Budowa pionowa drzewostanu w świetle przestrzennego rozkładu punktów lotniczego skanowania laserowego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Budowa pionowa drzewostanu w świetle przestrzennego rozkładu punktów lotniczego skanowania laserowego"

Transkrypt

1 Budowa pionowa drzewostanu w świetle przestrzennego rozkładu punktów lotniczego skanowania laserowego Marcin Myszkowski Marek Ksepko Biuro Urządzania Lasu i Geodezji Leśnej Oddział w Białymstoku

2 PLAN PREZENTACJI 1. Teren badań 2. Dane skanowania laserowego a) Lotniczy system skanowania laserowego b) Powierzchnie próbne 3. Analiza danych a) Histogramy (liczebność, rozkład cechy) b) Współczynnik skośności (symetria rozkładu) c) Odchylenie standardowe (zmienność) d) Percentyl 95% (miara położenia) 4. Wnioski

3 1. TEREN BADAŃ Kampinoski Park Narodowy Pasy nalotu dobrane do zmienności środowiskowej

4 2. DANE SKANOWANIA LASEROWEGO System lotniczego skanowania laserowego Dane zostały pozyskane w ramach projektu własnego firmy MGGP Aero: Wykorzystanie zdalnych technik pomiarowych w zarządzaniu obszarami cennymi przyrodniczo Termin nalotu: Czerwiec 2010 Urządzenie: Skaner Riegl LMS - Q680i Częstotliwość skanowania: 240 khz Wysokość lotu: 670 m Ilość punktów: 6 pkt/m2

5 2. DANE SKANOWANIA LASEROWEGO System lotniczego skanowania laserowego typu full waveform Podstawowe cechy działania: a) rejestracja pełnej fali powracającej do urządzenia, b) analiza danych z ekstrakcją konkretnych odbić z dodatkowymi atrybutami: amplituda, szerokość; c) teoretyczna możliwość rejestracji nieograniczonej ilości odbić.

6 2. DANE SKANOWANIA LASEROWEGO System lotniczego skanowania laserowego typu full waveform

7 2. DANE SKANOWANIA LASEROWEGO System lotniczego skanowania laserowego typu full waveform

8 2. DANE SKANOWANIA LASEROWEGO Powierzchnie próbne 1. Wydzielenia z sosną jako gatunkiem panującym (udział >= 8) 2. Losowe rozmieszczenie 125 powierzchni w kształcie kwadratu o boku 30 m (pole podstawowe). 3.Zaliczenie każdej powierzchni do jednej z trzech klas: a) klasa 1: drzewostany jednopiętrowe bez podrostu i podszytu; b) klasa 2: drzewostany z podszytem lub podrostem o wysokości do 1/3 wysokości drzewostanu; c) klasa 3: drzewostany z podszytem, podrostem wypełniającym przestrzeń podokapową powyżej 1/3 wysokości drzewostanu oraz drzewostany 2-piętrowe.

9 2. DANE SKANOWANIA LASEROWEGO Powierzchnie próbne a) klasa 1: drzewostany jednopiętrowe bez podrostu i podszytu

10 2. DANE SKANOWANIA LASEROWEGO Powierzchnie próbne b) klasa 2: drzewostany z podszytem lub podrostem o wysokości do 1/3 wysokości drzewostanu

11 2. DANE SKANOWANIA LASEROWEGO Powierzchnie próbne c) klasa 3: drzewostany z podszytem, podrostem wypełniającym przestrzeń podokapową powyżej 1/3 wysokości drzewostanu oraz drzewostany 2-piętrowe

12 Teza: rozkład punktów skanowania laserowego ma związek z budową pionową drzewostanu. Cel: znalezienie parametrów za pomocą których będzie możliwa automatyczna delimitacja drzewostanów o różnej budowie pionowej.

13 Obliczenia Wszystkie obliczenia przeprowadzono dla znormalizowanej chmury punktów. Dla każdej z powierzchni wyliczono: 1. Udział punktów w poziomych warstwach 1 oraz 2 metrowych; 2. Współczynnik skośności; 3. Odchylenie standardowe; 4. Wartość percentyla 95%. Dwa warianty obliczeń: 1. Chmura bez punktów leżących do 0,5 m powyżej poziomu terenu; 2. Pełna chmura punktów. 0.5 m

14 Obliczenia histogramy Graficzne przedstawienie rozkładu liczebności Udział punktów w warstwach poziomych liczony jako stosunek liczby punktów w warstwie do ogólnej liczby punktów w próbie (polu podstawowym). 0,25 0,2 0,15 0,1 0,

15 Udział punktów w warstwie Obliczenia histogramy 0,40 Dane oryginalne, z odbiciami od terenu Średni udział punktów w warstwach 2 metrowych 0,35 0,30 0,25 0,20 0,15 0,10 klasa 1 klasa 2 klasa 3 0,05 0, Wysokość warstwy/drzewostanu [m]

16 Udział punktów w warstwie Obliczenia histogramy Dane bez punktów zaliczonych do terenu i 0,5 m powyżej 0,30 Średni udział punktów w warstwach 2 metrowych 0,25 0,20 0,15 0,10 Klasa 1 Klasa 2 Klasa 3 0,05 0, Wysokość warstwy/drzewostanu [m]

17 Udział punktów w warstwie Obliczenia histogramy Dane bez punktów zaliczonych do terenu i 0,5 powyżej 0,16 Średni udział punktów w warstwach 1 metrowych 0,14 0,12 0,10 0,08 0,06 0,04 Klasa 1 Klasa 2 Klasa 3 0,02 0, Wysokość warstwy/drzewostanu [m]

18 Obliczenia histogramy Wstępne wnioski z analizy histogramów: 1. Zbyt małe pole podstawowe powoduje zachwianie wyników ze względu na niereprezentatywną próbę; 2. Czytelne rezultaty w drzewostanach gdzie górne piętro jest równomierne; 3. Udział luk w polu podstawowym zaburza wartości wyznaczanych parametrów; 4. Wyeliminowanie punktów odbitych od roślinności niskiej (runo) podkreśla różnice pomiędzy poszczególnymi klasami. Parametry różnicujące klasy drzewostanów: 1. Wysokość 2. Gatunek 3. Zwarcie 4. Budowa pionowa

19 Obliczenia współczynnik skośności Miara asymetrii rozkładu. Wskaźnik mówiący o przestrzennym rozkładzie punktów: 1. Wartości ujemne wskazują na asymetrię lewostronną ( cieńsze lewe ramię wykresu rozkładu ) ilościowa przewaga wyższych wartości współrzędnej Z punktów skanowania. 0,14 0,12 0,10 0,08 0,06 0,04 0,02 0,

20 Obliczenia współczynnik skośności Miara asymetrii rozkładu. Wskaźnik mówiący o przestrzennym rozkładzie punktów: Wartości dodatnie wskazują na asymetrię prawostronną ( cieńsze prawe ramię wykresu rozkładu ) ilościowa przewaga niższych wartości wysokości współrzędnej Z punktów skanowania. 3. Wartości bliskie zeru wskazują na rozkład symetryczny przewaga wartości współrzędnej Z zbliżonych do wartości średniej.

21 Współczynnik skośności Obliczenia współczynnik skośności Dane oryginalne, razem z odbiciami od terenu Współczynnik skośności rozkładu punktów 0, ,6 0,4 0,2 0-0,2-0,4-0,6-0,8-1 Klasa 1 Klasa 2 Klasa 3-1,2 Numer kolejny powierzchni

22 Współczynnik skośności Obliczenia współczynnik skośności Dane bez punktów zaliczonych do terenu i 0,5 powyżej Współczynnik skośnośności rozkładu punktów 1, ,50 0,00-0,50-1,00-1,50-2,00-2,50-3,00 Klasa 1 Klasa 2 Klasa 3-3,50 Numer kolejny powierzchni

23 Obliczenia współczynnik skośności Wnioski: 1. Za pomocą jednego, prostego parametru jesteśmy w stanie określić rozkład przestrzenny drzewostanów jednopiętrowych. 2. Nie możemy stwierdzić znaczącej różnicy pomiędzy drzewostanami klasy 2 oraz 3.

24 Obliczenia odchylenie standardowe Klasyczna miara zmienności, niezależna od zakresu wartości analizowanego parametru. Parametr ten informuje nas o stabilności badanej cechy współrzędna Z punktów skanowania laserowego. 1. Mniejsze wartości informują nas o większym skupieniu wokół średniej. 2. Większe wartości informują nas o mniejszym skupieniu wokół średniej.

25 Odhcylenie standardowe Obliczenia odchylenie standardowe Dane oryginalne, razem z odbiciami od terenu 12 Odchylenie standardowe 10 8 Klasa Klasa 2 Klasa Numer kolejny powierzchni

26 Odhcylenie standardowe Obliczenia odchylenie standardowe Dane bez punktów zaliczonych do terenu i 0,5 powyżej 10,00 9,00 Odchylenie standardowe 8,00 7,00 6,00 5,00 4,00 3,00 2,00 Klasa 1 Klasa 2 Klasa 3 1,00 0, Numer kolejny powierzchni

27 Obliczenia odchylenie standardowe Wnioski: 1. Za pomocą jednego, prostego parametru jesteśmy w stanie określić rozkład przestrzenny drzewostanów jednopiętrowych. 2. Nie możemy stwierdzić znaczącej różnicy pomiędzy drzewostanami klasy 2 oraz 3.

28 4. WNIOSKI IUL Budowa pionowa Pod względem budowy pionowej należy wyróżniać drzewostany: jednopiętrowe, dwupiętrowe, wielopiętrowe (z reguły wielogeneracyjne), w klasie odnowienia, w klasie do odnowienia i o budowie przerębowej. LIDAR daje nam jednak możliwość wyznaczenia wielu nowych parametrów np.: 1. wypełnienie przestrzeni biomasą; 2. rozkład przestrzenny biomasy w dowolnej jednostce powierzchniowej. Żeby móc wykorzystać informację, którą niesie LIDAR proponujemy rozważenie zmiany sposobu opisywania budowy pionowej. Firma MGGP Aero wraz z naszym zespołem planuje kolejne naloty w tych samych pasach w celu weryfikacji wyników i testów przyrostów biomasy.

29 DZIĘKUJE ZA UWAGĘ

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii. Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Dane LiDAR jako wsparcie podczas opracowań raportów OOŚ

Dane LiDAR jako wsparcie podczas opracowań raportów OOŚ Dane LiDAR jako wsparcie podczas opracowań raportów OOŚ Mateusz Maślanka Kierownik Działu Szkoleń i Marketingu ProGea Consulting e-mail: mateusz.maslanka@progea.pl Lotnicze skanowanie laserowe Jak działa?

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Miary statystyczne w badaniach pedagogicznych

Miary statystyczne w badaniach pedagogicznych Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane

Bardziej szczegółowo

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować? 1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.

Bardziej szczegółowo

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Informacja o Środowisku integracja danych z lotniczego skaningu laserowego oraz zdjęć lotniczych

Informacja o Środowisku integracja danych z lotniczego skaningu laserowego oraz zdjęć lotniczych Zakopane 7/09/2009 Informacja o Środowisku integracja danych z lotniczego skaningu laserowego oraz zdjęć lotniczych Łukasz Sławik, Dyr. segmentu Ochrona Środowiska 1 zaproszenie na warsztaty W ramach organizowanych

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Kompleksowy monitoring dynamiki drzewostanów Puszczy Białowieskiej z wykorzystaniem danych teledetekcyjnych

Kompleksowy monitoring dynamiki drzewostanów Puszczy Białowieskiej z wykorzystaniem danych teledetekcyjnych Instytut Badawczy Leśnictwa www.ibles.pl Dane pozyskane w projekcie Kompleksowy monitoring dynamiki drzewostanów Puszczy Białowieskiej z wykorzystaniem danych teledetekcyjnych Aneta Modzelewska, Małgorzata

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

Identyfikacja siedlisk Natura 2000 metodami teledetekcyjnymi na przykładzie torfowisk zasadowych w dolinie Biebrzy

Identyfikacja siedlisk Natura 2000 metodami teledetekcyjnymi na przykładzie torfowisk zasadowych w dolinie Biebrzy Identyfikacja siedlisk Natura 2000 metodami teledetekcyjnymi Dominik Kopeć 1, Łukasz Sławik 2, Marcin Borowisk 2, Dorota Michalska-Hejduk 1 1 Uniwersytet Łódzki, Katedra Geobotaniki i Ekologii Roślin,

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II Podział zmiennych Zmienne zależne zmienne, które są przedmiotem badania, których związki z innymi zmiennymi chcemy określić Zmienne

Bardziej szczegółowo

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X) STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości

Bardziej szczegółowo

Statystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR

Statystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR Statystyka Opisowa WK1.2017 Andrzej Pawlak Intended Audience: PWR POJĘCIA STATYSTYKI 1. Zbiór danych liczbowych pokazujących kształtowanie się określonych zjawisk i procesów (roczniki statystyczne). 2.

Bardziej szczegółowo

Inwentaryzacja zasobów drzewnych

Inwentaryzacja zasobów drzewnych Inwentaryzacja zasobów drzewnych Metody inwentaryzacji zapasu. Charakterystyka metody reprezentacyjnej. Przypomnienie Metody inwentaryzacji: - pomiarowa - szacunkowa - pomiarowo-szacunkowa - reprezentacyjna

Bardziej szczegółowo

Analiza statystyczna w naukach przyrodniczych

Analiza statystyczna w naukach przyrodniczych Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.

Bardziej szczegółowo

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,

Bardziej szczegółowo

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja

Bardziej szczegółowo

Leśnictwo w Gospodarce Przestrzennej

Leśnictwo w Gospodarce Przestrzennej Michał Orzechowski Zakład Urządzania Lasu KULGiEL SGGW Leśnictwo w Gospodarce Przestrzennej Warstwy drzewostanów Fazy rozwojowe w procesie produkcji podstawowej Zabiegi pielęgnacyjne Dojrzałość drzewostanów

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku.

Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Zakład Ubezpieczeń Społecznych Departament Statystyki Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Warszawa 2010 I. Badana populacja. W marcu 2010 r. emerytury

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009

XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009 XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009 Alex.Celinski@gmail.com Rozkład wyników Przedziały 30-minutowe Lp. Przedział Liczebność Częstość czasowy Liczebność Częstość skumulowana skumulowana 1 2:00-2:30

Bardziej szczegółowo

Ocena dokładności i porównywalność danych wysokościowych (chmury punktów) pozyskiwanych z różnych kolekcji danych

Ocena dokładności i porównywalność danych wysokościowych (chmury punktów) pozyskiwanych z różnych kolekcji danych Ocena dokładności i porównywalność danych wysokościowych (chmury punktów) pozyskiwanych z różnych kolekcji danych mgr inż. Marcin Brach dr hab. Jarosław Chormański Katedra Inżynierii Wodnej Zakład Hydrologii

Bardziej szczegółowo

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA

INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA Centrum Informatyczne TASK Politechnika Gdańska Instytut Oceanologii Polskiej Akademii Nauk (IO PAN) INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA Gdańsk Sopot,

Bardziej szczegółowo

Inwentaryzacja zasobów drzewnych w IV rewizji urządzania lasu

Inwentaryzacja zasobów drzewnych w IV rewizji urządzania lasu Inwentaryzacja zasobów drzewnych w IV rewizji urządzania lasu - ogólnie Obecnie obowiązuje statystyczna metoda reprezentacyjnego pomiaru miąższości w obrębie leśnym. Metoda reprezentacyjna oznacza, iż

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych.

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. Wykład 2. 1. Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. 3. Wykresy: histogram, diagram i ogiwa. Prezentacja materiału statystycznego Przy badaniu struktury zbiorowości punktem

Bardziej szczegółowo

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej Krzysztof Karsznia Leica Geosystems Polska XX Jesienna Szkoła Geodezji im Jacka Rejmana, Polanica

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

prace inwentaryzacyjne Wg instrukcji UL 2003 i 2011

prace inwentaryzacyjne Wg instrukcji UL 2003 i 2011 Zakład Urządzania Lasu prace inwentaryzacyjne Wg instrukcji UL 2003 i 2011 Taksacja Taksacja prace przygotowawcze 7 IUL 1) zebranie oraz zestawienie danych o obszarach chronionych w nadleśnictwie i funkcjach

Bardziej szczegółowo

2. Wyposażenie bazy sprzętu przeciwpożarowego stanowi w szczególności:

2. Wyposażenie bazy sprzętu przeciwpożarowego stanowi w szczególności: Dziennik Ustaw Nr 73-3950- Poz. 824 10. 1. Zabezpieczeniu przeciwpożarowemu lasów służą pasy przeciwpożarowe w lasach położonych przy obiektach mogących stanowić zagrożenie pożarowe lasu. 2. Wyróżnia się

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria godz. Funkcje trygonometryczne kąta ostrego definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

Podstawowe pojęcia statystyczne

Podstawowe pojęcia statystyczne Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe

Bardziej szczegółowo

Dlaczego należy uwzględniać zarówno wynik maturalny jak i wskaźnik EWD?

Dlaczego należy uwzględniać zarówno wynik maturalny jak i wskaźnik EWD? EWD co to jest? Metoda EWD to zestaw technik statystycznych pozwalających oszacować wkład szkoły w końcowe wyniki egzaminacyjne. Wkład ten nazywamy właśnie edukacyjną wartością dodaną. EWD jest egzaminacyjnym

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.

Bardziej szczegółowo

Statystyczną ideę szacowania wskaźników EWD dobrze ilustrują dwa poniższe wykresy:

Statystyczną ideę szacowania wskaźników EWD dobrze ilustrują dwa poniższe wykresy: 1 Metoda EWD (edukacyjna wartość dodana) to zestaw technik statystycznych pozwalających zmierzyć wkład szkoły w wyniki nauczania. By można ją zastosować, potrzebujemy wyników przynajmniej dwóch pomiarów

Bardziej szczegółowo

Zastosowanie zdalnych metod szacowania biomasy drewna energetycznego w polskoniemieckim projekcie Forseen Pomerania

Zastosowanie zdalnych metod szacowania biomasy drewna energetycznego w polskoniemieckim projekcie Forseen Pomerania Zastosowanie zdalnych metod szacowania biomasy drewna energetycznego w polskoniemieckim projekcie Forseen Pomerania Andrzej Węgiel, Paweł Strzeliński, Sławomir Sułkowski, Kamil Kondracki Uniwersytet Przyrodniczy

Bardziej szczegółowo

Właściwy dobór metod obserwacji i wskaźników w ocenie wpływu farm wiatrowych na bioróżnorodność ptaków i nietoperzy

Właściwy dobór metod obserwacji i wskaźników w ocenie wpływu farm wiatrowych na bioróżnorodność ptaków i nietoperzy Właściwy dobór metod obserwacji i wskaźników w ocenie wpływu farm wiatrowych na bioróżnorodność ptaków i nietoperzy Marek Ksepko Badania monitoringowe zagadnienia podstawowe (Wytyczne: PSEW 2008, GDOŚ

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii

Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2015 roku. Warszawa 2015 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2014 roku. Warszawa 2014 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Podstawy przetwarzania danych pochodzących z lotniczego skanowania laserowego w oprogramowaniu LP360 firmy QCoherent

Podstawy przetwarzania danych pochodzących z lotniczego skanowania laserowego w oprogramowaniu LP360 firmy QCoherent Podstawy przetwarzania danych pochodzących z lotniczego skanowania laserowego w oprogramowaniu LP360 firmy QCoherent Mateusz Maślanka Specjalista ds. oprogramowania LiDAR mateusz.maslanka@progea.pl Mateusz

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne

Bardziej szczegółowo

MAPY FITOSOCJOLOGICZNE Mapy roślinności, jej zróżnicowania na zbiorowiska i kompleksy przestrzenne zbiorowisk.

MAPY FITOSOCJOLOGICZNE Mapy roślinności, jej zróżnicowania na zbiorowiska i kompleksy przestrzenne zbiorowisk. W10 PLANOWANIE PRZESTRZENNE 14.12.10 ELEMENTY KARTOGRAFII GEOBOTANICZNEJ Mapy florystyczne Ważniejsze podstawowe iż zagadnieniowe mapy fitosocjologiczne Mapy antropocentrycznych przemian szaty roślinnej

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak należy

Bardziej szczegółowo

Zarządzanie przestrzenią miejską - wykorzystanie danych lotniczego skanowania laserowego pochodzących z projektu ISOK

Zarządzanie przestrzenią miejską - wykorzystanie danych lotniczego skanowania laserowego pochodzących z projektu ISOK Zarządzanie przestrzenią miejską - wykorzystanie danych lotniczego skanowania laserowego pochodzących z projektu ISOK Mateusz Maślanka Specjalista ds. oprogramowania LiDAR mateusz.maslanka@progea.pl Mateusz

Bardziej szczegółowo

Policealna Szkoła Handlowa Rok I Wymiar godzin: 30 jednostek dydaktycznych Nr programu nauczania: 341(06)/SP/MEN/ (technik rachunkowości)

Policealna Szkoła Handlowa Rok I Wymiar godzin: 30 jednostek dydaktycznych Nr programu nauczania: 341(06)/SP/MEN/ (technik rachunkowości) Plan pracy dydaktycznej (jest to wstępna wersja planu, który będzie doskonalony) STATYSTYKA Technikum/Liceum Handlowe dla Dorosłych Klasa I Wymiar godzin: 1 godz. w tygodniu w sem. I i II. (bloki tematyczne:

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

OPIS OGÓLNY LASÓW NADLEŚNICTWA

OPIS OGÓLNY LASÓW NADLEŚNICTWA REGIONALNA DYREKCJA LASÓW PAŃSTWOWYCH W LUBLINIE PLAN URZĄDZENIA LASU dla NADLEŚNICTWA PARCZEW OBRĘBY: Parczew Sosnowica Uścimów sporządzony na okres od 1 stycznia 2008r. do 31 grudnia 2017 r. na podstawie

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Podstawy przetwarzania danych pochodzących z lotniczego skanowania laserowego w oprogramowaniu LP360 firmy QCoherent

Podstawy przetwarzania danych pochodzących z lotniczego skanowania laserowego w oprogramowaniu LP360 firmy QCoherent Podstawy przetwarzania danych pochodzących z lotniczego skanowania laserowego w oprogramowaniu LP360 firmy QCoherent Mateusz Maślanka QCoherent Product Manager mateusz.maslanka@progea.pl Przebieg prezentacji

Bardziej szczegółowo

MODELE DO ŚREDNIOTERMINOWEGO. Lidia Sukovata PROGNOZOWANIA POCZĄTKU GRADACJI BRUDNICY MNISZKI. Zakład Ochrony Lasu. Instytut Badawczy Leśnictwa

MODELE DO ŚREDNIOTERMINOWEGO. Lidia Sukovata PROGNOZOWANIA POCZĄTKU GRADACJI BRUDNICY MNISZKI. Zakład Ochrony Lasu. Instytut Badawczy Leśnictwa MODELE DO ŚREDNIOTERMINOWEGO PROGNOZOWANIA POCZĄTKU GRADACJI BRUDNICY MNISZKI Lidia Sukovata Instytut Badawczy Leśnictwa Zakład Ochrony Lasu Definicje Prognoza jest przewidywaniem przyszłych faktów, zdarzeń

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

ANALIZA PRZESTRZENNEJ ZMIENNOŚCI WYBRANYCH CECH BUDOWY PIONOWEJ DRZEWOSTANU NA PODSTAWIE DANYCH LOTNICZEGO SKANOWANIA LASEROWEGO

ANALIZA PRZESTRZENNEJ ZMIENNOŚCI WYBRANYCH CECH BUDOWY PIONOWEJ DRZEWOSTANU NA PODSTAWIE DANYCH LOTNICZEGO SKANOWANIA LASEROWEGO Archiwum Fotogrametrii, Kartografii i Teledetekcji, Vol. 23, 2012, s. 501 508 ISSN 2083-2214 ISBN 978-83-61576-19-8 ANALIZA PRZESTRZENNEJ ZMIENNOŚCI WYBRANYCH CECH BUDOWY PIONOWEJ DRZEWOSTANU NA PODSTAWIE

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

zaznaczymy na osi liczbowej w ten sposób:

zaznaczymy na osi liczbowej w ten sposób: 1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb

Bardziej szczegółowo

Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Ojcowski Park Narodowy OJCÓW 9, Suł oszowa, POLSKA

Ojcowski Park Narodowy OJCÓW 9, Suł oszowa, POLSKA Znak sprawy: DNE 370/1/2012 Zamawiający: Ojcowski Park Narodowy OJCÓW 9, 32 045 Suł oszowa, POLSKA tel.: 12 389 10 39, 12 389 14 90, 12 389 20 05, fax: 12 389 20 06, email: opnar@pro.onet.pl www.ojcowskiparknarodowy.pl

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo