Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed"

Transkrypt

1 Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed

2 Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem na dynamikę użycia klawiatury Propozycja własnego algorytmu, przetestowanie go oraz porównanie z innymi

3 Dynamika użycia klawiatury ang. Keystroke Dynamics Technika biometrii behawioralnej (dotyczącej wyuczonych zachowań) Sposób użycia klawiatury przez człowieka okazuje się być dobrym wyznacznikiem tożsamości

4 Dynamika użycia klawiatury Dwell time - czas wciśnięcia danego klawisza Flight time - różnica czasu pomiędzy wciśnięciami kolejnych klawiszy

5 Algorytm - cele Wykorzystanie w scentralizowanym systemie udostępniającym usługę logowania na podstawie sposobu wpisywania tekstu (adresu ) Nieograniczona ilością użytkowników skalowalność Jak najwyższa skuteczność przy braku błędów typu False Positive

6 Algorytm Założenie, że dane mają naturę sekwencji (jedynie przesłanka) Oddzielny klasyfikator dla każdego użytkownika Wybór: sieci rekurencyjne

7 Sieci rekurencyjne Naturalna zdolność do działania na sekwencjach Szeroko stosowane (choć nie w swojej podstawowej formie) do problemów z danymi o naturze ciągów (np. modelowanie języka naturalnego, tłumaczenie maszynowe)

8 Sieci rekurencyjne W swojej podstawowej formie trudne do wytrenowania ze względu na problem zanikającego/eksplodującego gradientu Rozwiązanie: alternatywne architektury - LSTM, GRU

9 LSTM Dodatkowy wektor - stan komórki (ang. cell state) - przekazywany do kolejnych kroków Bramka zapominania (ang. forget gate) - decyduje jakie informacje powinny zostać usunięte ze stanu Bramka wejściowa (ang. input gate) - decyduje co i w jakim stopniu zapamiętać

10 GRU Bramka zapominania i wejściowa są połączone w jedną - bramkę uaktualnienia (ang. update gate)

11 Regularyzacja Dropout - w trakcie uczenia usuwanie wybranej w sposób losowy części neuronów (i ich połączeń) Daje to podobny efekt do zastosowania tzw. ensemble models, czyli kilku klasyfikatorów Standardowa regularyzacja

12 Dane negatywne Potrzeba danych negatywnych jest poważnym ograniczeniem i utrudnia praktyczne zastosowania algorytmu Podjęto próbę wygenerowania sztucznych danych na podstawie prawdziwych zaburzając je szumem z rozkładem naturalnym

13 Zbiory uczące - zbiór własny Dane zebrano od 10 osób (studentów) Każdy wpisał swój adres 5 razy i adres pozostałych uczestników 1 raz Część próbek usunięto ze względu na niską jakość (np. metoda kopiuj-wklej) Ostatecznie dane od 6 osób po kilkanaście próbek (bardzo mały zbiór)

14 Zbiory uczące - zbiór referencyjny Dostępny publicznie (na stronie: zbiór. Autorzy: Kevin Killourhy, Roy Maxion Stanowi część pracy, która porównuje detektory anomalii zastosowane do problemu weryfikacji użytkownika na podstawie dynamiki użycia klawiatury 51 uczestników po 400 próbek (każdy wpisał to samo hasło)

15 Zbiór referencyjny Podzielony na oddzielne zbiory dla każdego użytkownika Dane pozytywne: wszystkie próbki danego użytkownika Dane negatywne: losowe 400 próbek wybrane spośród pozostałych danych (w celu zbalansowania zbioru)

16 Testowane architektury LSTM(250) -> Dropout(0.5) -> LSTM(100) -> Dropout(0.5) -> LogisticRegression(1) (tylko na zbiorze referencyjnym) LSTM(240) -> Dropout(0.5) -> LSTM(240) -> Dropout(0.5) -> LSTM(240) -> Dropout(0.5) -> LogisticRegression(1) (tylko na zbiorze referencyjnym) GRU(240) -> Dropout(0.5) -> GRU(240) -> Dropout(0.5) -> GRU(240) -> Dropout(0.5) -> LogisticRegression(1)

17 Wyniki - zbiór własny Podana jest średnia skuteczność dla modeli bez dropoutu i z dropoutem Najlepszy model bez eliminacji FP: 0.85 (0.88) Najlepszy model bez FP: 0.52 (0.8)

18 Wyniki - pojęcia Dwie najważniejsze miary: EER (equal error rate) oraz zero-miss rate FPR - False Positive Rate = FP / (FP + TN) TPR - True Positive Rate = TP / (TP + FN) EER - punkt, w którym TPR = 1 - FPR zero-miss rate - punkt (wartość FPR), w którym TPR = 1

19

20 Wyniki - zbiór referencyjny 2 warstwy LSTM Średnie wyniki; w nawiasach podano odchylenie standardowe EER (0.094) Zero-miss rate (0.221)

21 Wyniki - zbiór referencyjny 3 warstwy LSTM EER (0.106) Zero-miss rate (0.221)

22 Wyniki - zbiór referencyjny 3 warstwy GRU EER (0.087) Zero-miss rate (0.260)

23 Wyniki, c.d. Zbiór referencyjny poza danymi na temat dwell time zawiera też dane o flight time Ze względu na to, że w zbiorze własnym były tylko dane o dwell time to najpierw testowany był ograniczony zbiór referencyjny Następnie dokonano eksperymentów ze wszystkimi danymi

24 Wyniki - wszystkie dane Najlepszy model pod względem EER: (0.176) Najlepszy model pod względem zero-miss rate: (0.282)

25 Porównanie W porównaniu do wyników w pracy referencyjnej - pod względem EER plasuje się na 7 miejscu (na 14) - wyżej niż pozostałe sieci neuronowe Pod względem zero-miss rate na 1. miejscu (0.333 w porównaniu do 0.468) Trzeba zaznaczyć, że wyniki nie mogą być wprost porównane ze względu na inny sposób ewaluacji i inną naturę algorytmu

26 Dane negatywne Najlepszy (EER): (0.336)

27 Wnioski i ocena algorytmu Satysfakcjonujące wyniki zarówno na małym zbiorze jak i na zbiorze referencyjnym Użycie obu miar (dwell i flight time) ma wyraźny wpływ na wyniki Udało się uzyskać skalowalność (model dla każdego użytkownika zajmuje ok. 3.5 MB) Sposób generowania danych sztucznych powinien zostać usprawniony

28 Algorytm - wady Potrzeba danych negatywnych podczas uczenia Długi czas uczenia

29 Dalszy rozwój Akceleracja GPU - przyspieszenie uczenia Lepsza generacja sztucznych danych negatywnych Zastosowanie sieci LSTM jako detektorów anomalii i zastosowanie tych samych co w pracy referencyjnej sposobów ewaluacji

30 Dziękuję za uwagę

Automatyka i Robotyka, V rok. promotor: dr Adrian Horzyk. Kraków, 3 czerwca System automatycznego rozpoznawania

Automatyka i Robotyka, V rok. promotor: dr Adrian Horzyk. Kraków, 3 czerwca System automatycznego rozpoznawania Automatyka i Robotyka, V rok Kraków, 3 czerwca 2009 promotor: dr Adrian Horzyk 1 2 i problemy 3 4 Technologie 5 Wyniki 6 Podział biometrii 7 cech opisujących parametry ludzi - A. K. Jain uniwersalność

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

Jakość uczenia i generalizacja

Jakość uczenia i generalizacja Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Technologia dynamicznego podpisu biometrycznego

Technologia dynamicznego podpisu biometrycznego Technologia dynamicznego podpisu biometrycznego Prof. Andrzej Czyżewski, Politechnika Gdańska VI Konferencja i Narodowy Test Interoperacyjności Podpisu Elektronicznego CommonSign 2016, 26 27. X. 2016 r.

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Dokumentacja Końcowa

Dokumentacja Końcowa Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Dokumentacja Końcowa Autorzy: Robert Wojciechowski Michał Denkiewicz Wstęp Celem

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.

Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne. Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2011.01.11 1 Przykład Przeuczenie

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Wprowadzenie do klasyfikacji

Wprowadzenie do klasyfikacji Wprowadzenie do klasyfikacji ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania

Bardziej szczegółowo

Widzenie komputerowe

Widzenie komputerowe Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Krzywe ROC i inne techniki oceny jakości klasyfikatorów

Krzywe ROC i inne techniki oceny jakości klasyfikatorów Krzywe ROC i inne techniki oceny jakości klasyfikatorów Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 20 maja 2009 1 2 Przykład krzywej ROC 3 4 Pakiet ROCR Dostępne metryki Krzywe

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

MobiBits: Multimodalna baza danych zebrana za pomocą urządzeń mobilnych

MobiBits: Multimodalna baza danych zebrana za pomocą urządzeń mobilnych slide 1 of 23 MobiBits: Multimodalna baza danych zebrana za pomocą urządzeń mobilnych Autorzy: Katarzyna Roszczewska, Ewelina Bartuzi, Radosław Białobrzeski, Mateusz Trokielewicz Seminarium Zespołu Biometrii

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Metoda weryfikacji mówcy na podstawie nieuzgodnionej wypowiedzi

Metoda weryfikacji mówcy na podstawie nieuzgodnionej wypowiedzi BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR, 005 Metoda weryfikacji mówcy na podstawie nieuzgodnionej wypowiedzi Leszek GRAD Zakład Automatyki, Instytut Teleinformatyki i Automatyki WAT, ul. Kaliskiego,

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Zadanie 1. Analiza Analiza rozkładu

Zadanie 1. Analiza Analiza rozkładu Zadanie 1 data lab.zad 1; input czas; datalines; 85 3060 631 819 805 835 955 595 690 73 815 914 ; run; Analiza Analiza rozkładu Ponieważ jesteśmy zainteresowani wyznaczeniem przedziału ufności oraz weryfikacja

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

ROZPOZNAWANIE SYGNAŁÓW FONICZNYCH

ROZPOZNAWANIE SYGNAŁÓW FONICZNYCH Przetwarzanie dźwięków i obrazów ROZPOZNAWANIE SYGNAŁÓW FONICZNYCH mgr inż. Kuba Łopatka, p. 628 klopatka@sound.eti.pg.gda.pl Plan wykładu 1. Wprowadzenie 2. Zasada rozpoznawania sygnałów 3. Parametryzacja

Bardziej szczegółowo

Instrukcja obsługi dla studenta

Instrukcja obsługi dla studenta Instrukcja obsługi dla studenta Akademicki System Archiwizacji Prac (ASAP) to nowoczesne, elektroniczne archiwum prac dyplomowych zintegrowane z systemem antyplagiatowym Plagiat.pl. Student korzystający

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów

Bardziej szczegółowo

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica. Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural

Bardziej szczegółowo

ZeroR. Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F

ZeroR. Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 5 T 7 T 5 T 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator ZeroR będzie zawsze odpowiadał T niezależnie

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

Kilometrówki24.pl to system służący do ewidencjonowania przejazdów pojazdów wykorzystywanych w przedsiębiorstwach.

Kilometrówki24.pl to system służący do ewidencjonowania przejazdów pojazdów wykorzystywanych w przedsiębiorstwach. Czym są Kilometrówki24.pl? Kilometrówki24.pl to system służący do ewidencjonowania przejazdów pojazdów wykorzystywanych w przedsiębiorstwach. Dla kogo skierowany jest ten system? Kilometrówki24.pl skierowany

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych

Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych prof. zw. dr hab. inż. Stanisław Osowski dr inż. Krzysztof Siwek Politechnika Warszawska Kontynuacja prac Prace prowadzone w roku

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

WEKA klasyfikacja z użyciem sztucznych sieci neuronowych

WEKA klasyfikacja z użyciem sztucznych sieci neuronowych WEKA klasyfikacja z użyciem sztucznych sieci neuronowych 1 WEKA elementy potrzebne do zadania WEKA (Data mining software in Java http://www.cs.waikato.ac.nz/ml/weka/) jest narzędziem zawierającym zbiór

Bardziej szczegółowo

Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować?

Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Algorytm k-nn Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Jak daleko są położone obiekty od siebie? knn k nearest neighbours jest

Bardziej szczegółowo

Zadania ze statystyki cz.8. Zadanie 1.

Zadania ze statystyki cz.8. Zadanie 1. Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,

Bardziej szczegółowo

Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę

Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie

Bardziej szczegółowo

Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010

Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sieci neuronowe jednokierunkowa wielowarstwowa sieć neuronowa sieci Kohonena

Bardziej szczegółowo

RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk

RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Wprowadzenie RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Magdalena Deckert Politechnika Poznańska, Instytut Informatyki Seminarium ISWD, 21.05.2013 M. Deckert Przyrostowy

Bardziej szczegółowo

Uczenie maszynowe w zastosowaniu do fizyki cząstek

Uczenie maszynowe w zastosowaniu do fizyki cząstek Uczenie maszynowe w zastosowaniu do fizyki cząstek Wykorzystanie uczenia maszynowego i głębokich sieci neuronowych do ćwiczenia 3. M. Kaczmarczyk, P. Górski, P. Olejniczak, O. Kosobutskyi Instytut Fizyki

Bardziej szczegółowo

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy) Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,

Bardziej szczegółowo

Analiza ilościowa w przetwarzaniu równoległym

Analiza ilościowa w przetwarzaniu równoległym Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1 Analiza ilościowa w przetwarzaniu równoległym 10. Analiza ilościowa w przetwarzaniu równoległym...2 10.1 Kryteria efektywności przetwarzania równoległego...2

Bardziej szczegółowo

komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW

komputery? Andrzej Skowron, Hung Son Nguyen  Instytut Matematyki, Wydział MIM, UW Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Recenzja rozprawy doktorskiej mgr inż. Szymona Lechwara

Recenzja rozprawy doktorskiej mgr inż. Szymona Lechwara Katowice, 28.02. 2014r. Recenzja rozprawy doktorskiej mgr inż. Szymona Lechwara pt. Opracowanie wizyjnego klasyfikatora wad powierzchni związanych z występowaniem zgorzeliny w procesie walcowania blach

Bardziej szczegółowo

Krzysztof Ślot Biometria Łódź, ul. Wólczańska 211/215, bud. B9 tel

Krzysztof Ślot Biometria Łódź, ul. Wólczańska 211/215, bud. B9 tel Krzysztof Ślot Biometria 9-924 Łódź, ul. Wólczańska 211/215, bud. B9 tel. 42 636 65 www.eletel.p.lodz.pl, ie@p.lodz.pl Wprowadzenie Biometria Analiza rejestrowanych zachowań i cech osobniczych (np. w celu

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Analiza i częściowa implementacja systemu elektronicznej wymiany danych na przykładzie e-faktury

Analiza i częściowa implementacja systemu elektronicznej wymiany danych na przykładzie e-faktury systemu elektronicznej wymiany danych na przykładzie e-faktury Pod kierownictwem mgr inż. Andrzeja Ptasznika systemu elektronicznej wymiany danych CEL PRACY Zbudowanie systemu do wystawiania, ewidencji,

Bardziej szczegółowo

Projekt badawczy. Zastosowania technologii dynamicznego podpisu biometrycznego

Projekt badawczy. Zastosowania technologii dynamicznego podpisu biometrycznego Projekt badawczy Zastosowania technologii dynamicznego podpisu biometrycznego Multimodalny biometryczny system weryfikacji tożsamości klienta bankowego Warszawa, 27.10.2016 r. Projekt finansowany przez

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW

Bardziej szczegółowo

WorkshopIT Komputer narzędziem w rękach prawnika

WorkshopIT Komputer narzędziem w rękach prawnika WorkshopIT Komputer narzędziem w rękach prawnika Krzysztof Kamiński, Sąd Okręgowy we Wrocławiu, Wrocław, 16 listopada 2006r. Agenda Bezpieczeństwo przepływu informacji w systemach informatycznych Hasła

Bardziej szczegółowo

AKUSTYKA MOWY. Podstawy rozpoznawania mowy część I

AKUSTYKA MOWY. Podstawy rozpoznawania mowy część I AKUSTYKA MOWY Podstawy rozpoznawania mowy część I PLAN WYKŁADU Część I Podstawowe pojęcia z dziedziny rozpoznawania mowy Algorytmy, parametry i podejścia do rozpoznawania mowy Przykłady istniejących bibliotek

Bardziej szczegółowo

AUTOMATYCZNE ROZPOZNAWANIE PUNKTÓW KONTROLNYCH GŁOWY SŁUŻĄCYCH DO 3D MODELOWANIA JEJ ANATOMII I DYNAMIKI

AUTOMATYCZNE ROZPOZNAWANIE PUNKTÓW KONTROLNYCH GŁOWY SŁUŻĄCYCH DO 3D MODELOWANIA JEJ ANATOMII I DYNAMIKI AUTOMATYCZNE ROZPOZNAWANIE PUNKTÓW KONTROLNYCH GŁOWY SŁUŻĄCYCH DO 3D MODELOWANIA JEJ ANATOMII I DYNAMIKI Tomasz Huczek Promotor: dr Adrian Horzyk Cel pracy Zasadniczym celem pracy było stworzenie systemu

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

ĆWICZENIE 5: Sztuczne sieci neuronowe

ĆWICZENIE 5: Sztuczne sieci neuronowe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 5: Sztuczne sieci neuronowe opracował: dr inż. Witold

Bardziej szczegółowo

BIOMETRIA WYKŁAD 8: BŁĘDY SYSTEMOW BIOMETRYCZNYCH

BIOMETRIA WYKŁAD 8: BŁĘDY SYSTEMOW BIOMETRYCZNYCH BIOMETRIA WYKŁAD 8: BŁĘDY SYSTEMOW BIOMETRYCZNYCH KAŻDY SYSTEM BIOMETRYCZNY BĘDZIE POPEŁNIAŁ BŁĘDY.możliwe tylko do oszacowania teoretycznego Błąd popełniany jest wtedy kiedy fałszywa hipoteza zostaje

Bardziej szczegółowo

8. Drzewa decyzyjne, bagging, boosting i lasy losowe

8. Drzewa decyzyjne, bagging, boosting i lasy losowe Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 6 Sztuczne sieci neuronowe (SSN) 04 stycznia 2012 Plan wykładu 1 Uczenie sieci neuronowej wielowarstwowej 2 3 Uczenie nadzorowanie sieci wielowarstwowej Wagi Inteligencja sztucznej sieci neuronowe

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

Arkusz kalkulacyjny Excel

Arkusz kalkulacyjny Excel Arkusz kalkulacyjny Excel Ćwiczenie 1. Sumy pośrednie (częściowe). POMOC DO ĆWICZENIA Dzięki funkcji sum pośrednich (częściowych) nie jest konieczne ręczne wprowadzanie odpowiednich formuł. Dzięki nim

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej Adam Żychowski Definicja problemu Każdy z obiektów może należeć do więcej niż jednej kategorii. Alternatywna definicja Zastosowania

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

edistro.pl Spis treści

edistro.pl Spis treści Spis treści 1 Spis treści 1 Spis treści... 2 2 Obsługa systemu... 3 2.1 Wymagania... 3 2.2 Uzyskiwanie dostępu do edistro... 3 2.3 Sprawdzenie czy mam włączony JavaScript... 4 2.3.1 Internet Explorer...

Bardziej szczegółowo

Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści

Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych

Bardziej szczegółowo

Aplikacja (oprogramowanie) będzie umożliwiać przygotowanie, przeprowadzenie badania oraz analizę wyników według określonej metody.

Aplikacja (oprogramowanie) będzie umożliwiać przygotowanie, przeprowadzenie badania oraz analizę wyników według określonej metody. Załącznik nr 1 Specyfikacja przedmiotu zamówienia Aplikacja (oprogramowanie) będzie umożliwiać przygotowanie, przeprowadzenie badania oraz analizę wyników według określonej metody. Słowniczek pojęć Badanie

Bardziej szczegółowo

Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %).

Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %). Powrót Twój wynik: 4 punktów na 6 możliwych do uzyskania (6667 %). Nr Opcja Punkty Poprawna Odpowiedź Rozważmy algorytm AVLSequence postaci: 1 Niech drzewo będzie rezultatem działania algorytmu AVLSequence

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Inżynieria wymagań. Wykład 2 Proces pisania przypadków użycia. Część 6 Wskazówki i sugestie

Inżynieria wymagań. Wykład 2 Proces pisania przypadków użycia. Część 6 Wskazówki i sugestie Inżynieria wymagań Wykład 2 Proces pisania przypadków użycia Część 6 Wskazówki i sugestie Opracowane w oparciu o materiały IBM (kurs REQ570: Writing Good Use Cases) Wyzwania podczas pisania przypadków

Bardziej szczegółowo