Ćw. 10 Badanie toru przetwarzania C/A w mikrokontrolerach analogowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćw. 10 Badanie toru przetwarzania C/A w mikrokontrolerach analogowych"

Transkrypt

1 Ćw. 10 Badanie toru przetwarzania C/A w mikrokontrolerach analogowych (ADuC824 lub ADuC834) Problemy teoretyczne: Podstawy architektury mikrokontrolerów i mikrokonwerterów pamięć programu, pamięć danych, interfejs komunikacyjny RS-232, moduły programowanych liczników/dzielników, system przerwań. Teoria próbkowania i kwantowania sygnałów analogowych. Ogólna zasada działania przetworników C/A (z ważeniem prądowym i sieciami drabinkowymi R-2R) Rekwizyty: 1. Moduł mikroprocesorowy ADuC824 / ADuC834 a. moduł b. zasilacz c. kabel interfejsu RS Mikrokomputer z systemem operacyjnym Windows 2000/XP oraz oprogramowanie: a. system uruchomieniowy Vision2 f-my Keil v.2.36 (kompilator języków programowania C i ASM, konsolidator, bibliotekarz, programy ładujące) b. hyperterminal v5.1 c. program ładujący (downloader) WSD.exe (v.6.03) d. kompilator języka C (Borland v3.1 lub Builder C) e. arkusz kalkulacyjny: Microsoft Excel 3. Oscyloskop analogowy/cyfrowy 4. Multimetr Instrukcja obsługi modułu ADuC824/834 Zasilanie modułu: Moduł zasilany jest z zewnętrznego zasilacza napięciem stałym o wartości 9V. Do podłączenia wykorzystywany jest wtyk cylindryczny (2.1mm). Napięcie 9V zasila liniowy regulator napięcia (U2). Z jego wyjścia po odfiltrowaniu uzyskuje się napięcie 5V zasilające części analogowe i cyfrowe modułu. Stan zasilania sygnalizowany jest zieloną diodą LED (D4). Interfejs UART/RS232 Moduł ADuC8xx (U1) wykorzystuje jedynie linie komunikacyjne TxD i RxD dostępne na złączu interfejsowym (J4). Kabel interfejsowy zapewnia dopasowanie poziomów napięciowych sygnałów. Obwód zegara systemowego Moduł wyposażony jest obwód rezonatora kwarcowego kHz. System mikroprocesorowy sterowany jest poprzez układy powielania częstotliwości PLL. Napięcie referencyjne System mikroprocesorowy wyposażony jest dodatkowo w zewnętrzne źródło napięcia referencyjnego (AD780). Wskaźnik LED Dioda sygnalizacyjna (czerwona) LED (D5) jest podłączona bezpośrednio do portu P3.4. Użytkownik systemu może wykorzystywać np. instrukcje CLR P3.4 do zapalenia diody lub SETB P3.4 do wyłączenia diody. SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx1-1 -

2 Przyciski: Reset/INT0/Serial_Download Przycisk RESET jest wykorzystywany do ręcznego wyzerowania modułu, powoduje to uruchomienie programu zapisanego w pamięci FLASH ROM modułu. Przycisk INT0 jest podłączony bezpośrednio do linii P3.2/INT0. Wciśnięcie przycisku (podanie sygnału LOW na linię P3.2) może powodować inicjację przerwania 0. Wprowadzenie modułu w tryb ładowania programu użytkownika do pamięci (serial download) wymaga od użytkownika wykonania sekwencji wciśnięć przycisków (przycisk Serial_Dowload == PSEN) obrazowanej na rysunku: (a) SW1 & SW3 zwolnione (b) wciśnij SW3 (c) wciśnij SW1 SW1 (RESET=0) SW3 (PSEN=1) SW1 (RESET=0) SW3 (PSEN=0) SW1 (RESET=1) SW3 (PSEN=1) (d) zwolnij SW1 (e) zwolnij SW3 SW1 (RESET=0) SW3 (PSEN=0) SW1 (RESET=0) SW3 (PSEN=1) Rys. 1. Wprowadzenie modułu ADuC8xx w tryb ładowania programu użytkownika (SW1-RESET, SW3- Serial_Download). Program ćwiczenia: 1. Zapoznać się z dokumentacją techniczną modułu mikroprocesorowego ADuC824/834 a. ogólna charakterystyka modułu mikroprocesorowego b. budowa przetwornika C/A c. algorytmy obsługi przetworników C/A 2. Zapoznać się z budową stanowiska laboratoryjnego: mikrokomputer i środowisko programowe Vision2, hyperminal, downloader WASP.exe 3. Zapoznać się ze sposobem sterowania częstotliwością zegarową systemu mikroprocesorowego (znaczenie bitów słowa kontrolnego PLLCON). Weryfikacja poprawności działania pętli fazowej PLL śledzącej częstotliwość podstawową zegara kwarcowego, sposób przyspieszonej obsługi przerwań programowych, określenie częstotliwości pracy rdzenia systemu. 4. Zapoznać się ze sposobem sterowania przetwornika C/A modułu mikroprocesorowego ADuC824/834 (bity słowa kontrolnego DACCON, rejestry DACL, DACH). (patrz - tabela 1b). 5. W programowaniu uwzględnić buforowane wtórnikiem napięciowym wyprowadzenie sygnału z modułu ADuC8xx na złącze J1-11 (tzn. DACPIN=1) SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx2-2 -

3 6. Zweryfikować układ połączeń zgodny z poniższym schematem blokowym: oscyloskop multimetr moduł ADuC824/834 t 999.9mV rdzeń 8051/52 x(t) y(t) mikrokomputer RS232 C/A UART C/A GND Rys. 2. Schemat blokowy układu połączeń do testowania przetwornika C/A. 7. Wyznaczyć charakterystykę statyczną przetwornika C/A (kilkanaście punktów pomiarowych) uruchamiając na mikrokontrolerze analogowym aplikację test_dac.uvproj: uruchomić program terminala znakowego urządzenia ADuc824/834 wcisnąć przycisk RESET mikrosystemu zaobserwować odpowiedź mikroukładu dokonać wyboru trybu pracy przetwornika C/A (słowo kontrolne DACCON =0x13 lub =0x17) wprowadzić numerycznie słowo kodu przetwornika (dziesiętnie w zakresie od 0 do 4095) zmierzyć wartość napięcia wyjściowego przetwornika C/A przy pomocy multimetru (napięcie DC) powtórz od dla kolejnej wartości słowa kodowego, wyniki zanotuj w tab. 1 wyznacz charakterystykę statyczną przetwornika C/A (rys. 7. Zapoznać się z zasadą działania licznika TL2 modułów serii ADuC824/834 pracujących w trybie auto-przeładowania (jak na rys.4). Tryb ten umożliwia generowanie przerwania IRQ5 zgodnie z częstotliwością przepełniania licznika TL2. Należy zwrócić uwagę na częstotliwość rdzenia systemu, która jest zgodna z częstotliwością generatora powielacza PLL i zależy od słowa kontrolnego PLLCON (standardowo częstotliwość zegara systemowego fcore= MHz, jeżeli PLLCON=0 to f CORE= MHz). Okres przerwań licznika TL2 w takim układzie będzie wynosił: RCAP 2 TC fcore 12 Aby zatem uzyskać zdaną wartość częstotliwości powtarzania się przerwania IRQ5 należy w odpowiedni sposób zaprogramować wartości rejestrów RCAP2: f CORE fcore RCAP TC 12 f IRQ5 12 fcore DZ f 12 IRQ5 Zadaną częstotliwość okresu generowanej funkcji uzyskamy po uwzględnieniu liczby przetwarzanych próbek N. Tx N T C Dla zadanych wartości: fcore, N, Tc (wartości zadane przez prowadzącego ćwiczenie) należy określić parametry programowania układu czasowo-licznikowego L2 (rejestr dzielnika RCAP2L, RCAP2H). SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx3-3 -

4 U(t) bin U N 2 N -1 T C T x t Rys. 3. Diagram czasowy generowania kolejnych próbek sygnału przetwornika C/A, (TX-okres sygnału, Tc-okres próbkowania) Rys. 4. Schemat blokowy budowy układu czasowo-licznikowego L2 mikroprocesra (TL2, TH2 - część młodsza i starsza licznika L2, RCAP2L, RCAP2H- część młodsza i starsza rejestru zadawania dzielnika, TIMER INTERRUPT - sygnał przerwania z układu L2). 8. Zapoznać się programem obsługi przetwornika C/A generującym kolejne próbki sygnału sinusoidalnego sinus_128.c. Wyznaczyć podstawowe parametry procesu przetwarzania C/A zakładając, że: jeden okres przetwarzanego sygnału składa się z Nprb próbek, zadana częstotliwość sygnału wyjściowego fx (zostanie podana przez prowadzącego ćwiczenia), amplituda sygnału Ax=1V, składowa stała sygnału UDC=0.5V gdzie: WDi-wartość binarna próbki, UREF - napięcie skali przetwarzania przetwornika C/A (2.5V). W Di U 2 12 REF U DC A x 2i sin N prb oraz warunki ograniczające do skali przetwarzania przetwornika: if W Di 2 1 W 2 1 if Di W Di 0W 0 Di SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx4-4 -

5 9. Zapoznać się z metodami generowania i przygotowywania wartości przetwarzanych próbek w pamięci mikrokontrolera: wewnętrznej RAM (DATA, IDATA) zewnętrznej RAM (XDATA), pamięci kodu ROM (CDATA). Przeanalizować czas dostępu do pamięci podczas generowania kolejnych wartości próbek sygnału podczas obsługi przerwania INT Uruchomić w środowisku mikrokontrolera analogowego program sinus_128 (sinus.uvproj). Zaobserwować generowany przebieg na ekranie oscyloskopu. Przy jego pomocy zweryfikować podstawowe parametry obserwowanego sygnału fx. 11. Zaobserwować na ekranie oscyloskopu efekty zakłóceń szpilkowych. 12. Zaproponować algorytm uproszczenia przetwarzania C/A do słowa 8-bitowego przetwornika C/A 13. Zaproponować i zweryfikować algorytm obsługi przetwornika C/A w którym wartość generowanego napięcia przetwornika zadawana jest przez operatora mikrosystemu np. z klawiatury (instrukcja scanf). W oparciu o w/w algorytm zweryfikować charakterystykę przetwarzania C/A w zakresie od 0 do 2.5V z krokiem 0.1V. Wartości napięcia wyjściowego przetwornika C/A odczytać z multimetru. W oparciu o uzyskane wyniki dokonać oceny charakterystyki przetwornika Literatura: 1. Z.Kulka, A.Libura, M.Nadachowski: Przetworniki analogowo-cyfrowe i cyfrowo-analogowe. WkiŁ, Warszawa Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe. WKiŁ, Warszawa ADuC824/ADuC834, MicroConwerter TM, Dual-Channel 16/24-Bit ADCs with Embedded FLASH MCU, Analog Devices, Rev.0, (plik: ADuC824.pdf / ADuC834.pdf) 1. Wyniki pomiarów Wyznaczenie charakterystyki statycznej przetwornika C/A D Uwy [V] D Uwy [V] D słowo kodowe SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx5-5 -

6 Rys. 5. Charakterystyka statyczna przetwornika C/A Zadawane wartości parametrów: Lp. f x [ Hz ] A x [ V ] U DC [ V ] N prb DAC0 DAC1 DAC MODE RAM int RAM ext ROM SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx6-6 -

7 Przkładowy program obsługi przetwornika C/A sinus_128.c #include <stdio.h> #include <ADuC834.h> #include <math.h> #define RAM 0 #define XRAM 1 #define DZ -105 #define NPRB 90 #define XLPR 256 sbit LED = 0x0B4; unsigned int i; data unsigned int code *ptr, *ptrend; data unsigned int idata *iptr, *iptrend; data unsigned int xdata *xptr, *xptrend; xdata unsigned int xbuf[xlpr]; idata unsigned int ibuf[nprb]; code unsigned int buf[128]= 2048,2148,2248,2348,2447,2545,2642,2737,2831,2923,3012,3100,3185,3267,3346,3422, 3495,3564,3630,3692,3750,3804,3853,3898,3939,3975,4007,4034,4056,4073,4085,4093, 4095,4093,4086,4074,4057,4035,4008,3976,3940,3900,3855,3805,3752,3694,3632,3567, 3497,3425,3349,3270,3188,3103,3015,2926,2834,2740,2645,2548,2450,2351,2251,2151, 2051,1950,1850,1750,1651,1553,1456,1361,1267,1175,1085, 998, 913, 831, 751, 675, 602, 533, 467, 405, 347, 293, 243, 198, 157, 121, 89, 62, 40, 22, 10, 2, 0, 2, 9, 21, 38, 60, 86, 117, 153, 194, 239, 288, 342, 399, 461, 526, 595, 668, 744, 823, 905, 990,1077,1166,1258,1352,1447,1544,1642,1741,1840,1941; // Obsluga kolejnych przerwan od licznika TL2 #if XRAM void interrupt_0 () interrupt 5 DACH=*xptr>>8; DACL=*xptr; if (xptr++==xptrend) xptr=xbuf; LED^=1; TF2 = 0; #else #if RAM void interrupt_0 () interrupt 5 DACH=*iptr>>8; DACL=*iptr; if (iptr++==iptrend) iptr=ibuf; LED^=1; TF2 = 0; #else void interrupt_0 () interrupt 5 DACH=*ptr>>8; DACL=*ptr; if (ptr++==ptrend) ptr=buf; LED^=1; TF2 = 0; #endif #endif void main (void) PLLCON=0; // clk= MHz (standardowo: clk= MHz) #if XRAM CFG834=0x01; #endif // KONFIGURACJA portu transmisji szeregowej - UART SCON=0x52; // mode 1 TMOD=0x20; TH1=TL1=0xF9; // PCON=0x80; // SMOD=1 TR1=1; printf("\nbadanie przetwornika C/A (mikrokonwerter AduC824)\n"); #if XRAM for (i=0; i<xlpr; i++) xbuf[i]=(int)(2048.0*(1+sin(i*6.26/xlpr))); SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx7-7 -

8 printf("\n%2d: %4u", i, xbuf[i]); xptr=xbuf; xptrend=&xbuf[xlpr-1]; #else #if RAM #else #endif #endif for (i=0; i<nprb; i++) ibuf[i]=(int)(1024.0*(1+sin(i*6.26/nprb))); printf("\n%2d: %4u", i, ibuf[i]); iptr=ibuf; iptrend=&ibuf[nprb-1]; ptr=buf; ptrend=&buf[127]; // Programowanie trybu pracy przetwornika C/A DACCON = 0x13; // wyjscie=pin12, zakres: 0-2.5V, wlaczony DACH = 0x08; // 1/2 zakresu DACL = 0x00; ET2 = 1; TL2 = DZ; TH2 = DZ>>8; // zezwolenie przerwan od TL2 // wartosc poczatkowa TL2 RCAP2L = DZ; RCAP2H = DZ>>8; // wartosc autorepetycji TL2 EA = 1; TR2=1; while (1); // globalne zezwolenie przerwan // start TL2 // Modul generuje kolejne probki sygnalu test_dac.c #include <stdio.h> #include <ADuC824.h> sbit LED = 0x0B4; void main (void) data unsigned int val; PLLCON=0; // clk= MHz (standardowo: clk= MHz) // KONFIGURACJA portu transmisji szeregowej - UART SCON=0x52; // mode 1 TMOD=0x20; TH1=TL1=0xF9; // 9600 PCON=0x80; // SMOD=1 TR1=1; // Programowanie trybu pracy przetwornika C/A DACCON = 0x13; // wyjscie=pin12, zakres: 0-2.5V, wlaczony DACH = 0x08; // 1/2 zakresu DACL = 0x00; printf("\nbadanie przetwornika C/A (mikrokonwerter AduC824)\n"); while (1) printf("\npodaj wartosc HEX kodu wejsciowego przetwornika DAC: "); scanf("%04x", &val); DACH = val >> 8; DACL = val; SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx8-8 -

9 Podstawowe parametry przetwornika: Dokładność względna (Relative Accuracy) Dokładność względna jest mierzona jako max odchylenie punktów charakterystyki przetwarzania od linii prostej przechodzącej przez punkt końcowy charakterystyki przetwarzania C/A, odniesioną do napięcia pełnego zakresu przetwarzania i wyrażona w procentach. Pomiar powinien być dokonywany po przeprowadzeniu adjustacji błędu przesunięcia zera i błędu pełnej skali przetwornika. Czas ustalania napięcia wyjściowego (Voltage Output Settling Time) Jest to wartość czasu upływającego do momentu osiągnięcia specyfikowanego poziomu napięcia wyjściowego na skutek zmiany na wejściu odpowiadającej pełnemu zakresowi. Zakłócenia szpilkowe sygnału wyjściowego (GLITCH) (Digital-to-Analog Glitch Impulse) Powstają w wyniku stanów przejściowych zmiany słów kodowych. Określane powierzchnią obszaru szpilek w nv/s. Przetwornik C/A ADuC812 jest wyposażony w dwa 12-bitowe napięciowe przetworniki C/A. Każdy z nich posiada wyjściowy bufor napięciowy typu rail-to-rail (wyjście od szyny do szyny zasilającej) obciążany do wartości 10kΩ/100pF. Każdy niezależnie może pracować w zakresie 0V do VREF (wewnętrzne źródło 2.5V) i 0V do AVDD. Każdy z nich może pracować w trybie 8 lub 12-bitowym. Przetworniki wykorzystują wspólnie jeden rejestr kontrolny DACCON oraz 4 rejestry danych, DAC1H, DAC1L, DAC0H, DAC0L. Mogą pracować w trybie 12-bitowym asynchronicznym, w którym wartość wyjściowa napięcia przetwornika C/A uaktualniana jest po wpisaniu danej do DACL dlatego ważna jest kolejność wpisywania danych, najpierw cz. starsza DACH, a potem, młodsza DACL. Tabela 1. Słowo sterujące trybem pracy przetwornika a). AduC812, b). ADuC824/834. a). DACCON (wartość pocz. 04H, brak adresowania bitowego) ADuC812 MODE RNG1 RNG0 CLR1 CLR0 SYNC PD1 PD0 Alokacja Mnemonic Opis bitowa bitu DACCON.7 MODE DAC MODE bit umieszcza nadrzędny działający tryb dla obu DACs 1 = 8-bit tryb (pisz 8bitowy do DACxL SFR). 0 = 12-bit tryb. Bitowy wybór zakresu DAC1. DACCON.6 RNG1 Bit wyboru zakresu przetwornika. DAC1 1 =DAC1 zakres 0-VDD. 0 = DAC1 zakres 0-VREF. DACCON.5 RNG0 Bit wyboru zakresu przetwornika. DAC0. 1 =DAC0 zakres 0-VDD. 0 = DAC0zakres 0-VREF. DACCON.4 CLR1 Bit zerowania DAC1 0 =DAC1 wyjście wymusza do 0V. 1 = DAC1 wyjście normalne. DACCON.3 CLR0 Bit zerowania DAC0 0 =DAC0 wyjście wymusza do 0V. 1 = DAC0 wyjście normalne. DACCON.2 SYNC Bit uaktualnienia synchronicznego 1 wyjścia przetworników są aktywowane wpisem danej do DACxL. Użytkownik może uaktualniać rejestry DACxL/H podczas SYNC=0. Uaktualnienie jednoczesne wyjść nastąpi po wpisaniu do SYNC=1. DACCON.1 PD1 Bit Power-Down 1 = Power-On DAC1. 0 = Power-Off DAC1 SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx9-9 -

10 DACCON.0 PD0 Bit Power Down. 1 = Power-On DAC0 0 = Power-Off DAC0 b). DACCON (wartość pocz. 00H, brak adresowania bitowego) ADuC824 / ADuC DACPIN DAC8 DACRN DACCLR DACEN Alokacja Mnemonic Opis bitowa bitu DACCON.4 DACPIN Bit wyboru wyprowadzenia sygnału wyjściowego 1 = Pin 12 (P1.7/AIN4/DAC) 0 = Pin 3 (P1.2/DAC/IEXC1) DACCON.3 DAC8 Bit wyboru trybu pracy 8/12 bit 1 = uaktywnienie trybu 8-bit (w tym trybie pracy rejestr DACL ustawiają część starszą rejestru sterującego przetwornika C/A, a 4 bity części młodszej są ustawione na 0) 0 = uaktywnienie trybu 12-bit DACCON.2 DACRN Bit wyboru zakresu przetwarzania C/A 1 zakres przetwarzania 0 - AVDD 0 zakres przetwarzania 0 2.5V. DACCON.1 DACCLR Bit zerowania przetwornika 1 = normalne operacje przetwornika C/A 0 = zerowanie słów sterujących przetwornika DACL i DACH DACCON.0 DACEN Bit zezwolenia 1 = normalne operacje, przetwornik włączony 0 = przetwornik wyłączony (tryb oszczędnościowy), power-off DAC Użycie przetwornika C/A Architektura przetwornika C/A zawiera drabinkę rezystancyjną współpracującą ze buforowym wzmacniaczem wyjściowym (funkcjonalny ekwiwalent pokazany jest na rys.). Szczegóły architektury są opatentowane U.S. Patent Number Zasada tej architektury gwarantuje monotoniczność i znakomitą różnicową liniowość. SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx

11 Pytania kontrolne: 1. Narysuj schemat blokowy struktury przetwornika C/A mikrosystemu (ADuC824/834) 2. Wymień podstawowe parametry przetworników C/A 3. Opisz funkcję przetwarzania przetwornika C/A 4. Analogowe układy buforowania wyjścia przetwornika C/A 5. Programowanie rejestrowe przetwornika C/A 6. Napięcie referencyjne i napięcie zasilania w funkcji przetwarzania C/A 7. Opisz zasadę generowania sygnałów analogowych o zadanym kształcie 8. Pamięć RAM w procesie generowania sygnałów analogowych C/A 9. Rola systemu przerwań w procesie generowania sygnałów analogowych przetwornika C/A 10. Schemat blokowy systemu do weryfikacji charakterystyki przetwarzania C/A SPWF_cw_10 Badanie toru przetwarzania CA w mikrokontrolerach analogowych.docx

ĆWICZENIE. TEMAT: OBSŁUGA PRZETWORNIKA A/C W ukontrolerze 80C535 KEILuVISON

ĆWICZENIE. TEMAT: OBSŁUGA PRZETWORNIKA A/C W ukontrolerze 80C535 KEILuVISON ĆWICZENIE TEMAT: OBSŁUGA PRZETWORNIKA A/C W ukontrolerze 80C535 KEILuVISON Wiadomości wstępne: Wszystkie sygnały analogowe, które mają być przetwarzane w systemach mikroprocesorowych są próbkowane, kwantowane

Bardziej szczegółowo

Przetworniki AC i CA

Przetworniki AC i CA KATEDRA INFORMATYKI Wydział EAIiE AGH Laboratorium Techniki Mikroprocesorowej Ćwiczenie 4 Przetworniki AC i CA Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania wybranych rodzajów przetworników

Bardziej szczegółowo

Parametryzacja przetworników analogowocyfrowych

Parametryzacja przetworników analogowocyfrowych Parametryzacja przetworników analogowocyfrowych wersja: 05.2015 1. Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC analog-to-digital converter),

Bardziej szczegółowo

Przetwarzanie A/C i C/A

Przetwarzanie A/C i C/A Przetwarzanie A/C i C/A Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 Rev. 204.2018 (KS) 1 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwornikami: analogowo-cyfrowym

Bardziej szczegółowo

MIKROPROCESORY architektura i programowanie

MIKROPROCESORY architektura i programowanie Struktura portów (CISC) Port to grupa (zwykle 8) linii wejścia/wyjścia mikrokontrolera o podobnych cechach i funkcjach Większość linii we/wy może pełnić dwie lub trzy rozmaite funkcje. Struktura portu

Bardziej szczegółowo

Przetwarzanie AC i CA

Przetwarzanie AC i CA 1 Elektroniki Elektroniki Elektroniki Elektroniki Elektroniki Katedr Przetwarzanie AC i CA Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 1. Cel ćwiczenia 2 Celem ćwiczenia jest

Bardziej szczegółowo

Ćw. 7 Przetworniki A/C i C/A

Ćw. 7 Przetworniki A/C i C/A Ćw. 7 Przetworniki A/C i C/A 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadami przetwarzania sygnałów analogowych na cyfrowe i cyfrowych na analogowe poprzez zbadanie przetworników A/C i

Bardziej szczegółowo

APPLICATION OF ADUC MICROCONTROLLER MANUFACTURED BY ANALOG DEVICES FOR PRECISION TENSOMETER MEASUREMENT

APPLICATION OF ADUC MICROCONTROLLER MANUFACTURED BY ANALOG DEVICES FOR PRECISION TENSOMETER MEASUREMENT Sławomir Marczak - IV rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński - opiekun naukowy APPLICATION OF ADUC MICROCONTROLLER MANUFACTURED BY ANALOG DEVICES FOR PRECISION TENSOMETER MEASUREMENT

Bardziej szczegółowo

KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE. Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach wagowych

KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE. Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach wagowych KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE Przetworniki A/C i C/A Data wykonania LABORATORIUM TECHNIKI CYFROWEJ Skład zespołu: Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach

Bardziej szczegółowo

Ćw. 1 Wprowadzenie: Obsługa mikroprocesorowych modułów, podstawy techniki programowania, obsługa operacji WE/WY

Ćw. 1 Wprowadzenie: Obsługa mikroprocesorowych modułów, podstawy techniki programowania, obsługa operacji WE/WY Ćw. 1 Wprowadzenie: Obsługa mikroprocesorowych modułów, podstawy techniki programowania, obsługa operacji WE/WY Problemy teoretyczne: Podstawy architektury mikrokontrolerów analogowych i mikrokonwerterów

Bardziej szczegółowo

Generator przebiegów pomiarowych Ex-GPP2

Generator przebiegów pomiarowych Ex-GPP2 Generator przebiegów pomiarowych Ex-GPP2 Przeznaczenie Generator przebiegów pomiarowych GPP2 jest programowalnym sześciokanałowym generatorem napięć i prądów, przeznaczonym do celów pomiarowych i diagnostycznych.

Bardziej szczegółowo

Architektura mikrokontrolera MCS51

Architektura mikrokontrolera MCS51 Architektura mikrokontrolera MCS51 Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Architektura mikrokontrolera

Bardziej szczegółowo

4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD.

4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD. 13 4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD. Zagadnienia do przygotowania: - budowa i działanie interfejsu szeregowego UART, - tryby pracy,

Bardziej szczegółowo

4 Transmisja szeregowa, obsługa wyświetlacza LCD.

4 Transmisja szeregowa, obsługa wyświetlacza LCD. 1 4 Transmisja szeregowa, obsługa wyświetlacza LCD. Zagadnienia do przygotowania: - budowa i działanie interfejsu szeregowego UART, - tryby pracy, - ramka transmisyjna, - przeznaczenie buforów obsługi

Bardziej szczegółowo

Architektura mikrokontrolera MCS51

Architektura mikrokontrolera MCS51 Architektura mikrokontrolera MCS51 Ryszard J. Barczyński, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Architektura mikrokontrolera

Bardziej szczegółowo

Wyjścia analogowe w sterownikach, regulatorach

Wyjścia analogowe w sterownikach, regulatorach Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)

Bardziej szczegółowo

Start Bity Bit Stop 1 Bit 0 1 2 3 4 5 6 7 Par. 1 2. Rys. 1

Start Bity Bit Stop 1 Bit 0 1 2 3 4 5 6 7 Par. 1 2. Rys. 1 Temat: Obsługa portu komunikacji szeregowej RS232 w systemie STRC51. Ćwiczenie 2. (sd) 1.Wprowadzenie do komunikacji szeregowej RS232 Systemy bazujące na procesorach C51 mogą komunikować się za pomocą

Bardziej szczegółowo

Wstęp...9. 1. Architektura... 13

Wstęp...9. 1. Architektura... 13 Spis treści 3 Wstęp...9 1. Architektura... 13 1.1. Schemat blokowy...14 1.2. Pamięć programu...15 1.3. Cykl maszynowy...16 1.4. Licznik rozkazów...17 1.5. Stos...18 1.6. Modyfikowanie i odtwarzanie zawartości

Bardziej szczegółowo

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Wejścia analogowe w sterownikach, regulatorach, układach automatyki Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA

TECHNIKA MIKROPROCESOROWA LABORATORIUM TECHNIKA MIKROPROCESOROWA Port transmisji szeregowej USART MCS'51 Opracował: Tomasz Miłosławski 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobami komunikacji mikrokontrolera

Bardziej szczegółowo

LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy:

LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy: LITEcompLPC1114 Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Bezpłatny zestaw dla Czytelników książki Mikrokontrolery LPC1100. Pierwsze kroki LITEcompLPC1114 jest doskonałą platformą mikrokontrolerową

Bardziej szczegółowo

Szkolenia specjalistyczne

Szkolenia specjalistyczne Szkolenia specjalistyczne AGENDA Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin info@gryftec.com

Bardziej szczegółowo

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem

Bardziej szczegółowo

Systemy Pomiarowe Wielkości Fizycznych Ćw. 9. Ćw.9 Badanie mikroprocesorowego przetwornika A/C

Systemy Pomiarowe Wielkości Fizycznych Ćw. 9. Ćw.9 Badanie mikroprocesorowego przetwornika A/C Ćw.9 Badanie mikroprocesorowego przetwornika A/C (AduC812 lub ADuC831) Problemy teoretyczne: Podstawy architektury mikrokontrolerów i mikrokonwerterów pamięć programu, pamięć danych, interfejs komunikacyjny

Bardziej szczegółowo

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

Ćw. 12. Akwizycja sygnałów w komputerowych systemach pomiarowych ( NI DAQPad-6015 )

Ćw. 12. Akwizycja sygnałów w komputerowych systemach pomiarowych ( NI DAQPad-6015 ) Ćw. 12. Akwizycja sygnałów w komputerowych systemach pomiarowych ( NI DAQPad-6015 ) Problemy teoretyczne: Podstawy architektury kart kontrolno-pomiarowych na przykładzie modułu NI DAQPad-6015 Teoria próbkowania

Bardziej szczegółowo

Przetwornik analogowo-cyfrowy

Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy A/C (ang. A/D analog to digital; lub angielski akronim ADC - od słów: Analog to Digital Converter), to układ służący do zamiany sygnału analogowego

Bardziej szczegółowo

Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP

Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP ZL32ARM ZL32ARM z mikrokontrolerem LPC1114 (rdzeń Cotrex-M0) dzięki wbudowanemu programatorowi jest kompletnym zestawem uruchomieniowym.

Bardziej szczegółowo

PROGRAM TESTOWY LCWIN.EXE OPIS DZIAŁANIA I INSTRUKCJA UŻYTKOWNIKA

PROGRAM TESTOWY LCWIN.EXE OPIS DZIAŁANIA I INSTRUKCJA UŻYTKOWNIKA EGMONT INSTRUMENTS PROGRAM TESTOWY LCWIN.EXE OPIS DZIAŁANIA I INSTRUKCJA UŻYTKOWNIKA EGMONT INSTRUMENTS tel. (0-22) 823-30-17, 668-69-75 02-304 Warszawa, Aleje Jerozolimskie 141/90 fax (0-22) 659-26-11

Bardziej szczegółowo

IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO

IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO IC200UDR002 8 wejść dyskretnych 24 VDC, logika dodatnia/ujemna. Licznik impulsów wysokiej częstotliwości. 6 wyjść przekaźnikowych 2.0 A. Port: RS232. Zasilanie: 24 VDC. Sterownik VersaMax Micro UDR002

Bardziej szczegółowo

Technika Mikroprocesorowa Laboratorium 5 Obsługa klawiatury

Technika Mikroprocesorowa Laboratorium 5 Obsługa klawiatury Technika Mikroprocesorowa Laboratorium 5 Obsługa klawiatury Cel ćwiczenia: Głównym celem ćwiczenia jest nauczenie się obsługi klawiatury. Klawiatura jest jednym z urządzeń wejściowych i prawie zawsze występuje

Bardziej szczegółowo

ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x

ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x ZL9ARM Płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x 1 ZL9ARM to uniwersalna płyta bazowa dla modułów diparm

Bardziej szczegółowo

Układy czasowo-licznikowe w systemach mikroprocesorowych

Układy czasowo-licznikowe w systemach mikroprocesorowych Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość

Bardziej szczegółowo

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S]

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S] ZL25ARM Płyta bazowa dla modułów diparm z mikrokontrolerami STR912 [rdzeń ARM966E-S] ZL25ARM to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów z mikrokontrolerami STR912 (ARM966E-S).

Bardziej szczegółowo

E-TRONIX Sterownik Uniwersalny SU 1.2

E-TRONIX Sterownik Uniwersalny SU 1.2 Obudowa. Obudowa umożliwia montaż sterownika na szynie DIN. Na panelu sterownika znajduje się wyświetlacz LCD 16x2, sygnalizacja LED stanu wejść cyfrowych (LED IN) i wyjść logicznych (LED OUT) oraz klawiatura

Bardziej szczegółowo

dokument DOK 02-05-12 wersja 1.0 www.arskam.com

dokument DOK 02-05-12 wersja 1.0 www.arskam.com ARS3-RA v.1.0 mikro kod sterownika 8 Linii I/O ze zdalną transmisją kanałem radiowym lub poprzez port UART. Kod przeznaczony dla sprzętu opartego o projekt referencyjny DOK 01-05-12. Opis programowania

Bardziej szczegółowo

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza

Bardziej szczegółowo

Technik elektronik 311[07] moje I Zadanie praktyczne

Technik elektronik 311[07] moje I Zadanie praktyczne 1 Technik elektronik 311[07] moje I Zadanie praktyczne Firma produkująca sprzęt medyczny, zleciła opracowanie i wykonanie układu automatycznej regulacji temperatury sterylizatora o określonych parametrach

Bardziej szczegółowo

ZL11ARM. Uniwersalna płytka bazowa dla modułów diparm

ZL11ARM. Uniwersalna płytka bazowa dla modułów diparm ZL11ARM Uniwersalna płytka bazowa dla modułów diparm ZL11ARM to uniwersalna płyta bazowa dla modułów diparm (np. ZL12ARM i ZL19ARM) z mikrokontrolerami wyposażonymi w rdzenie ARM produkowanymi przez różnych

Bardziej szczegółowo

Przykładowe zadanie praktyczne

Przykładowe zadanie praktyczne Przykładowe zadanie praktyczne Opracuj projekt realizacji prac związanych z uruchomieniem i testowaniem kodera i dekodera PCM z układem scalonym MC 145502 zgodnie z zaleceniami CCITT G.721 (załączniki

Bardziej szczegółowo

PRZETWORNIKI A/C I C/A.

PRZETWORNIKI A/C I C/A. Przetworniki A/C i C/A 0 z 8 PRACOWNIA ENERGOELEKTRONICZNA w ZST Radom 2006/2007 PRZETWORNIKI A/C I C/A. Przed wykonaniem ćwiczenia powinieneś znać odpowiedzi na 4 pierwsze pytania i polecenia. Po wykonaniu

Bardziej szczegółowo

Przetworniki analogowo - cyfrowe CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Zasada pracy przetwornika A/C

Przetworniki analogowo - cyfrowe CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Zasada pracy przetwornika A/C Przetworniki analogowo - cyfrowe CELE ĆWICZEŃ Zrozumienie zasady działania przetwornika analogowo-cyfrowego. Poznanie charakterystyk przetworników ADC0804 i ADC0809. Poznanie aplikacji układów ADC0804

Bardziej szczegółowo

M-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ. 2

M-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ.  2 M-1TI PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ www.metronic.pl 2 CECHY PODSTAWOWE Przetwarzanie sygnału z czujnika na sygnał standardowy pętli prądowej 4-20mA

Bardziej szczegółowo

3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8

3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 Układ PCF 8583 jest pobierającą małą moc, 2048 bitową statyczną pamięcią CMOS RAM o organizacji 256 x 8 bitów. Adresy i dane są przesyłane szeregowo

Bardziej szczegółowo

Podstawy budowy wirtualnych przyrządów pomiarowych

Podstawy budowy wirtualnych przyrządów pomiarowych Podstawy budowy wirtualnych przyrządów pomiarowych Problemy teoretyczne: Pomiar parametrów napięciowych sygnałów za pomocą karty kontrolno pomiarowej oraz programu LabVIEW (prawo Shanona Kotielnikowa).

Bardziej szczegółowo

Imię i nazwisko (e mail) Grupa:

Imię i nazwisko (e mail) Grupa: Wydział: EAIiE Kierunek: Imię i nazwisko (e mail) Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 12: Przetworniki analogowo cyfrowe i cyfrowo analogowe budowa i zastosowanie. Ocena: Podpis

Bardziej szczegółowo

Przetworniki cyfrowo-analogowe C-A CELE ĆWICZEŃ PODSTAWY TEORETYCZNE

Przetworniki cyfrowo-analogowe C-A CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Przetworniki cyfrowo-analogowe C-A CELE ĆWICZEŃ Zrozumienie zasady działania przetwornika cyfrowo-analogowego. Poznanie podstawowych parametrów i działania układu DAC0800. Poznanie sposobu generacji symetrycznego

Bardziej szczegółowo

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych. Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.

Bardziej szczegółowo

Interfejsy komunikacyjne pomiary sygnałów losowych i pseudolosowych. Instrukcja do ćwiczenia laboratoryjnego

Interfejsy komunikacyjne pomiary sygnałów losowych i pseudolosowych. Instrukcja do ćwiczenia laboratoryjnego Interfejsy komunikacyjne pomiary sygnałów losowych i pseudolosowych Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 rev. 05.2018 1 1. Cel ćwiczenia Doskonalenie umiejętności obsługi

Bardziej szczegółowo

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ SPEYFIKJ PRZETWORNIK RÓŻNIY IŚNIEŃ DP250; DP250-D; DP250-1; DP250-1-D; DP2500; DP2500-D; DP4000; DP4000-D; DP7000; DP7000-D; DP+/-5500; DP+/-5500-D 1. Wprowadzenie...3 1.1. Funkcje urządzenia...3 1.2.

Bardziej szczegółowo

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC ZL28ARM Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC Zestaw ZL28ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów AT91SAM7XC. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

Rys. Podstawowy system przetwarzania cyfrowego sygnałów analogowych

Rys. Podstawowy system przetwarzania cyfrowego sygnałów analogowych TEORIA PRÓBKOWANIA Podstawy teorii pobierania próbek. Schemat blokowy typowego systemu pobierającego w czasie rzeczywistym próbki danych jest pokazany na rysunku poniżej. W rzeczywistych układach konwersji

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

Komunikacja w mikrokontrolerach Laboratorium

Komunikacja w mikrokontrolerach Laboratorium Laboratorium Ćwiczenie 4 Magistrala SPI Program ćwiczenia: konfiguracja transmisji danych między mikrokontrolerem a cyfrowym czujnikiem oraz sterownikiem wyświetlaczy 7-segmentowych przy użyciu magistrali

Bardziej szczegółowo

MIKROKONTROLERY I MIKROPROCESORY

MIKROKONTROLERY I MIKROPROCESORY PLAN... work in progress 1. Mikrokontrolery i mikroprocesory - architektura systemów mikroprocesorów ( 8051, AVR, ARM) - pamięci - rejestry - tryby adresowania - repertuar instrukcji - urządzenia we/wy

Bardziej szczegółowo

Komunikacja w mikrokontrolerach Laboratorium

Komunikacja w mikrokontrolerach Laboratorium Laboratorium Ćwiczenie 2 Magistrala UART Program ćwiczenia: konfiguracja transmisji danych między komputerem PC a mikrokontrolerem przy użyciu magistrali UART. Zagadnienia do przygotowania: podstawy programowania

Bardziej szczegółowo

Przetworniki A/C i C/A w systemach mikroprocesorowych

Przetworniki A/C i C/A w systemach mikroprocesorowych Przetworniki A/C i C/A w systemach mikroprocesorowych 1 Przetwornik A/C i C/A Przetworniki analogowo-cyfrowe (A/C) i cyfrowoanalogowe (C/A) to układy elektroniczne umożliwiające przesyłanie informacji

Bardziej szczegółowo

PRZETWORNIK ADC w mikrokontrolerach Atmega16-32

PRZETWORNIK ADC w mikrokontrolerach Atmega16-32 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA PRZETWORNIK ADC w mikrokontrolerach Atmega16-32

Bardziej szczegółowo

TERMINAL DO PROGRAMOWANIA PRZETWORNIKÓW SERII LMPT I LSPT MTH-21 INSTRUKCJA OBSŁUGI I EKSPLOATACJI. Wrocław, lipiec 1999 r.

TERMINAL DO PROGRAMOWANIA PRZETWORNIKÓW SERII LMPT I LSPT MTH-21 INSTRUKCJA OBSŁUGI I EKSPLOATACJI. Wrocław, lipiec 1999 r. TERMINAL DO PROGRAMOWANIA PRZETWORNIKÓW SERII LMPT I LSPT MTH-21 INSTRUKCJA OBSŁUGI I EKSPLOATACJI Wrocław, lipiec 1999 r. SPIS TREŚCI 1. OPIS TECHNICZNY...3 1.1. PRZEZNACZENIE I FUNKCJA...3 1.2. OPIS

Bardziej szczegółowo

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) WSTĘP Układy z pętlą sprzężenia fazowego (ang. phase-locked loop, skrót PLL) tworzą dynamicznie rozwijającą się klasę układów, stosowanych głównie

Bardziej szczegółowo

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ Laboratorium Podstaw Telekomunikacji Ćw. 4 WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ 1. Zapoznać się z zestawem do demonstracji wpływu zakłóceń na transmisję sygnałów cyfrowych. 2. Przy użyciu oscyloskopu cyfrowego

Bardziej szczegółowo

Badanie właściwości multipleksera analogowego

Badanie właściwości multipleksera analogowego Ćwiczenie 3 Badanie właściwości multipleksera analogowego Program ćwiczenia 1. Sprawdzenie poprawności działania multipleksera 2. Badanie wpływu częstotliwości przełączania kanałów na pracę multipleksera

Bardziej szczegółowo

CYKL ROZKAZOWY = 1 lub 2(4) cykle maszynowe

CYKL ROZKAZOWY = 1 lub 2(4) cykle maszynowe MIKROKONTROLER RODZINY MCS 5 Cykl rozkazowy mikrokontrolera rodziny MCS 5 Mikroprocesory rodziny MCS 5 zawierają wewnętrzny generator sygnałów zegarowych ustalający czas trwania cyklu zegarowego Częstotliwość

Bardziej szczegółowo

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega32 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

Instrukcja do ćwiczenia : Matryca komutacyjna

Instrukcja do ćwiczenia : Matryca komutacyjna Instrukcja do ćwiczenia : Matryca komutacyjna 1. Wstęp Każdy kanał w systemach ze zwielokrotnieniem czasowym jest jednocześnie określany przez swoją współrzędną czasową T i współrzędną przestrzenną S.

Bardziej szczegółowo

MIKROPROCESORY architektura i programowanie

MIKROPROCESORY architektura i programowanie WEWNĘTRZNE UKŁADY PERYFERYJNE (µ-kontrolerów rodziny 51) nazwa jest trochę osobliwa, ale dobrze oddaje to, co jest najważniejszą cechą mikro-kontrolerów: jednoukładowość przy bogatym wyposażeniu Wyposażenie

Bardziej szczegółowo

Technika Cyfrowa. Badanie pamięci

Technika Cyfrowa. Badanie pamięci LABORATORIUM Technika Cyfrowa Badanie pamięci Opracował: mgr inż. Andrzej Biedka CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się studentów z budową i zasadą działania scalonych liczników asynchronicznych

Bardziej szczegółowo

Podstawowe funkcje przetwornika C/A

Podstawowe funkcje przetwornika C/A ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:

Bardziej szczegółowo

Wejścia logiczne w regulatorach, sterownikach przemysłowych

Wejścia logiczne w regulatorach, sterownikach przemysłowych Wejścia logiczne w regulatorach, sterownikach przemysłowych Semestr zimowy 2013/2014, WIEiK PK 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika

Bardziej szczegółowo

Laboratorium Komputerowe Systemy Pomiarowe

Laboratorium Komputerowe Systemy Pomiarowe Jarosław Gliwiński, Łukasz Rogacz Laboratorium Komputerowe Systemy Pomiarowe ćw. Zastosowania wielofunkcyjnej karty pomiarowej Data wykonania: 06.03.08 Data oddania: 19.03.08 Celem ćwiczenia było poznanie

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

Zastosowania mikrokontrolerów w przemyśle

Zastosowania mikrokontrolerów w przemyśle Zastosowania mikrokontrolerów w przemyśle Cezary MAJ Katedra Mikroelektroniki i Technik Informatycznych Współpraca z pamięciami zewnętrznymi Interfejs równoległy (szyna adresowa i danych) Multipleksowanie

Bardziej szczegółowo

Laboratorium Komputerowe Systemy Pomiarowe

Laboratorium Komputerowe Systemy Pomiarowe Jarosław Gliwiński, Łukasz Rogacz Laboratorium Komputerowe Systemy Pomiarowe ćw. Programowanie wielofunkcyjnej karty pomiarowej w VEE Data wykonania: 15.05.08 Data oddania: 29.05.08 Celem ćwiczenia była

Bardziej szczegółowo

SML3 październik

SML3 październik SML3 październik 2005 16 06x_EIA232_4 Opis ogólny Moduł zawiera transceiver EIA232 typu MAX242, MAX232 lub podobny, umożliwiający użycie linii RxD, TxD, RTS i CTS interfejsu EIA232 poprzez złącze typu

Bardziej szczegółowo

ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168

ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerówavr w obudowie 28-wyprowadzeniowej (ATmega8/48/88/168). Dzięki

Bardziej szczegółowo

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D 1. Wprowadzenie...3 1.1. Funkcje urządzenia...3 1.2. Charakterystyka urządzenia...3 1.3. Warto wiedzieć...3 2. Dane techniczne...4

Bardziej szczegółowo

LABORATORIUM UKŁADÓW PROGRAMOWALNYCH. PROCESORY OSADZONE kod kursu: ETD 7211 SEMESTR ZIMOWY 2017

LABORATORIUM UKŁADÓW PROGRAMOWALNYCH. PROCESORY OSADZONE kod kursu: ETD 7211 SEMESTR ZIMOWY 2017 Politechnika Wrocławska, Wydział Elektroniki Mikrosystemów i Fotoniki Wydziałowy Zakład Metrologii Mikro- i Nanostruktur LABORATORIUM UKŁADÓW PROGRAMOWALNYCH PROCESORY OSADZONE kod kursu: ETD 7211 SEMESTR

Bardziej szczegółowo

MIKROPROCESORY architektura i programowanie

MIKROPROCESORY architektura i programowanie Systematyczny przegląd. (CISC) SFR umieszczane są w wewnętrznej pamięci danych (80H 0FFH). Adresowanie wyłącznie bezpośrednie. Rejestry o adresach podzielnych przez 8 są też dostępne bitowo. Adres n-tego

Bardziej szczegółowo

Laboratorium Asemblerów, WZEW, AGH WFiIS Tester NMOS ów

Laboratorium Asemblerów, WZEW, AGH WFiIS Tester NMOS ów Pomiar charakterystyk prądowonapięciowych tranzystora NMOS Napisz program w asemblerze kontrolera picoblaze wykorzystujący możliwości płyty testowej ze Spartanem 3AN do zbudowania prostego układu pomiarowego

Bardziej szczegółowo

Interfejs analogowy LDN-...-AN

Interfejs analogowy LDN-...-AN Batorego 18 sem@sem.pl 22 825 88 52 02-591 Warszawa www.sem.pl 22 825 84 51 Interfejs analogowy do wyświetlaczy cyfrowych LDN-...-AN zakresy pomiarowe: 0-10V; 0-20mA (4-20mA) Załącznik do instrukcji obsługi

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Pętla fazowa

Podstawy Elektroniki dla Informatyki. Pętla fazowa AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Pętla fazowa Ćwiczenie 6 2015 r. 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem pętli fazowej. 2. Konspekt

Bardziej szczegółowo

LABORATORIUM Komputery przemysłowe i systemy wbudowane

LABORATORIUM Komputery przemysłowe i systemy wbudowane LABORATORIUM Komputery przemysłowe i systemy wbudowane ĆWICZENIE 3 System przemysłowy oparty o mikrokontroler jednoukładowy MSP430 Prowadzący: Mariusz Rudnicki 2016 1 Spis treści 1. Cel ćwiczenia... 3

Bardziej szczegółowo

1. Wstęp Różnice pomiędzy mikrokontrolerami ST7 a ST7LITE Rdzeń mikrokontrolerów ST7FLITE... 15

1. Wstęp Różnice pomiędzy mikrokontrolerami ST7 a ST7LITE Rdzeń mikrokontrolerów ST7FLITE... 15 3 1. Wstęp... 9 2. Różnice pomiędzy mikrokontrolerami ST7 a ST7LITE... 11 3. Rdzeń mikrokontrolerów ST7FLITE... 15 3.1. Jednostka centralna...16 3.2. Organizacja i mapa pamięci...19 3.2.1. Pamięć RAM...20

Bardziej szczegółowo

NX70 PLC www.atcontrol.pl

NX70 PLC www.atcontrol.pl NX70 PLC NX70 Właściwości Rozszerzalność, niezawodność i łatwość w integracji Szybki procesor - zastosowanie technologii ASIC pozwala wykonywać CPU proste instrukcje z prędkością 0,2 us/1 krok Modyfikacja

Bardziej szczegółowo

IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych

IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych wrzesieo 2010 UWAGA: Moduł jest zasilany napięciem do 3.3V i nie może współpracowad z wyjściami układów zasilanych z wyższych napięd. Do pracy

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

ZL5ARM. Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) Kompatybilność z zestawem MCB2100 firmy Keil

ZL5ARM. Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) Kompatybilność z zestawem MCB2100 firmy Keil ZL5ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) ZL5ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) 1 Zestaw ZL5ARM opracowano z myślą o

Bardziej szczegółowo

Moduł wejść/wyjść VersaPoint

Moduł wejść/wyjść VersaPoint Analogowy wyjściowy napięciowo-prądowy o rozdzielczości 16 bitów 1 kanałowy Moduł obsługuje wyjście analogowe sygnały napięciowe lub prądowe. Moduł pracuje z rozdzielczością 16 bitów. Parametry techniczne

Bardziej szczegółowo

ZL5PIC. Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887

ZL5PIC. Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887 ZL5PIC Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887 ZL5PIC jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów PIC16F887 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

Płyta uruchomieniowa EBX51

Płyta uruchomieniowa EBX51 Dariusz Kozak ZESTAW URUCHOMIENIOWY MIKROKOMPUTERÓW JEDNOUKŁADOWYCH MCS-51 ZUX51 Płyta uruchomieniowa EBX51 INSTRUKCJA OBSŁUGI Wszystkie prawa zastrzeżone Kopiowanie, powielanie i rozpowszechnianie w jakiejkolwiek

Bardziej szczegółowo

MAXimator. Zestaw startowy z układem FPGA z rodziny MAX10 (Altera) Partnerzy technologiczni projektu:

MAXimator. Zestaw startowy z układem FPGA z rodziny MAX10 (Altera) Partnerzy technologiczni projektu: Zestaw startowy z układem FPGA z rodziny MAX10 (Altera) MAXimator Zestaw startowy z nowoczesnym układem FPGA z rodziny Altera MAX10, wyposażony w złącze zgodne z Arduino Uno Rev 3, interfejsy wideo HDMI+CEC+DCC

Bardziej szczegółowo

AVREVB1. Zestaw uruchomieniowy dla mikrokontrolerów AVR. Zestawy uruchomieniowe www.evboards.eu

AVREVB1. Zestaw uruchomieniowy dla mikrokontrolerów AVR. Zestawy uruchomieniowe www.evboards.eu AVREVB1 Zestaw uruchomieniowy dla mikrokontrolerów AVR. 1 Zestaw AVREVB1 umożliwia szybkie zapoznanie się z bardzo popularną rodziną mikrokontrolerów AVR w obudowach 40-to wyprowadzeniowych DIP (układy

Bardziej szczegółowo

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...

Bardziej szczegółowo

ZL30ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103

ZL30ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 ZL30ARM Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 Zestaw ZL30ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów STM32F103. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

Hardware mikrokontrolera X51

Hardware mikrokontrolera X51 Hardware mikrokontrolera X51 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Hardware mikrokontrolera X51 (zegar)

Bardziej szczegółowo

ad a) Konfiguracja licznika T1 Niech nasz program składa się z dwóch fragmentów kodu: inicjacja licznika T1 pętla główna

ad a) Konfiguracja licznika T1 Niech nasz program składa się z dwóch fragmentów kodu: inicjacja licznika T1 pętla główna Technika Mikroprocesorowa Laboratorium 4 Obsługa liczników i przerwań Cel ćwiczenia: Celem ćwiczenia jest nabycie umiejętności obsługi układów czasowo-licznikowych oraz obsługi przerwań. Nabyte umiejętności

Bardziej szczegółowo

Dokumentacja Licznika PLI-2

Dokumentacja Licznika PLI-2 Produkcja - Usługi - Handel PROGRES PUH Progres Bogdan Markiewicz ------------------------------------------------------------------- 85-420 Bydgoszcz ul. Szczecińska 30 tel.: (052) 327-81-90, 327-70-27,

Bardziej szczegółowo

ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S)

ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) ZL2ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) 1 Zestaw ZL2ARM opracowano z myślą

Bardziej szczegółowo

T 1000 PLUS Tester zabezpieczeń obwodów wtórnych

T 1000 PLUS Tester zabezpieczeń obwodów wtórnych T 1000 PLUS Tester zabezpieczeń obwodów wtórnych Przeznaczony do testowania przekaźników i przetworników Sterowany mikroprocesorem Wyposażony w przesuwnik fazowy Generator częstotliwości Wyniki badań i

Bardziej szczegółowo

Poradnik programowania procesorów AVR na przykładzie ATMEGA8

Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Wersja 1.0 Tomasz Pachołek 2017-13-03 Opracowanie zawiera opis podstawowych procedur, funkcji, operatorów w języku C dla mikrokontrolerów AVR

Bardziej szczegółowo