Gazetka Matematyczna Publicznego Gimnazjum nr 3
|
|
- Stanisława Leśniak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Ciekawe, co to za figura? Gazetka Matematyczna Publicznego Gimnazjum nr 3 nr4. III-IV2016r Witamy serdecznie wszystkich naszych czytelników po feriach zimowych. Mamy nadzieję, że ten krótki czas odpoczynku wpłynie korzystnie na naszą aktywność w szkole w drugim półroczu roku szkolnego. Uczniom klas drugich przypominamy o ostatnim już sprawdzianie powtórzeniowym, który odbędzie się w kwietniu i będzie obejmować działy: graniastosłupy proste oraz elementy statystyki opisowej. Przykładowe zestawy zadań z tych działów pojawią się osobno na naszej stronie internetowej. Uczniom klas trzecich przypominamy, że do egzaminu gimnazjalnego pozostało niecałe dwa miesiące. Warto opracować własną taktykę powtórek, aby zdążyć przed egzaminem. Jeśli chciałbyś zostać redaktorem naszej gazetki- zgłoś się do p. Z. Szubarczyka (sala nr 126) Myśl miesiąca W szkole nie matematyka ma być nowoczesna, ale jej nauczanie. (Rene Thom) HUMOR Tata mówi do Jasia: - Jasiu policz do Jasio liczy: - 2, 3, 4, 5, 6, 7, 8, 9, 10. Tata na to: - Jasiu, a gdzie masz 1? Jasio odpowiada: - W swoim dzienniczku! Po kilku latach nauki w gimnazjum przychodzi czas na egzamin, którego wynik może zmienić naszą przyszłość. Przygotowywać się do niego należy oczywiście od pierwszego dnia w szkole. Ale decydująca może być dobra powtórka materiału. W artykule tym spróbuję Wam przybliżyć ten temat. Egzamin gimnazjalny z części matematyczno-przyrodniczej będzie składał się z dwóch bloków. W pierwszym znajdą się zadania z nauk przyrodniczych - biologii, chemii, fizyki i geografii, które mają formę zadań zamkniętych. W drugim bloku będą zadania z matematyki, które będą mieć formę zamkniętą i otwartą. Od kilku lat w nowym zestawie egzaminacyjnym z matematyki mniej jest zadań sprawdzających znajomość algorytmów i umiejętność posługiwania się nimi w typowych zastosowaniach, więcej natomiast zadań sprawdzających rozumienie pojęć matematycznych oraz umiejętności dobierania własnych strategii matematycznych do nietypowych warunków. Analizując arkusze egzaminacyjne z poprzednich lat można zauważyć, że najczęściej sprawdzane są następujące wiadomości i umiejętności: I. obliczenia procentowe przykład 1: Promocja w zakładzie optycznym jest związana z wiekiem klienta i polega na tym, że klient otrzymuje tyle procent zniżki, ile ma lat. Cena okularów bez promocji wynosi 240 zł. Ile zapłaci za te okulary klient, który ma 35 lat? przykład 2: Cena brutto = cena netto + podatek VAT Oceń prawdziwość podanych zdań. Jeżeli cena netto 1 kg jabłek jest równa 2,50 zł, a cena brutto jest równa 2,70 zł, to podatek VAT wynosi 8% ceny netto. Jeżeli cena netto podręcznika do matematyki jest równa 22 zł, to cena tej książki z 5% podatkiem VAT wynosi 24,10 zł. przykład 3: Cena płyty kompaktowej po 30% obniżce wynosi 49 zł. Jaka była cena tej płyty przed obniżką?
2 II. działania na potęgach i pierwiastkach: przykład 1: Dane są liczby: a = ( 2) 12, b = ( 2) 11, c = Uporządkuj liczby od najmniejszej do największej. przykład 2: Dane są liczby: 3, 3 4, Zapisz w postaci potęgi iloczyn tych liczb. przykład 3: Liczba znajduje się na osi liczbowej między : A)10 i 11 B)11 i 12 C)12 i 20 D) 30 i 40 przykład 4: Wyznacz cyfrę jedności liczby III. analiza i interpretacja danych statystycznych przedstawionych za pomocą diagramów przykład 1: Na diagramie przedstawiono wyniki pracy klasowej z matematyki w pewnej klasie. Korzystając z diagramu wyznacz średnią arytmetyczną, medianę i modę danych IV. Własności, obwody i pola figur płaskich: przykład 1: W równoległoboku ABCD bok AB jest dwa razy dłuższy od boku AD. Punkt K jest środkiem boku AB, a punkt L jest środkiem boku CD. Oceń prawdziwość zdań: Trójkąt ABL ma takie samo pole, jak trójkąt ABD. Pole równoległoboku ABCD jest cztery razy większe od pola trójkąta AKD. przykład 2: Punkt B jest środkiem okręgu. Prosta AC jest styczna do okręgu w punkcie C, AB = 20 cm i AC = 16 cm. Oblicz promień BC okręgu. przykład 3:oblicz pole i obwód deski o podanych wymiarach (rys) przykład 4: Jeden z kątów wewnętrznych trójkąta ma miarę α, drugi ma miarę o 30 większą niż kąt α, a trzeci ma miarę trzy razy większą niż kąt α. Jakim trójkątem jest ta figura. V. Zadania na dowodzenie przykład 1: Uzasadnij, że trójkąty prostokątne ABC i KLM przedstawione na rysunku są podobne przykład 2: Przekątna prostokąta ABCD nachylona jest do jednego z jego boków pod kątem 30. Uzasadnij, że pole prostokąta ABCD jest równe polu trójkąta równobocznego o boku równym przekątnej tego prostokąta. przykład 3: Na rysunku przedstawiono trapez ABCD i trójkąt AFD. Punkt E leży w połowie odcinka BC. Uzasadnij, że pole trapezu ABCD i pole trójkąta AFD są równe. VI. Funkcje: przykład 1: Wzór y = x opisuje zależność objętości y (w litrach) wody w zbiorniku od czasu x (w minutach) upływającego podczas opróżniania zbiornika. Który wykres przedstawia tę zależność? przykład 2: W prostokątnym układzie współrzędnych przedstawiono wykres funkcji. Które z poniższych zdań jest fałszywe? A) Dla argumentu 2 wartość funkcji jest równa 3. B) Funkcja przyjmuje wartość 0 dla argumentu 1. C)Wartość funkcji jest równa 2 dla argumentu 3. D) Dla argumentów większych od 1 wartości funkcji są dodatnie.
3 VII. Własności oraz pole powierzchni i objętość figur przestrzennych przykład 1: Siatka ostrosłupa składa się z kwadratu i trójkątów równobocznych zbudowanych na bokach tego kwadratu. Oceń prawdziwość podanych zdań: Wszystkie krawędzie tego ostrosłupa mają taką samą długość. Wysokość tego ostrosłupa jest mniejsza niż wysokość jego ściany bocznej. przykład 2: Po rozklejeniu ściany bocznej pudełka mającego kształt walca otrzymano równoległobok. Jeden z boków tej figury ma długość 44 cm, a jej pole jest równe 220 cm 2. Oblicz objętość tego pudełka. Przyjmij przybliżenie π równe 22 7 przykład 3: Na rysunku przedstawiono graniastosłup prosty i jego wymiary. Oblicz pole powierzchni i objętość graniastosłupa.. przykład 4: Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego jest równe 80 cm 2, a pole jego powierzchni całkowitej wynosi 144 cm 2. Oblicz długość krawędzi podstawy i długość krawędzi bocznej tego ostrosłupa VIII. Zadania z treścią z zastosowaniem równań i układów równań przykład 1: Ania ma w skarbonce 99 zł w monetach o nominałach 2 zł i 5 zł. Monet dwuzłotowych jest 2 razy więcej niż pięciozłotowych. Opisz podane zależności układem równań oznaczając przez x liczbę monet pięciozłotowych, a przez y liczbę monet dwuzłotowych. przykład 2: W pewnej klasie liczba chłopców stanowi 80% liczby dziewcząt. Gdyby do tej klasy doszło jeszcze trzech chłopców, to liczba chłopców byłaby równa liczbie dziewcząt. Ile dziewcząt jest w tej klasie? przykład 3: Cena godziny korzystania z basenu wynosi 12 zł. Można jednak kupić miesięczną kartę rabatową za 50 złotych, upoważniającą do obniżki cen, i wtedy za pierwsze 10 godzin pływania płaci się 8 złotych za godzinę, a za każdą następną godzinę 9 złotych. Wojtek kupił kartę rabatową i korzystał z basenu przez 16 godzin. Czy zakup karty był dla Wojtka opłacalny? IX. Rachunek prawdopodobieństwa przykład 1: Rzucamy jeden raz sześcienną kostką do gry. Oznaczmy przez p2 prawdopodobieństwo wyrzucenia liczby podzielnej przez 2, a przez p3 prawdopodobieństwo wyrzucenia liczby podzielnej przez 3. Oceń prawdziwość podanych zdań: Liczba p2 jest mniejsza od liczby p3.liczby p2 i p3 są mniejsze od 1 6. W pudełku było 20 kul białych i 10 czarnych. Dołożono jeszcze 10 kul białych i 15 czarnych. Oceń prawdziwość podanych zdań. Przed dołożeniem kul prawdopodobieństwo wylosowania kuli białej było trzy razy większe niż prawdopodobieństwo wylosowania kuli czarnej. Po dołożeniu kul prawdopodobieństwo wylosowania kuli czarnej jest większe niż prawdopodobieństwo wylosowania kuli białej. X. Interpretacja i analiza danych przedstawionych za pomocą rysunku przykład 1: Na rysunkach przedstawiono kształt i sposób układania płytek oraz niektóre wymiary w centymetrach. Ułożono wzór z 5 płytek, jak na rys. Odcinek x ma długość A)20 cm B)22 cm C) 26 cm D) 30 cm. Które wyrażenie algebraiczne opisuje długość analogicznego do x odcinka dla wzoru złożonego z n płytek? A) 6n B)6n 4 C)4n 2 D)4n + 2
4 Po raz kolejny zapraszamy na szkolne obchody "Międzynarodowego Dnia Liczby π", W tym dniu proponujemy Wam różnorodne konkursy i gry matematyczne. Uczniowie zainteresowani poszczególnymi konkursami proszeni są o zapisanie się u swoich nauczycieli matematyki. Szczegóły już niedługo na stronie internetowej naszej szkoły. Gauss ( ) Niemiecki matematyk, fizyk, astronom i geodeta, jeden z twórców geometrii nieeuklidesowej; zajmował się też zastosowaniem matematyki w fizyce i astronomii, przeprowadzał badania magnetyzmu i elektryczności; wspólnie z fizykiem niemieckim W. E. Weberem wprowadził absolutny układ jednostek elektromagnetycznych. Gauss jest uważany za jednego z trzech, obok Archimedesa i I. Newtona, największych matematyków świata; przez współczesnych nazywany był "księciem matematyków". Studiował matematykę na uniwersytecie w Getyndze; był profesorem tego uniwersytetu i dyrektorem obserwatorium astronomicznego, przy którym założył obserwatorium geomagnetyczne do badań elementów magnetyzmu ziemskiego. Gauss wcześnie objawił niepospolity talent matematyczny. Podobno już w wieku trzech lat znalazł błąd w rachunku ojca, który obliczał wypłatę pracownikom. W szkole zwrócił na siebie uwagę znalezieniem metody, którą zastosował do zsumowania liczb od l do 40. Pierwszym odkryciem matematycznym Gaussa było skonstruowanie 17-kąta foremnego za pomocą cyrkla i linijki. Do czasów Gaussa nie udało się to żadnemu matematykowi, chociaż wielu usiłowało rozwiązać ten problem. Gauss wykazał ponadto, które wielokąty foremne można konstruować tą metodą. Gauss szczególnie cenił arytmetykę, którą nazwał "królową matematyki", i sądził, że ona może być, zamiast geometrii, fundamentem matematyki. Pierwszy zrozumiał znaczenie pojęcia kongruencji, wprowadził symbol tego pojęcia i systematycznie się nim posługiwał. Gauss udowodnił prawo wzajemności liczb pierwszych i podał osiem różnych sposobów dowiedzenia tego prawa. Gauss używał konsekwentnie liczb zespolonych, interpretując je jako punkty płaszczyzny. Rozumiał doskonale znaczenie liczb zespolonych jako narzędzia matematyki. Do czasów Gaussa znana była tylko geometria na płaszczyźnie i na kuli. Gauss znalazł sposób określania geometrii dowolnej powierzchni, przez podanie, które linie na danej powierzchni grają rolę linii prostych i w jaki sposób można mierzyć odległość na wybranej powierzchni. Podał definicję krzywizny powierzchni i udowodnił niezwykle ważne twierdzenie, któremu nadał nazwę "twierdzenia wybornego". Mówiło ono, że krzywizna powierzchni jest niezmiennikiem wszelkich przekształceń, które nie zmieniają odległości mierzonych na tej powierzchni. Z tego twierdzenia wynika np., że żadnego fragmentu sfery nie można rozłożyć bez zniekształceń na płaszczyźnie, ponieważ krzywizna sfery jest różna od krzywizny płaszczyzny. Idee Gaussa wpłynęły też na rozwój fizyki. Jego badania nad teorią błędów doprowadziły do odkrycia rozkładu normalnego (zw. też rozkładem Gaussa) zmiennej losowej - podstawowego rozkładu teorii prawdopodobieństwa; podał też metodę najmniejszych kwadratów. Wielu swoich odkryć nie opublikował, uznając że byłoby to przedwczesne. Ich opisy są znane jedynie z korespondencji i dziennika opublikowanego w 43 lata po jego śmierci.
5 Często na lekcjach matematyki mamy obliczyć pole wielokąta będącego przekrojem sześcianu pewną płaszczyzną. Zastanawiamy się nad możliwymi przekrojami. Jeżeli przedstawione rysunki nie do końca Cię zadowoliły, to warto dokonać eksperymentu przecinając sześcienne kostki wykonane z ziemniaka i przy okazji ugotować zupę- kartoflankę. Notacja wykładnicza Notacja wykładnicza pomaga w zapisywaniu bardzo dużych i małych liczb, których zapis byłby znacząco wydłużony i sprawiałby kłopot w ich odczytaniu. Wyobraź sobie liczbę: Składa się ona z cyfry 3 i z 12 zer. Zatem można zapisać krócej, jako Spójrz na liczbę: 0, Ma ona 27 miejsc po przecinku. Można ją zapisać znacznie krócej, jako Postać notacji wykładniczej: n a 10, gdzie a jest liczbą (mantysą) z przedziału <1,10 ), n jest całkowitym wykładnikiem. Zapisując liczbę w notacji wykładniczej przesuwasz przecinek w liczbie tak, aby otrzymać najpierw liczbę (mantysę) z przedziału <1,10), a następnie mnożysz ją przez 10 do pewnej potęgi n. Przedstaw podane wielkości w notacji wykładniczej wielkości: odległość Księżyca od Ziemi km odległość Ziemi od Słońca km odległość Ziemi od Marsa km odległość Słońca od Gwiazdy Polarnej km odległość Słońca od Alfa Centauri km średnica tułowia ameby 0,00062 m masa wirusa ospy 0, g masa ziarenka maku 0,0005 g masa atomu wodoru 0, g prędkość z jaką rośnie bambus 0, m/s
6 Zadanie 1: Wysokość CD trójkąta prostokątnego ABC podzieliła przeciwprostokątną na dwa odcinki o długościach 9cm i 4cm (rys). Oblicz obwód i pole trójkąta ABC. Przypominamy, że na łamach naszej gazetki cały rok trwa konkurs matematyczny. W każdym numerze znajdziecie 3 zadania, których rozwiązania wraz z podanym nazwiskiem i klasą wrzucamy do skrzynki kontaktowej (obok gabloty matematycznejdolny korytarz). Łączna ilość uzyskanych punktów decyduje o zajętym miejscu i nagrodzie na koniec roku szkolnego. Zadanie 2: Pewien Rzymianin umierając zrobił zapis na rzecz żony i oczekiwanego dziecka. W razie przyjścia na świat chłopca miał on otrzymać 2/3 spadku, a matka 1/3. W razie przyjścia na świat dziewczynki matka miała otrzymać 2/3 spadku, a córka 1/3. Urodziły się bliźnięta chłopiec i dziewczynka. Jak podzielić spadek? Zadanie 3: Oblicz jaką częścią pola koła opisanego na kwadracie jest pole koła wpisanego w ten kwadrat?
Gazetka Matematyczna Publicznego Gimnazjum nr 3
Ciekawe, co to za figura? Gazetka Matematyczna Publicznego Gimnazjum nr 3 nr4. III-IV2017r Witamy serdecznie wszystkich naszych czytelników po feriach zimowych. Mamy nadzieję, że ten krótki czas odpoczynku
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE
Zadanie 1. (0 1) Cena okularów bez promocji wynosi 240 zł. Ile zapłaci za te okulary klient, który ma 35 lat? Wybierz odpowiedź spośród podanych.
Informacja do zadań 1. i 2. Promocja w zakładzie optycznym jest związana z wiekiem klienta i polega na tym, że klient otrzymuje tyle procent zniżki, ile ma lat. Zadanie 1. (0 1) Cena okularów bez promocji
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem
Układ graficzny CKE 2011 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
Myśl miesiąca. Klasyfikacja czworokątów
Gazetka Matematyczna Publicznego Gimnazjum nr 3 nr 3: I-II 2017r Ciekawe, co to za figura? Witamy serdecznie wszystkich naszych czytelników w Nowym Roku Kalendarzowym. Życzymy Wam aby ten rok był bogaty
MATEMATYKA KWIECIEŃ 2014. miejsce na naklejkę z kodem. dysleksja EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem dysleksja EGZAMIN W KLASIE
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO MARCA 05 CZAS PRACY: 90 MINUT Informacja do zadań 3 Pracownik salonu samochodowego otrzymuje premię za każdy sprzedany
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem dysleksja EGZAMIN W KLASIE
Informacje do zadań 1. i 2. W tabeli przedstawiono informacje dotyczące wieku wszystkich uczestników obozu narciarskiego.
Informacje do zadań 1 i W tabeli przedstawiono informacje dotyczące wieku wszystkic uczestników obozu narciarskiego Wiek uczestnika Liczba uczestników 10 lat 1 lat 3 1 lat 16 lat 8 Zadanie 1 (0 1) Mediana
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ
MATEMATYKA KWIECIEŃ 2014 UZUPEŁNIA UCZEŃ. miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 18 KWIETNIA 2015 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 W tabeli przedstawiono procentowy podział uczestników
Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.
Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m
13:00 13:30 14:00 14:30 15:00 15:30 godzina. Które z poniższych zdań jest fałszywe? Wybierz właściwą odpowiedź spośród podanych.
Zadanie. (0 ) Zastęp harcerzy wyruszył z przystanku autobusowego do obozowiska. Na wykresie przedstawiono zależność między odległością harcerzy od obozowiska a czasem wędrówki. odległość od obozowiska
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI
Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 29 MARCA 2014 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na diagramie przedstawiono wyniki pracy klasowej z matematyki
WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM
Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań
WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT
WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA System rzymski. Powtórzenie i utrwalenie umiejętności z zakresu podstawy
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 017 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1 34). Ewentualny brak
Egzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 28 marca 2015 Czas pracy: 90 minut
/Gimnazjum Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 28 marca 2015 Czas pracy: 90 minut Zadanie 1 (1 pkt) Na diagramie przedstawiono wysokość miesięcznych
ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV.
ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. I. POTĘGI. LOGARYTMY. FUNKCJA WYKŁADNICZA 1. Przedstaw liczby 16,4, w postaci potęgi liczby: 2; 4;. 2. Wykonaj działania: a) = b) 25 5 5 =
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 28 MARCA 2015 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na diagramie przedstawiono wysokość miesięcznych zarobków
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
PRÓBNY EGZAMIN ÓSMOKLASISTY
PRÓBNY EGZAMIN ÓSMOKLASISTY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 100 MINUT 1 ZADANIE 1 (1 PKT) Firma transportowa Paka korzysta z samochodów dostawczych,
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja dla
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
Ułamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe.
Zadanie 1. (0 1) Turysta A szedł ze schroniska w kierunku szczytu, natomiast turysta B schodził ze szczytu w kierunku schroniska. Obaj szli tym samym szlakiem i tego samego dnia. Wykresy przedstawiają,
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-Q00-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) Podstawa programowa
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.
Wymagania z matematyki na poszczególne oceny III klasy gimnazjum
Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania
Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
EGZAMIN ÓSMOKLASISTY MATEMATYKA
www.galileusz.com.pl EGZAMIN ÓSMOKLASISTY MATEMATYKA ARKUSZ 100 minut 30 Zadanie 1. (0 1) W systemie rzymskim liczbę 979 zapiszesz: A.CMLXXIX B. CDXXIX C. DCCXIX D. DCCCLIX Zadanie 2. (0 1) Czynsz za wynajem
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka
WYPEŁNIA UCZEŃ PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10
wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:
WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 8 stron (zadania 1. 23.).
Wymagania z matematyki na poszczególne oceny II klasy gimnazjum
Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod
Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)
Wymagania programowe z matematyki - Klasa 3 obowiązujące w od roku szkolnego 2013/2014 UWAGA! Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) znajomością
Treści nauczania wymagania szczegółowe
Treści nauczania wymagania szczegółowe 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 2) dodaje, odejmuje, mnoży i dzieli
Test na koniec nauki w klasie trzeciej gimnazjum
3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 018 r.
Lista działów i tematów
Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie
Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum
Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem
Liczby i wyrażenia algebraiczne WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem zna pojęcie notacji wykładniczej umie oszacować wynik działań umie zaokrąglić
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w III klasie gimnazjum w roku szkolnym 2013/2014 Wymagania edukacyjne dostosowane do obowiązującej
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018
Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 I Okres POTĘGI zapisać potęgę w postaci iloczynu liczb, zapisać iloczyn jednakowych czynników w postaci potęgi
LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut
KOD UCZNIA MATEMATYKA 5 LUTY 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..
CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI
Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i