Ćwiczenie 5. Spektroskopia w podczerwieni w badaniu struktury biomakromolekuł

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 5. Spektroskopia w podczerwieni w badaniu struktury biomakromolekuł"

Transkrypt

1 Ćwiczenie 5. Spektroskopia w podczerwieni w badaniu struktury biomakromolekuł Metody spektroskopowe polegają na obserwacji oddziaływania promieniowania elektromagnetycznego z materią. Można je podzielić na metody: emisyjne, w których uzyskujemy informacje na temat promieniowania emitowanego przez próbkę; absorpcyjne, gdzie informacje uzyskiwane są na podstawie tej części promieniowania, która została zaabsorbowana oraz metody polegające na analizie promieniowania rozproszonego przez próbkę (spektroskopia Ramana). Spektroskopia w podczerwieni bada absorpcję promieniowania związaną ze wzbudzeniem poziomów oscylacyjnych cząsteczek Spektroskopia w podczerwieni podstawy teoretyczne W widmie promieniowania elektromagnetycznego zakres podczerwieni znajduje się pomiędzy promieniowaniem widzialnym i mikrofalowym. Najbardziej istotny z punktu widzenia spektroskopii biocząsteczek jest zakres podstawowy podczerwieni cm -1, otoczony przez bliską (powyżej 4000 cm -1 ) i daleką podczerwień (poniżej 400 cm -1 ). Energia wewnętrzna cząsteczek występuje w różnych formach, m. in.: (a) energii translacji, związanej z nieuporządkowanym ruchem molekuł; (b) energii rotacyjnej, wynikającej z wirowania cząsteczek wokół własnych osi; (c) energii oscylacyjnej, związanej z oscylacjami wokół położeń równowagi atomów cząsteczek oraz (d) energii elektronowej, w której skład wchodzi energia kinetyczna ruchu elektronów w cząsteczce oraz energia potencjalna oddziaływania elektronów z jądrami oraz sąsiednimi elektronami. Absorpcja promieniowania podczerwonego powoduje zmiany energii oscylacyjnej i rotacyjnej cząsteczki. Kształt widm w tym zakresie promieniowania w przypadku ciał stałych i cieczy zależy głównie od wzbudzeń oscylacyjnych, ponieważ rotacje cząsteczek są w tym przypadku częściowo lub całkowicie hamowane przez oddziaływania międzycząsteczkowe. Widma ciał stałych i cieczy są w związku z tym nazywane widmami oscylacyjnymi, natomiast widma cząsteczek w fazie gazowej noszą nazwę widm oscylacyjno-rotacyjnych ze względu na dużą swobodę zarówno rotacji jak i oscylacji cząsteczek. Drgania molekuł wieloatomowych mają złożony charakter, można je jednakże przedstawić jako superpozycję pewnej liczby drgań prostych, zgodnych w fazie i o jednakowej częstości. Drgania te nazywane są drganiami normalnymi. Wyróżniamy wśród nich drgania rozciągające związane ze zmianą długości wiązań i drgania deformacyjne wynikające ze zmiany kątów płaskich pomiędzy wiązaniami podczas ruchu w płaszczyźnie lub poza płaszczyznę wiązań. Każdy z rodzajów drgań może być dodatkowo symetryczny lub niesymetryczny. H 2 O symetryczne rozciągające (ν s OH) 3652 cm -1 asymetryczne rozciągające (ν as OH) 3756 cm -1 deformacyjne nożycowe (δ s OH) 1596 cm -1 Rys. 1. Drgania normalne izolowanej cząsteczki H 2 O.

2 Liczba stopni swobody cząsteczki jest równa sumie stopni swobody tworzących ją atomów. Każdy atom ma trzy stopnie swobody ruchu, odpowiadające współrzędnym kartezjańskim. Zatem cząsteczka składająca się z n atomów ma 3n stopni swobody. W przypadku cząsteczek nieliniowych trzy stopnie swobody dotyczą translacji, a trzy kolejne ruchu obrotowego. Pozostałe 3n-6 stopnie swobody opisują ruchy oscylacyjne i odpowiadające im drgania normalne. Cząsteczki liniowe mają tylko dwa rotacyjne stopnie swobody, więc ich drganiom odpowiada 3n-5 drgań normalnych. Przykładem nieliniowej drobiny jest cząsteczka wody, która składa się z trzech atomów, ma zatem = 3 stopnie swobody oscylacyjnej. Odpowiadające im trzy drgania normalne przedstawiono na Rys. 1. Do przybliżonego opisu oddziaływania cząsteczki dwuatomowej z promieniowaniem elektromagnetycznych wykorzystuje się model oscylatora harmonicznego. Oscylatorem harmonicznym jest w tym przypadku układ dwóch mas (atomów lub rdzeni atomowych), drgających doskonale sprężyście wokół środka masy układu. Częstość drgań własnych takiego oscylatora (ν osc ) wyraża się wzorem: ν osc 1 f = π, (1) 2 m r gdzie f to stała siłowa, będąca miarą siły wiązania, natomiast m r oznacza masę zredukowaną, równą iloczynowi mas obu atomów podzielonemu przez ich sumę. Energia mikrooscylatora jest kwantowana i dla poszczególnych poziomów energetycznych oscylacji wyraża się wzorem: 1 E osc = hν osc υ +, (2) 2 gdzie υ oscylacyjna liczba kwantowa, która może przyjąć wartości υ = 0, 1, 2, 3, Oddziaływanie promieniowania podczerwonego z oscylującymi cząsteczkami jest możliwe tylko wtedy, gdy spełnione są pewne warunki nazywane regułami wyboru. Zgodnie z pierwszą regułą, energia fotonu promieniowania elektromagnetycznego, która może zostać pochłonięta przez cząsteczkę musi odpowiadać różnicy energii poziomów energetycznych cząsteczki (dla spektroskopii oscylacyjnej E osc = hν). W przypadku oscylatora harmonicznego dozwolone są tylko przejścia absorpcyjne lub emisyjne, dla których oscylacyjna liczba kwantowa zmienia się o υ = ±1. Przedstawiony model oscylatora harmonicznego wyjaśnia występowanie tak zwanych pasm podstawowych, czyli intensywnych pasm absorpcyjnych w widmach cząsteczek heteroatomowych, którym towarzyszy zmiana oscylacyjnej liczby kwantowej υ = 1. W widmach obserwowane są również pasma o niskiej intensywności i o częstościach zbliżonych do wielokrotności częstości pasma podstawowego, są to tzw. nadtony. Ich występowanie wyjaśnia model oscylatora anharmonicznego. Najważniejszą konsekwencją zastosowania tego modelu jest rozszerzenie reguły wyboru dotyczącej zmiany liczby kwantowej oscylacji dozwolone stają się przejścia, dla których oscylacyjna liczba kwantowa zmienia się o kilka jednostek ( υ = ±1, ±2, ±3, ). Warunek ten stanowi drugą regułę wyboru obowiązującą w spektroskopii w podczerwieni. Z trzeciej reguły wyboru wynika natomiast, że w podczerwieni można obserwować tylko te przejścia oscylacyjne, którym towarzyszy zmiana momentu dipolowego cząsteczki. Drgania te nazywa się drganiami aktywnymi w podczerwieni. Rzadko obserwuje się teoretyczną liczbę drgań normalnych tonów podstawowych, ponieważ nadtony i drgania złożone, czyli suma lub różnica kilku drgań, zwiększają liczbę pasm, natomiast inne zjawiska zmniejszają ich liczbę. Gdy dwa oscylujące wiązania mają wspólny atom, pomiędzy utworzonymi oscylatorami istnieje oddziaływanie mechaniczne i z tego względu rzadko zachowują się jak odrębne oscylatory, chyba że częstości ich drgań są

3 bardzo różne. Sprzężenie dwóch drgań normalnych powoduje powstanie dwóch nowych drgań o częstościach wyższej i niższej niż ta, gdy oddziaływania nie zachodzą (rezonans Fermiego). Oddziaływania mogą pojawiać się również pomiędzy drganiami podstawowymi, nadtonami i drganiami złożonymi. W każdym drganiu normalnym biorą udział wszystkie atomy cząsteczek, ale amplitudy ich wychyleń mogą być różne. W wielu drganiach biorą udział przede wszystkim najbliższe atomy tworzące charakterystyczną grupę funkcyjną w cząsteczce, a pozostałe atomy mają tak małą amplitudę wychyleń, że praktycznie nie wpływają na drgania. Z wymienionych powyżej powodów wiele grup funkcyjnych wykonuje drgania o charakterystycznej częstości, zmieniającej się niewiele w różnych cząsteczkach. Kształt krzywej dzwonowej pasm absorpcyjnych jest charakterystyczną cechą oddziaływania substancji z promieniowaniem. Poszerzenie pasma wynika z kilku przyczyn naturalnych, takich jak zasada nieoznaczoności Heisenberga, efekt Dopplera. Pasma w podczerwieni faz skondensowanych są poszerzone ze względu na zatartą strukturę rotacyjną widma oscylacyjnego. Zdarza się również, że sąsiadujące ze sobą pasma w widmie nakrywają się tworząc wspólny kontur. Położenie maksimum pasm w widmie w podczerwieni jest najczęściej określane w skali liczb falowych, czyli liczby drgań przypadających na 1 cm drogi promieniowania (ν = 1/λ, cm -1 ), rzadziej przy pomocy długości fali (λ, nm) lub częstości promieniowania (ν, Hz). Intensywność pasm jest natomiast wyrażona w skali transmitancji (T) lub absorbancji (A). Transmitancja jest to stosunek natężenia światła przepuszczonego przez próbkę do natężenia światła padającego na próbkę. Absorbancja jest logarytmem dziesiętnym odwrotności transmitancji A = log 10 (1/T). Pod pojęciem natężenia pasm rozumiemy pole powierzchni pomiędzy linią określającą kontur pasma a jego linią bazową. W niektórych przypadkach miarą natężenia pasma może być jego wysokość mierzona w maksimum Aparatura pomiarowa Współczesne spektrometry zamiast widm rejestrują bezpośrednio tzw. interferogramy. Promieniowanie obejmujące określony zakres podczerwieni (np cm -1 ) rozdzielane jest na dwie wiązki (Rys. 2). Jedna z nich przebiega drogę o stałej długości, a druga generowana jest przez interferometr z ruchomym zwierciadłem poruszającym się ze stałą prędkością. Zmieniająca się różnica długości dróg obu wiązek powoduje wzajemne interferencje i w wyniku tego powstaje interferogram. Zastosowanie transformacji Fouriera pozwala na przekształcenie takiego interferogramu z domeny czasowej na bardziej użyteczną domenę częstości, czyli widmo. Jedno przejście szerokopasmowego promieniowania przez próbkę pozwala na rejestrację całkowitego widma w podczerwieni, co znacznie skraca czas analizy. Zastąpienie tradycyjnych monochromatorów interferometrami znacznie polepszyło także czułość i rozdzielczość przyrządów. Zwierciadło ruchome Źródło Dzielnik wiązki Próbka Detektor Komputer Przetwornik Zwierciadło stałe Rys. 2. Schemat spektrometru podczerwieni z transformacją Fouriera (FTIR).

4 5.3. Spektroskopia w podczerwieni w badaniach struktury i stabilności białek Spektroskopia w podczerwieni jest jedną z najbardziej wszechstronnych technik badawczych, pozwalających na obserwowanie struktury drugorzędowej białek oraz jej zmian wywołanych różnymi czynnikami zewnętrznymi. Jej niewątpliwą zaletą jest możliwość dostosowania warunków pomiarowych do konkretnego problemu. Dostępnych jest wiele odmian tej techniki (np. tradycyjna spektroskopia transmisyjna, spektroskopia ATR lub spektroskopia odbiciowa), umożliwiających pomiary roztworów białek o różnym stężeniu, żeli, cienkich filmów lub stałych preparatów. Popularnym problemem biochemicznym do którego wykorzystuje się spektroskopię FTIR jest analiza struktury drugorzędowej białek. Rozwój tej techniki eksperymentalnej w badaniach biochemicznych spowodowany jest wzrostem zainteresowania strukturą białek oraz ograniczeniami bardziej bezpośrednich technik, takich jak NMR i krystalografia rentgenowska. Wprawdzie za pomocą spektroskopii w podczerwieni nie można uzyskać informacji o absolutnej strukturze białka, to jednak, w przeciwieństwie do wymienionych wyżej technik, pozwala ona na analizę struktury białek trudno rozpuszczalnych, nie tworzących kryształu lub białek o masach cząsteczkowych powyżej kilkudziesięciu kda. Spektroskopia w podczerwieni jest także wykorzystywana w badaniach nad stabilnością białek, nad mechanizmem ich denaturacji oraz do badania molekularnych podstaw ich funkcjonowania. Na Rys. 3 przedstawiono przykładową serię widm FTIR lizozymu z białka jaja kurzego zmierzonych w różnych temperaturach (rozpuszczalnikiem była woda ciężka). Zmiany w kształcie pasm można powiązać ze zmianami w strukturze drugorzędowej białka, pojawiającymi się wraz ze wzrostem temperatury. Na podstawie zależności wartości absorbancji przy liczbie falowej 1640 cm -1 od temperatury możliwe jest wykreślenie krzywej denaturacji (we wstawce), która może posłużyć do określenie temperatury denaturacji lub pomóc w określeniu mechanizmu denaturacji białka. Absorbancja cm Temperatura ( o C) 0.5 pasmo amidowe I' pasmo amidowe II Liczba falowa (cm -1 ) Rys. 3. Seria widm lizozymu z białka jaja kurzego zmierzonych w zakresie temperatur 30,4 o C 83,5 o C. Strzałkami oznaczono kierunek najważniejszych zmian w natężeniu i położeniu pasm amidowych I oraz II, towarzyszących wzrostowi temperatury. Widma zmierzono w kuwecie transmisyjnej wyposażonej w okienka z CaF 2 rozdzielone przekładkami teflonowymi o grubości 56 µm. Temperatura była regulowana za pomocą zewnętrznego kontrolera. We wstawce przedstawiono krzywą denaturacji, wyznaczoną dla liczby falowej 1640 cm -1. Wykorzystanie spektroskopii różnicowej lub czasowo rozdzielczej spektrofotometrii (ang. time-resolved) z wykorzystaniem techniki zatrzymanego przepływu pozwala

5 przykładowo na obserwowanie zmian w centrum katalitycznym enzymu. Często wykorzystuje się w tym zakresie technikę znakowania białek ciężkimi izotopami ( 15 N) lub mutagenezę ukierunkowaną. Pozwala to na precyzyjne przypisanie określonych pasm widocznych w widmie białka konkretnym resztom aminokwasowym Określanie struktury drugorzędowej białek Białka posiadają dziewięć charakterystycznych pasm, z których największe znaczenie w analizie struktury drugorzędowej mają przedstawione na Rys.4: pasmo amidowe I (odpowiadające głównie drganiom rozciągającym wiązania C=O, ok cm -1 ), pasmo amidowe II (odpowiadające sprzężonym drganiom zginającym wiązania N-H i rozciągającym wiązania C-N, ok cm -1 ) oraz w mniejszym stopniu pasmo amidowe III (odpowiadające głównie drganiom rozciągającym wiązania C-N i drganiom zginającym wiązania N-H, ok cm -1 ) pasmo amidowe I Absorbancja pasmo amidowe II pasmo amidowe III Liczba falowa (cm -1 ) Rys. 4. Charakterystyczne widmo czystego białka (lizozym z białka jaja kurzego) rozpuszczonego w wodzie wraz z zaznaczonymi najważniejszymi pasmami amidowymi, służącymi do analizy zmian w jego strukturze. Widmo jest wynikiem odjęcia zmierzonego widma ATR czystej wody od widma ATR roztworu białka. Wskaźnikiem prawidłowego odjęcia widm było uzyskanie płaskiego przebiegu linii bazowej widma wynikowego powyżej 1800 cm -1. Ograniczenia steryczne, hydrofobowy/hydrofilowy charakter reszt bocznych aminokwasów jak i samego szkieletu polipeptydowego, a także otaczający białko rozpuszczalnik powodują, że białka przyjmują w roztworach wodnych ściśle określone konformacje geometryczne, zwane strukturami drugorzędowymi. Istotnym elementem każdej z nich jest charakterystyczna sieć wiązań wodorowych między atomami tlenu karbonylowego łańcucha polipeptydowego a atomem wodoru grupy aminowej, które spinają fragmenty łańcucha polipeptydowego, często znacznie oddalone od siebie. Każda ze struktur drugorzędowych białek posiada charakterystyczną geometrię sieci wiązań wodorowych, a co za tym idzie, także charakterystyczne zakresy częstości drgań wiązań zaangażowanych w ich tworzenie. Na Rys. 5 przedstawiono zakresy częstości drgań wiązań w zakresie pasma amidowego I, najczęściej wykorzystywanego do określania zawartości poszczególnych struktur drugorzędowych, przypisane poszczególnym strukturom drugorzędowym. Wartości te opierają się głównie na danych eksperymentalnych oraz obliczeniach teoretycznych.

6 Granice różnych zakresów są często dosyć szerokie, dlatego należy ostrożnie analizować uzyskane wyniki. W strukturze przestrzennej białek można najczęściej wyróżnić wiele różnych struktur drugorzędowych, dlatego też ich widma w podczerwieni mają złożony charakter. Pasma amidowe składają się w wielu różnych, zachodzących na siebie pasm składowych, charakterystycznych dla poszczególnych struktur. Znacząco komplikuje to analizę widm. Jednak stosując techniki zwiększania rozdzielczości widm można jednak uzyskać informacje o ich położeniu i natężeniu, a czasem także o ich procentowym udziale w stosunku do wszystkich struktur drugorzędowych danego białka α-helisa 8 7 Agr Zakręty i pętle Pętle Agregat βs β β-kartki βs Reszty AA Reszty AA Liczba falowa / cm -1 Rys. 5. Zakresy absorpcji poszczególnych struktur drugorzędowych występujących powszechnie w białkach. Skróty i objaśnienia: β β-kartki, βs β- spinki (β-kartki zbudowane tylko z dwóch łańcuchów), reszty AA grupy boczne reszt aminokwasowych, Agr. agregaty, 3 10 helisa 3 10, Pętle rozumiane jako długie pętle, lub struktura nieuporządkowanego polipeptydu (charakterystyczna dla białek zdenaturowanych); struktury, których pasma absorpcji przesuwają się pod wpływem wymiany protonowej oznaczone zostały strzałką, prostokątami przerywanymi oznaczono zakresy absorpcji tych struktur w wodzie ciężkiej Izolacja i analiza widm biocząseczek w roztworach wodnych Widma biocząsteczek najczęściej mierzone są w roztworach wodnych i rzadko możliwa jest bezpośrednia analiza charakterystycznych pasm absorpcji. Ogólny schemat postępowania w takich sytuacjach przedstawia się następująco: a. Usunięcie udziału widmowego pary wodnej Pierwszym problemem we wstępnej obróbce danych widmowych jest usunięcie pasm absorpcji pary wodnej w zakresie pasma amidowego I i II. W dużym stopniu problem ten jest zmniejszany przez intensywne płukanie aparatu suchym azotem lub osuszonym powietrzem. Jednak nie zawsze jest to wystarczające rozwiązanie. Korekcja atmosfery opiera się najczęściej na takim dobraniu współczynnika odejmowania zmierzonego widma pary wodnej, aby uzyskać widmo w najwyższym stopniu pozbawione udziału tej pary. Procedura odbywa się metodą "prób i błędów", a kryterium jest ocena wizualna widma. b. Odejmowanie udziału widmowego wody Największym problemem w przygotowaniu widm do dalszej obróbki jest prawidłowe odjęcie widma wody (lub buforu), ponieważ nawet w bardzo stężonych próbkach natężenie pasma wody w zakresie amidu I jest od 5 do 10 razy większe, niż samego pasma amidowego I. Powszechnie stosowanym sposobem odejmowania widma wody od zmierzonego widma

7 roztworu białka (zarówno uzyskanego metodą transmisyjną jak i ATR) jest wizualne odjęcie wcześniej zmierzonego widma wody aż do uzyskania na widmie wynikowym płaskiej linii w okolicy cm -1. Alternatywnym rozpuszczalnikiem białek może być woda ciężka, D 2 O. Jej zaletą jest to, iż nie posiada silnych pasm absorpcji w zakresie pasma amidowego I. Zastąpienie atomów wodoru deuterem nie powoduje drastycznych zmian w kształcie pasma amidowego I (znak prim oznacza, że widmo zostało zmierzone w wodzie ciężkiej), zmiany te jednak pozwalają na rozróżnienie pasm absorpcji struktur α od struktur pętlowych, co w wodzie zwykłej (H 2 O) nie byłoby łatwe. Niewielkiemu przesunięciu w stronę niższych liczb falowych ulegają też wartości absorpcji pozostałych struktur drugorzędowych (Rys. 5). Drastycznej zmianie ulega natomiast położenie pasma amidowego II. Wymiana protonowa powoduje przesunięcie maksimum tego pasma od ok cm -1 do ok cm -1 (to nowe pasmo nazywane jest pasmem amidowym II ). Tak duża zmiana jest podstawą dla eksperymentów mających na celu np. określenie stabilności hydrofobowego rdzenia białek. c. Zwiększanie rozdzielczości widm - uzyskiwanie informacji o pasmach składowych Stosuje się powszechnie kilka technik pozwalających określić liczbę i położenie pasm składowych, które można następnie przypisać konkretnym strukturom drugorzędowym. Wszystkie te techniki mają jednak poważną wadę uzyskane wyniki są w dużym stopniu zależne od subiektywnych decyzji dokonywanych na kolejnych etapach obróbki widm i powinny być stosowane z ostrożnością. i) Druga pochodna widm. Minima na drugiej pochodnej widm biocząsteczek określają w przybliżeniu liczbę i położenie pasm składowych. Kształt drugiej pochodnej, w szczególności informacja o liczbie pasm składowych, zależy od jakości danych pierwotnych. Druga pochodna widm jest bardzo wrażliwa na wszelkie zakłócenia (np. szumy aparaturowe, nieskorygowane pasma absorpcji pary wodnej, itp), dlatego należy ostrożnie analizować jej kształt. Na Rys. 6 przedstawiono serię drugich pochodnych widm lizozymu z białka jaja kurzego zmierzonych w zakresie temperatury 35 o C 56 o C. Minima drugich pochodnych wskazują prawdopodobne położenie pasm składowych, które można przypisać poszczególnym strukturom drugorzędowym Druga pochodna zakręty β α+pętle Liczba falowa (cm -1 ) Rys. 6. Seria drugich pochodnych widm lizozymu z białka jaja kurzego, zmierzonych w zakresie temperatury 35 o C 56 o C. Strzałką oznaczono kierunek zmian towarzyszących wzrostowi temperatury. Oznaczono także najważniejsze struktury drugorzędowe: α α - helisy, β β - kartki.

8 ii) Rozkład pasma na składowe. Kształt złożonego pasma na widmie w podczerwieni przybliża się sumą sztucznie wygenerowanych pasm składowych, będących najczęściej funkcjami Gaussa i Lorentza, ich sumą lub iloczynem. Absorbancja % % % % % % Liczba falowa (cm -1 ) Rys. 7. Przykład rozkładu pasma amidowego I białka bogatego w β-kartki (świadczy o tym silne pasmo przy 1633 cm -1 ). Każdemu pasmu składowemu przypisano maksimum oraz procentowy udział zajmowanej powierzchni całego pasma. iii) Dekonwolucja z wykorzystaniem odwrotnej transformacji Fourier a. Metoda ta służy przede wszystkim do zwiększenia rozdzielczości widma, a nie do samego określania liczby i położenia składowych, chociaż i w takim celu może być wykorzystana Technika tłumionego całkowitego odbicia Technika tłumionego całkowitego odbicia (ang. Attenuated Total Reflectance ATR) jest obecnie coraz szerzej stosowaną odmianą spektroskopii odbiciowej, posiadającą wiele wspomnianych wcześniej zalet w stosunku do tradycyjnej techniki transmisyjnej pomiaru widm. fala zanikająca promień padający θ próbka kryształ ATR promień odbity Rys. 8. Przebieg promieni w krysztale ATR. Promień padający pod kątem θ, większym od kąta granicznego, na powierzchnię kryształu ATR ulega całkowitemu odbiciu (Rys. 8). Materiały z którego wykonane są kryształy ATR charakteryzują się wysokim współczynnikiem załamania światła i są wykonane najczęściej z germanu, selnku cynku lub diamentu. Jeśli do powierzchni kryształu

9 zostanie przyłożona próbka materiału absorbującego promieniowanie, to wiązka promieniowania wnika w głąb próbki (fala zanikająca) na bardzo małą głębokość, zależną od kąta padania wiązki i współczynników załamania światła kryształu ATR i samej próbki. Część promieniowania może zostać zaabsorbowana przez próbkę, a mierząc intensywność promieniowania wiązki odbitej od powierzchni kryształu można uzyskać widmo charakterystyczne dla materiału próbki, tzw. widmo ATR. Widma ATR są złożeniem widma refleksyjnego (odbiciowego) oraz absorpcyjnego. Korekcja ATR umożliwia wyodrębnienie części absorpcyjnej widma ATR. Korygowane są także efekty widmowe związane z niektórymi zjawiskami optycznymi, jak normalna lub anomalna dyspersja optyczna. W ich wyniku fale o różnych częstotliwościach penetrują warstwy próbki o różnej grubości, a co za tym idzie, są różnie przez nią absorbowane. Zjawisko to jest silnie zależne od współczynnika załamania światła próbki, dlatego też nie można dokonywać operacji odejmowania lub dodawania widm ATR próbek o różnych współczynnikach załamania światła. W spektroskopii biocząsteczek najważniejszą zaletą techniki tłumionego wewnętrznego odbicia jest możliwość uzyskania widm roztworów, których składniki (przede wszystkim woda) posiadają bardzo silne pasma własne, uniemożliwiające uzyskanie widma samego białka metodą transmisyjną. Wadą tej techniki jest jednak konieczność stosowania dość wysokich stężeń biocząsteczek oraz konieczność korekcji tych widm, jeżeli mają one zostać poddane dalszej analizie Eksperymenty Cel ćwiczenia Celem ćwiczenia jest obserwacja zmian zachodzących w strukturze drugorzędowej lizozymu z białka jaja kurzego, spowodowanych obecnością w roztworze substancji denaturującej: soli metalu ciężkiego lub kwasu nieorganicznego. Przebieg ćwiczenia Przygotowanie roztworów Roztwory substancji denaturującej 1. Za pomocą biurety przygotować 12 roztworów substancji denaturującej o wzrastającym stężeniu. Rodzaj substancji oraz jej stężenia wskazuje osoba prowadząca zajęcia. Wszystkie rzeczywiste objętości roztworów wyjściowych oraz końcowych zapisać w tabeli wyników. Roztwory lizozymu 1. Do ponumerowanych probówek 1,5 ml odważyć na wadze analitycznej po ok. 50 mg wcześniej oczyszczonego i liofilizowanego białka. Masę białka w każdej z probówek zapisać w tabeli. 2. Do kolejnych probówek dodać odpowiedni roztwór denaturanta tak, aby końcowe stężenie białka wynosiło mg/ml roztworu denaturanta (dokładne stężenie końcowe białka podaje osoba prowadząca). Wszystkie objętości zapisać w tabeli wyników. 3. Każdą próbkę zworteksować i odwirować przez ok. 30 sekund przy 6 tys. obrotów/min. 4. Próbki pozostawić na 30 minut w temperaturze pokojowej.

10 5. Po tym czasie rozpocząć pomiary spektroskopowe oraz równolegle zmierzyć współczynnik załamania światła wszystkich próbek i roztworów substancji denaturującej, n D 25. Wszelkie zmiany w wyglądzie próbek zanotować w tabeli wyników. Wykonanie pomiarów 1. Na godzinę przed planowanym rozpoczęciem pomiarów spektroskopowych rozpocząć płukanie aparatu suchym azotem. 2. Uruchomić program OMNIC i w zakładce Parametry pomiaru ustalić następujące parametry: liczba skanów 128, rozdzielczość widm 4 cm -1, zakres liczb falowych cm Rozpocząć pomiary od pomiaru widma tła klikając przycisk Pomiar tła. Widmo tła należy mierzyć przed każdą próbką, chyba że prowadzący wskaże inaczej. 4. Pomiary próbek rozpocząć od próbki o najniższym stężeniu substancji denaturującej. Próbki nanosić na kryształ przystawki ATR i rozpocząć pomiar poprzez kliknięcie przycisku Pomiar próbki. Zacząć od serii roztworów substancji denaturującej, a następnie zmierzyć serię roztworów lizozymu. 5. Po każdym pomiarze próbki kryształ przetrzeć 10% roztworem SDS i wodą. 6. Po zakończeniu wszystkich pomiarów zmierzyć widmo atmosfery i zapisać wszystkie widma w formacie *.SPA. Opracowanie wyników 1. Skorygować wszystkie widma próbek ze względu na obecność atmosfery. 2. Na każdym widmie dokonać korekcji ATR, uwzględniając zmierzony współczynnik załamania światła, n D Odjąć od każdego widma widmo czystego rozpuszczalnika. 4. Uzyskane wyizolowane widma białka sprowadzić do wspólnej linii bazowej oraz wyznaczyć ich drugie pochodne w zakresie pasma amidowego I. Wszystkie widma i ich drugie pochodne zapisać w postaci plików *.CSV. 5. Uzupełnić wszystkie dane w tabeli wyników. 6. Wszystkie widma (w zakresie cm -1 ) przedstawić na zbiorczym wykresie oraz omówić zmiany w kształcie widm lizozymu, towarzyszące zwiększającemu się stężeniu substancji denaturującej. 7. Na podstawie drugich pochodnych widm dla roztworów o skrajnych stężeniach substancji denaturującej określić precyzyjnie które struktury drugorzędowe są najbardziej wrażliwe na obecność substancji denaturującej. 8. Dla wskazanej przez osobę prowadzącą liczby falowej wykonać wykres natężenia pasma od stężenia substancji denaturującej oraz omówić uzyskaną zależność. Wielkości niezbędne do wyznaczenia danych w tabeli wyników Stężenie roztworu wyjściowego denaturanta, C r.wyj. mol dm -3 Objętość końcowa przygotowywanych roztworów denaturanta, V k.r.den. ml Cząstkowa objętość właściwa lizozymu, υ 0,703-1 cm 3 g Masa molowa lizozymu z białka jaja kurzego g mol -1 Końcowe stężenie białka w roztworze denaturanta mg (ml roztw. denaturanta) -1 Końcowe stężenie białka w roztworze denaturanta mol dm -3

11 Tabela wyników Roztwory substancji denaturującej Roztwory lizozymu Nr V r.wyj V wody C den. 25 n D r. den. m białka V r.den. C k.den. 25 n D r. białka Uwagi [ml] [ml] [mol dm -3 ] [mg] [µl] [mol dm -3 ] V r.wyj V wody C den. 25 n D r. den. m białka V r.den. C k.den. 25 n D r. białka objętość roztworu wyjściowego substancji denaturującej objętość wody stężenie substancji denaturującej w przygotowanych roztworach współczynnik załamania światła roztworów substancji denaturującej masa białka odważona do probówki 1,5 ml objętość roztworu substancji denaturującej konieczna do uzyskania założonego stężenia końcowego białka stężenie końcowe substancji denaturującej w roztworze białka współczynnik załamania światła roztworów białka

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku

Bardziej szczegółowo

Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej. dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB

Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej. dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie Promieniowanie

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection)

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Całkowite wewnętrzne odbicie n 2 θ θ n 1 n > n 1 2 Kiedy promień pada na granicę ośrodków pod kątem większym od kąta

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Metody badań spektroskopowych

Metody badań spektroskopowych Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA

SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA Beata Rozum Seminarium Analityczne MS Spektrum 2013 Porównania laboratoryjne, akredytacja, typowe problemy w laboratoriach SPEKTROSKOPIA Oddziaływanie

Bardziej szczegółowo

Opracował dr inż. Tadeusz Janiak

Opracował dr inż. Tadeusz Janiak Opracował dr inż. Tadeusz Janiak 1 Uwagi dla wykonujących ilościowe oznaczanie metodami spektrofotometrycznymi 3. 3.1. Ilościowe oznaczanie w metodach spektrofotometrycznych Ilościowe określenie zawartości

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s] SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną

Bardziej szczegółowo

Atomowa spektrometria absorpcyjna i emisyjna

Atomowa spektrometria absorpcyjna i emisyjna Nowoczesne techniki analityczne w analizie żywności Zajęcia laboratoryjne Atomowa spektrometria absorpcyjna i emisyjna Cel ćwiczenia: Celem ćwiczenia jest oznaczenie zawartości sodu, potasu i magnezu w

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

OZNACZANIE STĘŻENIA BARWNIKÓW W WODZIE METODĄ UV-VIS

OZNACZANIE STĘŻENIA BARWNIKÓW W WODZIE METODĄ UV-VIS OZNACZANE STĘŻENA BARWNKÓW W WODZE METODĄ UV-VS. SPEKTROFOTOMETRA UV-Vis Spektrofotometria w zakresie nadfioletu (ang. ultra-violet UV) i promieniowania widzialnego (ang. visible- Vis), czyli spektrofotometria

Bardziej szczegółowo

POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH

POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH WSTĘP Spełnianie wymagań jakościowych stawianych przed producentami leków jest kluczowe dla zapewnienia bezpieczeństwa pacjenta.

Bardziej szczegółowo

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1) Przykład sprawozdania z analizy w nawiasach (czerwonym kolorem) podano numery odnośników zawierających uwagi dotyczące kolejnych podpunktów sprawozdania Jan Kowalski grupa B dwójka 7(A) analiza Wynik przeprowadzonej

Bardziej szczegółowo

METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO)

METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO) METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO) Czas od włączenia spektrofotometru Cary-300 do momentu uzyskania stabilnej pracy: ok 30 minut., w przypadku V-550 ok. 3h. WA widmo

Bardziej szczegółowo

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Błąd gruby, systematyczny, przypadkowy, dokładność, precyzja, przedział

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2)

PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Równowaga chemiczna (Fiz2)

Bardziej szczegółowo

SPEKTROSKOPIA W PODCZERWIENI

SPEKTROSKOPIA W PODCZERWIENI SPEKTROSKOPIA W PODCZERWIENI Obszar widma elektromagnetycznego ( od ok. 14000 do 200cm-1 ) między obszarem widzialnym a mikrofalowym nazywamy podczerwienią (IR). W określeniu struktury związków organicznych

Bardziej szczegółowo

Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego

Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego Ćw. M8 Zjawisko absorpcji i emisji światła w analityce. Pomiar widm absorpcji i stężenia ryboflawiny w roztworach wodnych za pomocą spektrofotometru. Wyznaczanie stężeń substancji w roztworze metodą fluorescencyjną.

Bardziej szczegółowo

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia Poznanie podstawowej metody określania biochemicznych parametrów płynów ustrojowych oraz wymagań technicznych stawianych urządzeniu pomiarowemu.

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO

SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO NR 113/TZ/IM/2013 Zestaw ma umożliwiać analizę termiczną próbki w symultanicznym układzie

Bardziej szczegółowo

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych)

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych) Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych) Metody instrumentalne podział ze względu na uzyskane informację. 1. Analiza struktury; XRD (dyfrakcja

Bardziej szczegółowo

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Nowoczesne metody analizy pierwiastków

Nowoczesne metody analizy pierwiastków Nowoczesne metody analizy pierwiastków Techniki analityczne Chromatograficzne Spektroskopowe Chromatografia jonowa Emisyjne Absorpcyjne Fluoroscencyjne Spektroskopia mas FAES ICP-AES AAS EDAX ICP-MS Prezentowane

Bardziej szczegółowo

Charakterystyka promieniowania miedziowej lampy rentgenowskiej.

Charakterystyka promieniowania miedziowej lampy rentgenowskiej. Uniwersytet Śląski - Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Polarymetryczne oznaczanie stężenia i skręcalności właściwej substancji optycznie czynnych

Polarymetryczne oznaczanie stężenia i skręcalności właściwej substancji optycznie czynnych Polarymetryczne oznaczanie stężenia i skręcalności właściwej substancji optycznie czynnych Część podstawowa: Zagadnienia teoretyczne: polarymetria, zjawisko polaryzacji, skręcenie płaszczyzny drgań, skręcalność

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

PROBLEMATYKA: Techniki zbierania widm w analizie ciał stałych. Analiza jakościowa i ilościowa na podstawie widm FT-IR

PROBLEMATYKA: Techniki zbierania widm w analizie ciał stałych. Analiza jakościowa i ilościowa na podstawie widm FT-IR PROBLEMATYKA: Techniki zbierania widm w analizie ciał stałych. Analiza jakościowa i ilościowa na podstawie widm FT-IR TEMAT ĆWICZENIA: ANALIZA WYBRANYCH TWORZYW SZTUCZNYCH ZA POMOCĄ TECHNIK SPEKTROSKOPII

Bardziej szczegółowo

Spektroskopia Ramana drgania i widmo rozpraszania

Spektroskopia Ramana drgania i widmo rozpraszania Spektroskopia Ramana drgania i widmo rozpraszania drian Kamiński, Instytut Fizyki UM I. Czym jest spektroskopia ramanowska Spektroskopia Ramana jest istotną metodą badania widm rotacyjnych i oscylacyjnych

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Deproteinizacja jako niezbędny etap przygotowania próbek biologicznych

Deproteinizacja jako niezbędny etap przygotowania próbek biologicznych Deproteinizacja jako niezbędny etap przygotowania próbek biologicznych Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. 1. Wstęp Określenie próbka biologiczna jest

Bardziej szczegółowo

Orbitale typu σ i typu π

Orbitale typu σ i typu π Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -

Bardziej szczegółowo

Zakresy promieniowania. Światło o widzialne. długość fali, λ. podczerwień. ultrafiolet. Wektor pola elektrycznego. Wektor pola magnetycznego TV AM/FM

Zakresy promieniowania. Światło o widzialne. długość fali, λ. podczerwień. ultrafiolet. Wektor pola elektrycznego. Wektor pola magnetycznego TV AM/FM Światło o widzialne Zakresy promieniowania ultrafiolet podczerwień Wektor pola elektrycznego Wektor pola magnetycznego TV AM/FM długość fali, λ Podział fal elektromagnetycznych Promieniowanie X Fale wolnozmiennesieci

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo

Synteza nanocząstek Ag i pomiar widma absorpcyjnego

Synteza nanocząstek Ag i pomiar widma absorpcyjnego Synteza nanocząstek Ag i pomiar widma absorpcyjnego Nanotechnologia jest nową, interdyscyplinarną dziedziną nauki łączącą osiągnięcia różnych nauk (m. in. chemii, biologii, fizyki, mechaniki, inżynierii)

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach białek porównanie technik

Spektroskopia ramanowska w badaniach białek porównanie technik 10 Spektroskopia ramanowska w badaniach białek porównanie technik 10.1. Wprowadzenie Spektroskopia ramanowska (RS) jest metodą badania przejść pomiędzy poziomami energetycznymi cząsteczek, zachodzącymi

Bardziej szczegółowo

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne Scenariusz lekcji chemii w klasie III gimnazjum Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne Czas trwania lekcji: 2x 45 minut Cele lekcji: 1. Ogólny zapoznanie

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych 1. Wielkości i jednostki stosowane do wyrażania ilości materii 1.1 Masa atomowa, cząsteczkowa, mol Masa atomowa Atomy mają

Bardziej szczegółowo

Magnetyczny rezonans jądrowy

Magnetyczny rezonans jądrowy Magnetyczny rezonans jądrowy Widmo NMR wykres absorpcji promieniowania magnetycznego od jego częstości Częstość pola wyraża się w częściach na milion (ppm) częstości pola magnetycznego pochłanianego przez

Bardziej szczegółowo

Instrukcja do ćwiczenia. Analiza rentgenostrukturalna materiałów polikrystalicznych

Instrukcja do ćwiczenia. Analiza rentgenostrukturalna materiałów polikrystalicznych nstrukcja do ćwiczenia naliza rentgenostrukturalna materiałów polikrystalicznych Katedra Chemii Nieorganicznej i Technologii Ciała Stałego Wydział Chemiczny Politechnika Warszawska Warszawa, 2007 Promieniowanie

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego (NMR)

Spektroskopia magnetycznego rezonansu jądrowego (NMR) Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Oznaczanie chlorków metodą spektrofotometryczną z tiocyjanianem rtęci(ii)

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks Obliczenia stechiometryczne, bilansowanie równań reakcji redoks Materiały pomocnicze do zajęć wspomagających z chemii opracował: dr Błażej Gierczyk Wydział Chemii UAM Obliczenia stechiometryczne Podstawą

Bardziej szczegółowo

PODSTAWY LABORATORIUM PRZEMYSŁOWEGO. ĆWICZENIE 3a

PODSTAWY LABORATORIUM PRZEMYSŁOWEGO. ĆWICZENIE 3a PODSTAWY LABORATORIUM PRZEMYSŁOWEGO ĆWICZENIE 3a Analiza pierwiastkowa podstawowego składu próbek z wykorzystaniem techniki ASA na przykładzie fosforanów paszowych 1 I. CEL ĆWICZENIA Zapoznanie studentów

Bardziej szczegółowo

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O Test maturalny Chemia ogólna i nieorganiczna Zadanie 1. (1 pkt) Uzupełnij zdania. Pierwiastek chemiczny o liczbie atomowej 16 znajduje się w.... grupie i. okresie układu okresowego pierwiastków chemicznych,

Bardziej szczegółowo

Deuterowa korekcja tła w praktyce

Deuterowa korekcja tła w praktyce Str. Tytułowa Deuterowa korekcja tła w praktyce mgr Jacek Sowiński jaceksow@sge.com.pl Plan Korekcja deuterowa 1. Czemu służy? 2. Jak to działa? 3. Kiedy włączyć? 4. Jak/czy i co regulować? 5. Jaki jest

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa CZĘŚĆ I PRZEGLĄD METOD SPEKTRALNYCH Program wykładów Wprowadzenie:

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Wprowadzenie: Większość lądowych organizmów kręgowych część jonów amonowych NH + 4, produktu rozpadu białek, wykorzystuje w biosyntezie

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych Zwiększenie liczby wysoko wykwalifikowanych absolwentów kierunków ścisłych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Bardziej szczegółowo

Widma UV charakterystyczne cechy ułatwiające określanie struktury pirydyny i pochodnych

Widma UV charakterystyczne cechy ułatwiające określanie struktury pirydyny i pochodnych Pirydyna i pochodne 1 Pirydyna Tw 115 o C ; temperatura topnienia -41,6 0 C Miesza się w każdym stosunku z wodą tworząc mieszaninę azeotropowa o Tw 92,6 o C; Energia delokalizacji 133 kj/mol ( benzen 150.5

Bardziej szczegółowo

Metody spektroskopowe w identyfikacji związków organicznych. Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz

Metody spektroskopowe w identyfikacji związków organicznych. Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz Metody spektroskopowe w identyfikacji związków organicznych Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz Metody spektralne wykorzystują zjawiska związane z oddziaływaniem materii z promieniowaniem

Bardziej szczegółowo

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab CZĄSTECZKA I RÓWNANIE REKCJI CHEMICZNEJ potrafi powiedzieć co to jest: wiązanie chemiczne, wiązanie jonowe, wiązanie

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Opracował: dr inż. Tadeusz Lemek

Opracował: dr inż. Tadeusz Lemek Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Opracował:

Bardziej szczegółowo

Spektroskopia UV-VIS zagadnienia

Spektroskopia UV-VIS zagadnienia Spektroskopia absorbcyjna to dziedzina, która obejmuje metody badania materii przy użyciu promieniowania elektromagnetycznego, które może z tą materią oddziaływać. Spektroskopia UV-VS zagadnienia promieniowanie

Bardziej szczegółowo

Ćwiczenie BADANIE WIDM OPTYCZNYCH ZA POMOCĄ SPEKTROMETRU O 9 O 12 Instrukcja dla studenta

Ćwiczenie BADANIE WIDM OPTYCZNYCH ZA POMOCĄ SPEKTROMETRU O 9 O 12 Instrukcja dla studenta Ćwiczenie BADANIE WIDM OPTYCZNYCH ZA POMOCĄ SPEKTROMETRU O 9 O 1 Instrukcja dla studenta I WSTĘP I1 Światło Z punktu widzenia fizyki światło widzialne jest falą elektromagnetyczną a jednocześnie zbiorem

Bardziej szczegółowo

ELEMENTY ANALIZY INSTRUMENTALNEJ. SPEKTROFOTOMETRII podstawy teoretyczne

ELEMENTY ANALIZY INSTRUMENTALNEJ. SPEKTROFOTOMETRII podstawy teoretyczne ELEMENTY ANALZY NSTRUMENTALNEJ Ćwiczenie 3 Temat: Spektrofotometria UV/ViS SPEKTROFOTOMETR podstawy teoretyczne SPEKTROFOTOMETRA jest techniką instrumentalną, w której do celów analitycznych wykorzystuje

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

OBLICZENIA BIOCHEMICZNE

OBLICZENIA BIOCHEMICZNE OBLICZENIA BIOCHEMICZNE Praca w laboratorium biochemicznym wymaga umiejętności obliczania stężeń i rozcieńczeń odczynników stosowanych do doświadczeń. W podstawowym kursie biochemii nie ma czasu na przygotowywanie

Bardziej szczegółowo

POMIAR STĘŻENIA DWUTLENKU WĘGLA PRZY WYKORZYSTANIU ABSORPCJI PROMIENIOWANIA PODCZERWONEGO TECHNIKĄ NDIR

POMIAR STĘŻENIA DWUTLENKU WĘGLA PRZY WYKORZYSTANIU ABSORPCJI PROMIENIOWANIA PODCZERWONEGO TECHNIKĄ NDIR II Krajowa Konferencja Naukowo-Techniczna EKOLOGIA W ELEKTRONICE Przemysłowy Instytut Elektroniki Warszawa, 5-6.12.2002 POMIAR STĘŻENIA DWUTLENKU WĘGLA PRZY WYKORZYSTANIU ABSORPCJI PROMIENIOWANIA PODCZERWONEGO

Bardziej szczegółowo

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet II. WYBRANE LASERY BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet Laser gazowy Laser He-Ne, Mechanizm wzbudzenia Bernard Ziętek IF UMK Toruń 2 Model Bernard Ziętek IF UMK Toruń 3 Rozwiązania stacjonarne

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska

Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska 1.1. Wprowadzenie do spektroskopii UV/VIS Spektroskopia w nadfiolecie, oraz świetle widzialnym UV/VIS

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 5 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Pomiar prędkości obrotowej

Pomiar prędkości obrotowej 2.3.2. Pomiar prędkości obrotowej Metody: Kontaktowe mechaniczne (prądniczki tachometryczne różnych typów), Bezkontaktowe: optyczne (światło widzialne, podczerwień, laser), elektromagnetyczne (indukcyjne,

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej

RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej Zadania w zakresie badań i rozwoju Roztwory polimerowe stosowane są w różnych

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Badania nad schorzeniami neurodegeneracyjnymi przy wykorzystaniu wybranych metod spektroskopowych

Badania nad schorzeniami neurodegeneracyjnymi przy wykorzystaniu wybranych metod spektroskopowych Badania nad schorzeniami neurodegeneracyjnymi przy wykorzystaniu wybranych metod spektroskopowych Dr inż. Magdalena Szczerbowska-Boruchowska Zakład Metod Jądrowych, WFiIS Plan wystąpienia 1. Wprowadzenie

Bardziej szczegółowo

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA INSTYTUT FIZYKI WYDZIAŁ MATEMATYKI, FIZYKI I TECHNIKI UNIWERSYTET KAZIMIERZA WIELKIEGO

Bardziej szczegółowo

Spektroskopia Ramana

Spektroskopia Ramana Spektroskopia Ramana Źródło światła Próbka Promieniowanie rozproszone Rozpraszanie światła Rozpraszanie światła (fal elektromagnetycznych) to zjawisko oddziaływania światła z materią w wyniku którego następuje

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016)

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia () 1. Informacje ogólne koordynator modułu prof. dr hab. Henryk Flakus rok akademicki 2013/2014

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

spektroskopia UV Vis (cz. 2)

spektroskopia UV Vis (cz. 2) spektroskopia UV Vis (cz. 2) spektroskopia UV-Vis dlaczego? wiele związków organicznych posiada chromofory, które absorbują w zakresie UV duża czułość: zastosowanie w badaniach kinetyki reakcji spektroskop

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Projekt badawczy. Temat: Spektroskopia w podczerwieni jako narzędzie badań produktów biologicznych i żywnościowych

Projekt badawczy. Temat: Spektroskopia w podczerwieni jako narzędzie badań produktów biologicznych i żywnościowych Nauka i technologia dla żywności Projekt badawczy Temat: Spektroskopia w podczerwieni jako narzędzie badań produktów biologicznych i żywnościowych Wprowadzenie: W badaniach struktury i właściwości materii

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya. LABOATOIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.. Wprowadzenie Proces rozpadu drobin związków chemicznych

Bardziej szczegółowo

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA W tym przypadku lasery pozwalają na prowadzenie kontroli stanu sanitarnego Powietrza, Zbiorników wodnych, Powierzchni i pokrycia terenu. Stosowane rodzaje laserów

Bardziej szczegółowo