZ Z OKREŚLENIEM WYMAGAŃ
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 6
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 6 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i prowadzi
Bardziej szczegółowoMatematyka z plusem dla szkoły podstawowej
Program nauczania: Matematyka z plusem Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 6 PROGRAM NAUCZANIA: Matematyka z plusem.
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 6 PROGRAM NAUCZANIA: Matematyka z plusem. Ocena Dział: LICZBY NATURALNE I UŁAMKI nazwy działań (K) algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100,
Bardziej szczegółowoZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI
Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku: 140 ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI Podręczniki i książki pomocnicze
Bardziej szczegółowoWymagania z matematyki na poszczególne oceny Klasa VI Ocenę dopuszczającą otrzymuje uczeń, który: Liczby naturalne i ułamki zna nazwy argumentów
Wymagania z matematyki na poszczególne oceny Klasa VI Ocenę dopuszczającą otrzymuje uczeń, który: zna nazwy argumentów działań zna algorytmy czterech działań pisemnych zna algorytm mnożenia i dzielenia
Bardziej szczegółowoZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI WYMAGANIA EDUKACYJNE
ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI WYMAGANIA EDUKACYJNE Program nauczania: Matematyka z plusem, numer dopuszczenia DKOW-5002-37/08 Liczba godzin nauki w tygodniu: 4 Planowana liczba
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI O C E N A W I A D O M O Ś C I I U M I E J Ę T N O Ś C I LICZBY NATURALNE I UŁAMKI nazwy działań algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100,
Bardziej szczegółowoKRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1
KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech
Bardziej szczegółowoSZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI
SZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa VI Liczby naturalne i ułamki 1.Ocenę dopuszczającą otrzymuje uczeń, który: zna nazwy argumentów działań zna algorytmy czterech działań
Bardziej szczegółowoKRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOŁA PODSTAWOWA MATEMATYKA KLASA 6
KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOŁA PODSTAWOWA MATEMATYKA KLASA 6 LICZBY NATURALNE I UŁAMKI zaznaczyć i odczytać na osi liczbowej liczbę pamięciowo dodawać i odejmować ułamki dziesiętne o jednakowej
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI
Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy wymagań edukacyjnych:
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI. ucznia kl.vi
WYMAGANIA EDUKACYJNE Z MATEMATYKI ucznia kl.vi 1. LICZBY NATURALNE I UŁAMKI zaznaczyć i odczytać na osi liczbowej liczbę naturalną pamięciowo dodawać i odejmować ułamki dziesiętne o jednakowej liczbie
Bardziej szczegółowoKryteria oceniania z matematyki w klasie VI
ROK SZKOLNY 2014/2015 Kryteria oceniania z matematyki w klasie VI Wymagania edukacyjne opracowane są na podstawie rozkładu materiału dostosowanego do programu nauczania matematyki Matematyka z plusem.
Bardziej szczegółowoOpracowała mgr Julita Bromberger WYMAGANIA - OCENIANIE KLASA VI
Opracowała mgr Julita Bromberger WYMAGANIA - OCENIANIE KLASA VI WIADOMOŚCI I UMIEJĘTNOŚCI NA POZIOMIE KONIECZNYM OCENA DOPUSZCZAJĄCY (2) klasa VI nazwy argumentów działań; algorytmy czterech działań pisemnych;
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. Ocena niedostateczna. Zna nazwy argumentów działań Pamięciowo i pisemnie wykonuje każde z czterech działań na liczbach
Bardziej szczegółowoMATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE VI
MATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE VI POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI klasa 6 rok szkolny 2017/2018
I PÓŁROCZE Uczeń: LICZBY NATURALNE I UŁAMKI Zna nazwy działań. Zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000,.. Zna kolejność wykonywania działań. Zaznacza i odczytuje na osi
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI.
Wymagania na poszczególne oceny z matematyki w klasie VI. Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Matematyka klasa 6
WYMAGANIA EDUKACYJNE Matematyka klasa 6 Matematyka w klasie szóstej jest realizowana według programu Matematyka z plusem wydawnictwo GWO. Jest on w pełni dostosowany do nowej podstawy programowej. Dlatego
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI.
Wymagania na poszczególne oceny z matematyki w klasie VI. Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI.
Wymagania na poszczególne oceny z matematyki w klasie VI. Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
Bardziej szczegółowoWymagania z matematyki na poszczególne oceny w klasie VI od roku szkolnego 2017/2018
Wymagania z matematyki na poszczególne oceny w klasie VI od roku szkolnego 2017/2018 Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI.
Wymagania na poszczególne oceny z matematyki w klasie VI. Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI rok szkolny 2018/2019
Wymagania na poszczególne oceny z matematyki w klasie VI rok szkolny 2018/2019 Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI.
Wymagania na poszczególne oceny z matematyki w klasie VI. Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI.
Wymagania na poszczególne oceny z matematyki w klasie VI. Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI na rok szkolny 2018/2019
Wymagania na poszczególne oceny z matematyki w klasie VI na rok szkolny 2018/2019 Wymagania na poszczególne oceny z matematyki w klasie VI. Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności
Bardziej szczegółowoPLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE VI SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE VI SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 780/3/2018
Bardziej szczegółowoZAKRES WYMAGAŃ EDUKACYJNYCH NA POSZCZEGÓLNE OCENY:
ZAKRES WYMAGAŃ EDUKACYJNYCH NA POSZCZEGÓLNE OCENY: Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra (4) D dopełniający ocena
Bardziej szczegółowoI. LICZBY NATURALNE I UŁAMKI
Wymagania na poszczególne oceny z matematyki Klasa VI I. LICZBY NATURALNE I UŁAMKI 1. Ocenę dopuszczającą otrzymuje uczeń, który: zna nazwy działań zna algorytm mnożenia i dzielenia ułamków dziesiętnych
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI dział Dopuszczający (2) Dostateczny (3) Dobry (4) Bardzo dobry (5) Celujący (6) LICZBY NATURALNE I UŁAMKI nazwy działań algorytm mnożenia i dzielenia ułamków
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie VI
Wymagania edukacyjne z matematyki w klasie VI Ocenę niedostateczną otrzymuje uczeń który: 1. nie spełnia kryterium oceny dopuszczającej, 2. nie opanował najprostszych wiadomości, 3. nie potrafi wykonać
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI
Wymagania na poszczególne oceny z matematyki w klasie VI Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie VI
Wymagania edukacyjne z matematyki w klasie VI Ocenę niedostateczną otrzymuje uczeń który: 1. nie spełnia kryterium oceny dopuszczającej, 2. nie opanował najprostszych wiadomości, 3. nie potrafi wykonać
Bardziej szczegółowoWymagania z matematyki ( zakres wiedzy) na poszczególne oceny dla klasy VI
z matematyki ( zakres wiedzy) na poszczególne oceny dla klasy VI LICZBY NATURALNE I UŁAMKI nazwy działań algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10,100,1000,.. kolejność wykonywania działań
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY VI. końcoworoczne
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY VI końcoworoczne POZIOM WYMAGAŃ KONIECZNYCH - WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ, obejmują te wiadomości i umiejętności, które
Bardziej szczegółowoPLAN WYNIKOWY Z MATEMATYKI DLA KLASY VI
Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy wymagań edukacyjnych:
Bardziej szczegółowoKryteria ocen z matematyki w klasie VI Uczeń musi umieć: Na ocenę dopuszczającą: zaznaczyć i odczytać na osi liczbowej: liczbę naturalną ułamek
Kryteria ocen z matematyki w klasie VI Uczeń musi umieć: Na ocenę dopuszczającą: zaznaczyć i odczytać na osi liczbowej: liczbę naturalną ułamek dziesiętny ułamek zwykły pamięciowo dodawać i odejmować:
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA KLASA 6
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA KLASA 6 1. Formy i metody sprawdzania wiedzy Oceny bieżące wystawiane są uczniowi za wiedzę i umiejętności w ramach różnych rodzajów form aktywności, takich jak:
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI
POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający ocena bardzo dobra (5) W - wykraczający ocena
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI dla VI klasy szkoły podstawowej Wymagania na poszczególne oceny Klasa VI
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI dla VI klasy szkoły podstawowej Wymagania na poszczególne oceny Klasa VI Liczby naturalne i ułamki zna nazwy argumentów działań zna algorytmy czterech działań
Bardziej szczegółowoWYMAGANIA EDUKACYJNE
SZKOŁA PODSTAWOWA W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie 6 Szkoły Podstawowej str. 1 Wymagania na poszczególne
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI.
Wymagania na poszczególne oceny z matematyki w klasie VI. Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY 6a i 6b rok szkolny 2015/2016
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY 6a i 6b rok szkolny 2015/2016 Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach
Bardziej szczegółowoMATEMATYKA KLASA VI JEDNOSTKA TEMATYCZNA. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych.
MATEMATYKA KLASA VI Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy
Bardziej szczegółowoWYMAGANIA EDUKACYJNE KLASA VI
WYMAGANIA EDUKACYJNE KLASA VI Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych
Bardziej szczegółowoKryteria wymagań na poszczególne oceny z matematyki w klasie 6
Kryteria wymagań na poszczególne oceny z matematyki w klasie 6 Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI.
Wymagania na poszczególne oceny z matematyki w klasie VI. Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI
Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 5 Kategorie celów nauczania: Poziomy wymagań edukacyjnych: A zapamiętanie wiadomości K konieczny ocena dopuszczająca (2) B rozumienie
Bardziej szczegółowoWymagania na poszczególne stopnie z matematyki klasa VI. Publiczna Szkoła Podstawowa w Woli Dębińskiej
Wymagania na poszczególne stopnie z matematyki klasa VI Publiczna Szkoła Podstawowa w Woli Dębińskiej Poziomy wymagań KONIECZNY PODSTAWOWY ROZSZERZAJĄCY DOPEŁNIAJĄCY Dział Stopień: Stopień: Stopień: Stopień:
Bardziej szczegółowoSzczegółowe kryteria ocen dla klasy szóstej:
LICZBY NATURALNE I UŁAMKI Szczegółowe kryteria ocen dla klasy szóstej: nazwy działań, kolejność wykonywania działań, pojęcie potęgi, algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000,..,
Bardziej szczegółowoWymagania edukacyjne. z matematyki. dla klasy VI szkoły podstawowej. opracowane na podstawie programu. Matematyka z plusem
mgr Barbara Pierzchała mgr Aneta Sajdak Szkoła Podstawowa Nr 164 Im. Bł. Franciszki Siedliskiej Wymagania edukacyjne z matematyki dla klasy VI szkoły podstawowej opracowane na podstawie programu Matematyka
Bardziej szczegółowoMATEMATYKA szkoła podstawowa klasa VI
MATEMATYKA szkoła podstawowa klasa VI Treści nauczania wymagania szczegółowe Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D
Bardziej szczegółowoWYMAGANIA NA OCENY KL. 6
WYMAGANIA NA OCENY KL. 6 Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy
Bardziej szczegółowoKRYTERIA OCENIANIA Z MATEMATYKI DLA KLASY VI
Program nauczania: Matematyka z plusem KRYTERIA OCENIANIA Z MATEMATYKI DLA KLASY VI Podręczniki i książki pomocnicze wydane przez GWO: Matematyka 6. Podręcznik, M. Dobrowolska, M. Jucewicz, M. Karpiński,
Bardziej szczegółowoZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI
ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI Program nauczania: Matematyka z plusem, numer dopuszczenia programu DKOW 5002 37/08 Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w klasie VI
Wymagania na poszczególne oceny z matematyki w klasie VI Wymagania na ocenę dopuszczającą (2) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
Bardziej szczegółowoMATEMATYKA szkoła podstawowa klasa VI Treści nauczania wymagania szczegółowe
MATEMATYKA szkoła podstawowa klasa VI Treści nauczania wymagania szczegółowe Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI
Program nauczania: Matematyka z plusem Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych
Bardziej szczegółowoMatematyka z plusem dla szkoły podstawowej MATEMATYKA KLASA VI PRZEDMIOTOWY SYSTEM OCENIANIA WRAZ Z PLANEM WYNIKOWYM
MATEMATYKA KLASA VI PRZEDMIOTOWY SYSTEM OCENIANIA WRAZ Z PLANEM WYNIKOWYM Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY - MATEMATYKA DLA KL. 6
WYMAGANIA NA POSZCZEGÓLNE OCENY - MATEMATYKA DLA KL. 6 DZIAŁ CELE KSZTAŁCENIA W UJĘCIU OPERACYJNYM WRAZ Z OKREŚLENIEM WYMAGAŃ PROGRAMOWY JEDNOSTKA LEKCYJNA JEDNOSTKA TEMATYCZNA KATEGORIA A UCZEŃ ZNA: KATEGORIA
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Bardziej szczegółowoWymagania programowe z matematyki w klasie 6 sp.
Wymagania programowe z matematyki w klasie 6 sp. Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku: 140 Kategorie celów nauczania: A zapamiętanie
Bardziej szczegółowoWYMAGANIA Z MATEMATYKI DLA KLASY VI W UJĘCIU OPERACYJNYM
Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku: 130 WYMAGANIA Z MATEMATYKI DLA KLASY VI W UJĘCIU OPERACYJNYM Podręczniki i książki pomocnicze
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy VI szkoły podstawowej opracowane na podstawie programu Matematyka z plusem
s. mgr Katarzyna Kasperczyk mgr Mariola Jurkowska Szkoła Podstawowa nr 164 Im. bł. Franciszki Siedliskiej Wymagania edukacyjne z matematyki dla klasy VI szkoły podstawowej opracowane na podstawie programu
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy VI szkoły podstawowej opracowane na podstawie programu Matematyka z plusem
s. mgr Katarzyna Kasperczyk mgr Mariola Jurkowska Szkoła Podstawowa nr 164 Im. bł. Franciszki Siedliskiej Wymagania edukacyjne z matematyki dla klasy VI szkoły podstawowej opracowane na podstawie programu
Bardziej szczegółowoSZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI Dokument wykorzystuje materiały dotyczące programu nauczania Matematyka z plusem opublikowane na stronie www.gwo.pl Program nauczania: Matematyka
Bardziej szczegółowoMatematyka klasa 6 Wymagania edukacyjne na ocenę śródroczną
Matematyka klasa 6 Wymagania edukacyjne na ocenę śródroczną Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające
Bardziej szczegółowoZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI
Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku: 130 ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY VI Podręczniki i książki pomocnicze
Bardziej szczegółowoWymagania z matematyki na poszczególne oceny obowiązujące w Publicznej Szkole Podstawowej Nr 14 Integracyjnej im. Jana Pawła II w Radomiu
Wymagania z matematyki na poszczególne oceny obowiązujące w Publicznej Szkole Podstawowej Nr 14 Integracyjnej im. Jana Pawła II w Radomiu Wymagania na poszczególne oceny z matematyki w klasie VI. OBOWIĄZUJĄCY
Bardziej szczegółowoWYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY VI
WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY VI Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach
Bardziej szczegółowoKRYTERIA OCENY Z MATEMATYKI DLA KLASY VI
KRYTERIA OCENY Z MATEMATYKI DLA KLASY VI Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy 6 szkoły podstawowej
Wymagania edukacyjne z matematyki dla klasy 6 szkoły podstawowej Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE VI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności
Bardziej szczegółowoSzkoła Podstawowa im. Polskich Olimpijczyków w Mysiadle MATEMATYKA SZCZEGÓŁOWE KRYTERIA OCENIANIA DLA UCZNIÓW KLASY VI SZKOŁY PODSTAWOWEJ
Szkoła Podstawowa im. Polskich Olimpijczyków w Mysiadle MATEMATYKA SZCZEGÓŁOWE KRYTERIA OCENIANIA DLA UCZNIÓW KLASY VI SZKOŁY PODSTAWOWEJ Ocena śródroczna Dział I. Liczby naturalne i ułamki Ocena dopuszczająca
Bardziej szczegółowoWymagania edukacyjne z matematyki zgodne z programem nauczania matematyki nr DKOW /08 dla uczniów kl. VI z opiniami z Poradni Pedagogicznej.
Wymagania edukacyjne z matematyki zgodne z programem nauczania matematyki nr DKOW- 5002 37/08 dla uczniów kl. VI z opiniami z Poradni Pedagogicznej. Podręczniki i ksiąŝki pomocnicze: I. Matematyka 6. Podręcznik
Bardziej szczegółowo