Logika stosowana. Ćwiczenia Wnioskowanie przez abdukcję. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
|
|
- Izabela Kwiecień
- 9 lat temu
- Przeglądów:
Transkrypt
1 Logika stosowana Ćwiczenia Wnioskowanie przez abdukcję Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2013/2014 Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
2 Plan wykładu 1 Abdukcja 2 Przykłady wnioskowań abdukcyjnych Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
3 Abdukcja Abdukcja jest rodzajem rozumowania (wnioskowania) w którym na podstawie rezultatów (wniosków) próbujemy wyjaśnić, jak mogło dojść do ich zaistnienia. Abdukcja jest także często nazywana wnioskowaniem przez najlepsze wyjaśnienie (ang. Inference to the Best Explanation). Jako metoda wnioskowania abdukcja jest znacznie mniej sformalizowania niż dwie poprzednio poznane techniki: dedukcja i indukcja. Znacznie gorzej poddaje się ona ścisłemu opisowi formalnemu znanemu w logice matematycznej. Niemniej, wnioskowania abdukcyjne, przy ustaleniu dodatkowych ograniczeń, znalazły swoje miejsce w wielu dziedzinach współczesnej nauki i techniki, np. w diagnostyce błędów w inżynierii (w tym inżynierii oprogramowania), sztucznej inteligencji i innych. Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
4 Trochę historii Zainteresowanie wnioskowaniem od wniosków do przesłanek wywodował w zasadzie jeden człowiek, amerykański filozof Charles Sanders Peirce ( ). Peirce początkowo używał terminu zgadywanie (ang. guessing), potem jednak, dla uniknięcia wieloznaczności, wprowadził pojęcie abdukcji (to abduce) jako procesu (czynności) wnioskowania o założeniach na podstawie hipotez. Według Peirce a, aby wywnioskować przez abdukcję ( wyabdukować ) hipotetyczne wyjaśnienie A z zaobserwowanego zjawiska (rezultatu) B należy pokazać, że A może być prawdziwe przy przyjęciu B za ustalone (prawdziwe). Innymi słowy, by wywnioskować abdukcyjnie A z B należy wykazać, że A jest warunkiem dostatecznym, ale niekoniecznym dla B. Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
5 Koncepcja abdukcji Według Peirce a zasada abdukcji może być przedstawiona następująco: Obserwujemy zaskakujące zjawisko B. Gdyby A było prawdziwe, prawdziwość B byłaby oczywista. Mamy zatem podstawy, by podejrzewać, że A jest prawdziwe. Wielu wspólczesnych, prominentnych filozofów nauki (np. Boyd 1981, 1984, Harré 1986, 1988, Lipton 1991, 2004, Psillos 1999, McMullin 1992) uważa abdukcję, pomimo jej dalece nieformalnej postaci, za co najmniej równoważną dedukcji i indukcji metodę prowadzenia rozumowania w badaniach naukowych. Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
6 Działanie abdukcji Dedukcja Reguła: Wszystkie fasolki z tego worka są białe. Warunek: Te fasolki są z tego worka. Konkluzja: Te fasolki są białe. Indukcja Warunek: Te fasolki są z tego worka. Obserwacja: Te fasolki są białe. Reguła wynikowa: Wszystkie fasolki z tego worka są białe. Abdukcja Reguła: Wszystkie fasolki z tego worka są białe. Obserwacja: Te fasolki są białe. Wyjaśnienie wynikowe: Te fasolki są z tego worka. Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
7 Koło rozumowań Pierce a HIPOTEZY DEDUKCJA ABDUKCJA PRZEWIDYWANIA DANE INDUKCJA Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
8 Pseudo-formalizacja abdukcji Z punktu widzenia logiki formalnej realizujemy proces wyjaśniania w oparciu o teorię T i zbiór obserwacji O. Abdukcja odpowiada wyróżnieniu zbioru możliwych wyjaśnień (Explanations) i wybraniu z niego wyjaśnienia E. Przy założeniu, że T, O, E są wyrażone za pomocą zbiorów literałów, aby E było prawidłowym wyjaśnieniem dla O, zgodnym z T, musi zachodzić: 1 T E = O; 2 T E jest niesprzeczny. Zwykle by wybrać jedno wyjaśnienie spośród wszystkich E spełniających powyższe warunki stosuje się dodatkowe kryterium optymalności (minimalności), np. zasadę najkrótszego opisu lub podobne. Istnieje formalny system logiczny pierwszego rzędu (Cialdea, Mayer i Pirri 1993) dla wnioskowania abdukcyjnego, który jest pełny i poprawny. Jest on oparty na rachunku sekwentów. Pokazano także dualny do niego system formalny oparty na tablicach semantycznych (semantic tableaux). Istnieją także rozszerzenia na logiki modalne. Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
9 Plan wykładu 1 Abdukcja 2 Przykłady wnioskowań abdukcyjnych Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
10 Abdukcja w badaniach klinicznych W badaniach klinicznych dla nowych testów medycznych, np. wykrywających jakieś schorzenie, stosuje się następująca metodologię. Wykonujemy test na populacji składającej się z próbki osób chorych i próbki kontrolnej osób zdrowych. Niech x oznacza przynależność do pozytywnych wyników testu, x negatywnych. Niech y oznacza przynależności do osób chorych, a ȳ zdrowych. Wtedy, możemy ocenić jakość testu przez wykonanie prostych pomiarów ilościowych i wyznaczenie wartości takich jak: Czułość (Sensitivity) Pr(x y) odpowiada szansie pozytywnego wyniku testu u osoby chorej. FPR (False Positive Ratio) Pr(x ȳ) odpowiada szansie pozytywnego wyniku testu u osoby zdrowej. Dla użyteczności testu w praktyce medycznej musimy podać używającemu go lekarzowi coś innego, mianowicie Pr(y x) i Pr(y x). Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
11 Abdukcja w badaniach klinicznych Znając Pr(y x) i Pr(y x) moglibyśmy wyznaczyć docelową szansę, że pacjent jest chory jako: Pr() = Pr(y) Pr(y x) + Pr( x) Pr(y x) Wykonujemy test na populacji składającej się z próbki osób chorych i próbki kontrolnej osób zdrowych. Niech x oznacza przynależność do pozytywnych wyników testu, x negatywnych. Niech y oznacza przynależności do osób chorych, a ȳ zdrowych. Wtedy, możemy ocenić jakość testu przez wykonanie prostych pomiarów ilościowych i wyznaczenie wartości takich jak: Czułość (Sensitivity) Pr(x y) odpowiada szansie pozytywnego wyniku testu u osoby chorej. FPR (False Positive Ratio) Pr(x ȳ) odpowiada szansie pozytywnego wyniku testu u osoby zdrowej. Dla użyteczności testu w praktyce medycznej musimy podać używającemu go lekarzowi coś innego, mianowicie Pr(y x) i Pr(y x). Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
12 Inn przykłady wykorzystania abdukcji Abdukcja jest często stosowana w rozumowaniach prawniczych, szczególnie w systemach prawa precedensowego. Abdukcję wykorzystuje się w diagnostyce błędów (fault diagnostics). Jednym z prominentnych przykładów jest wykorzystanie abdukcji bayesowskiej do diagnostyki (wyjaśniania) wielokrotnych błędów pochodzących z różnych źródeł w implementacjach API dla protokołów komunikacyjnych. Liczne zastosowania znajduje abdukcja w systemach wspomagania diagnozy medycznej. W wielu aspektach wykorzystanie Sieci Bayesowskich (Bayesian Networks) może być postrzegane jako realizacja wnioskowań typu abdukcyjnego. Marcin Szczuka (MIMUW) Logika stosowana 2013/ / 12
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu
Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..
Systemy regułowe Metody wnioskowania Wnioskowanie w przód (ang. forward chaining) Od przesłanki do konkluzji Np.. CLIPS Wnioskowanie w tył (ang. Backward chaining) Czyli od konkluzji do przesłanki Np..
Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW
Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika
Metoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Kultura logiczna Wnioskowania dedukcyjne
Kultura logiczna Wnioskowania dedukcyjne Bartosz Gostkowski bgostkowski@gmail.com Kraków 25 IV 2010 Plan wykładu: Intuicje dotyczące poprawności wnioskowania Wnioskowanie dedukcyjne Reguły niezawodne a
Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne
Literatura: podstawowa: C. Radhakrishna Rao, Statystyka i prawda, 1994. G. Wieczorkowska-Wierzbińska, J. Wierzbiński, Statystyka. Od teorii do praktyki, 2013. A. Aczel, Statystyka w zarządzaniu, 2002.
Wstęp do logiki. Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża,
Prof. UAM, dr hab. Zbigniew Tworak Zakład Logiki i Metodologii Nauk Instytut Filozofii Wstęp do logiki Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża, kto poprawnie wnioskuje i uzasadnia
Wstęp do logiki. Klasyczny Rachunek Zdań III
Wstęp do logiki Klasyczny Rachunek Zdań III Przypomnijmy: Logika: = Teoria form (schematów, reguł) poprawnych wnioskowań. Wnioskowaniem nazywamy jakąkolwiek skończoną co najmniej dwuwyrazową sekwencję
Kognitywistyka: tworzenie pojęć i rozumowanie Studium przypadku: rozumowania abdukcyjne
Kognitywistyka: tworzenie pojęć i rozumowanie Studium przypadku: rozumowania abdukcyjne Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Wiatr i okno Pewnego dnia w wietrzne, jesienne
teoria relewancji jako przykład inferencjonizmu jako przykład słabego kontekstualizmu
teoria relewancji jako przykład inferencjonizmu jako przykład słabego kontekstualizmu teoria relewancji jako przykład inferencjonizmu jako przykład słabego kontekstualizmu Dan Sperber i Deirdre Wilson,
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Rachunek zdań i predykatów
Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)
Zasady krytycznego myślenia (1)
Zasady krytycznego myślenia (1) Andrzej Kisielewicz Wydział Matematyki i Informatyki 2017 Przedmiot wykładu krytyczne myślenie vs logika praktyczna (vs logika formalna) myślenie jasne, bezstronne, oparte
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania
RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.
Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018
Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety
mgr Adam Marszałek Zakład Inteligencji Obliczeniowej Instytut Informatyki PK Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety Wstępnie na
Kilka ciekawostek czyli licznik. Metodologia badania naukowego. Mianownik czyli wiedza ogółem. Globalny naukowy dorobek podwaja się co lat
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Wydział Nauk Społecznych Instytut Psychologii Kilka ciekawostek czyli licznik Publikacje naukowe powstają od ponad 350 lat 2019, Dr Paweł Kleka Metodologia
Logika dla socjologów Część 2: Przedmiot logiki
Logika dla socjologów Część 2: Przedmiot logiki Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Działy logiki 2 Własności semantyczne i syntaktyczne 3 Błędy logiczne
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Statystyka matematyczna (STA230) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Statystyka matematyczna (STA230) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 6 6. LICZBA GODZIN: 30
Uniwersytet Śląski w Katowicach str. 1 Wydział
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: teologia, jednolite magisterskie Specjalność: teologia nauczycielska i ogólna Sylabus modułu: Filozofia logika i epistemologia (11-TS-12-FLEa)
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Liczba godzin Punkty ECTS Sposób zaliczenia. konwersatoria 30 zaliczenie z oceną
Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Administracja Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): I stopnia Tryb studiów:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA. Studia III stopnia (doktoranckie) kierunek Informatyka
Uniwersytet Śląski Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA Studia III stopnia (doktoranckie) kierunek Informatyka (przyjęty przez Radę Wydziału Informatyki i Nauki o Materiałach w
Semiotyka logiczna (1)
Semiotyka logiczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Semiotyka logiczna (1) Wprowadzenie 1 / 14 Plan wykładu: semestr
Adam Meissner.
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30
Dowody założeniowe w KRZ
Dowody założeniowe w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl w styczniu 2007 Jerzy Pogonowski (MEG) Dowody założeniowe w KRZ w styczniu 2007 1 / 10 Dowody
Komputerowa diagnoza medyczna tworzenie i interpretowanie. prof. dr hab. inż. Andrzej Walczak
Komputerowa diagnoza medyczna tworzenie i interpretowanie prof. dr hab. inż. Andrzej Walczak Agenda 1. Po co budujemy komputerowe wspomaganie diagnostyki medycznej? 2. Wymagania na IT wdrażane w medycynie
Ocena dokładności diagnozy
Ocena dokładności diagnozy Diagnoza medyczna, w wielu przypadkach może być interpretowana jako działanie polegające na podjęciu jednej z dwóch decyzji odnośnie stanu zdrowotnego pacjenta: 0 pacjent zdrowy
Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. nazwa SYLABUS A. Informacje ogólne Tę część wypełnia koordynator (w porozumieniu ze wszystkimi prowadzącymi dany przedmiot w jednostce)
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
Załącznik Nr 5 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria różniczkowa (GRO030) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 3 6. LICZBA
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7.
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ekonometria 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7. TYP PRZEDMIOTU
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza zespolona. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza zespolona 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 3 6. LICZBA GODZIN: 15 wykład + 15 ćwiczenia
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
PSYCHOLOGIA od r. ak. 2013/2014
Rok I 570 godzin PROGRAM STUDIÓW STACJONARNYCH PSYCHOLOGIA od r. ak. 2013/2014 Semestr 1 Forma Liczba Forma Punkty 255 godzin, 4 egzaminy zajęć godzin zaliczenia ECTS nowe Wprowadzenie do psychologii -
Logika formalna SYLABUS A. Informacje ogólne
Logika formalna SYLABUS A. Informacje ogólne studiów Poziom kształcenia Profil studiów Forma studiów Rodzaj przedmiotu Rok studiów /semestr Wymagania wstępne Liczba godzin zajęć Założenia i cele przedmiotu
Konspekt do wykładu z Logiki I
Andrzej Pietruszczak Konspekt do wykładu z Logiki I (z dnia 24.11.2006) Poprawność rozumowania. Wynikanie Na wykładzie, na którym omawialiśmy przedmiot logiki, powiedzieliśmy, że pojęcie logiki wiąże się
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę
SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:
SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],
Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:
1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość
Rachunek logiczny. 1. Język rachunku logicznego.
Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były
Systemy ekspertowe. Krzysztof Patan
Systemy ekspertowe Krzysztof Patan Wprowadzenie System ekspertowy Program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek będący ekspertem
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 15 zaliczenie z oceną
Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Prawo Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb
Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) 1. Informacje ogólne koordynator modułu Tomasz
Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi
Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni
3. DIAGNOZA PSYCHOLOGICZNA ZA POMOCĄ TESTÓW
3. DIAGNOZA PSYCHOLOGICZNA ZA POMOCĄ TESTÓW v Testowanie a diagnozowanie psychologiczne v Testowanie psychometryczne a diagnoza psychol. v Zalety testów psychologicznych v Proces wnioskowania psychometrycznego
Podstawy logiki i analizy ilościowej Kod przedmiotu
Podstawy logiki i analizy ilościowej - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy logiki i analizy ilościowej Kod przedmiotu 11.1-WK-IDP-PLAI-W-S14_pNadGenC99R6 Wydział Kierunek Wydział
LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016
LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 INFORMATYKA I STOPNIA studia niestacjonarne 1 sem. PO-W08-INF- - -NZ-Ii-WRO-(2015/2016) MAP003056W Algebra z geometrią analityczną
Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS)
Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. Zespół wykładowców: prof. UAM dr hab. Jarosław Mikołajewicz dr Marzena Kordela Zespół prowadzących ćwiczenia: prof. UAM dr hab. Jarosław
Filozofia, Historia, Wykład V - Filozofia Arystotelesa
Filozofia, Historia, Wykład V - Filozofia Arystotelesa 2010-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Podział nauk Arystoteles podzielił wszystkie dyscypliny wiedzy na trzy grupy:
Podstawowe Pojęcia. Semantyczne KRZ
Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
Wykład 8 Dane kategoryczne
Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Wstęp do logiki i teorii mnogości (LTM010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN:
Filozofia przyrody, Wykład V - Filozofia Arystotelesa
Filozofia przyrody, Wykład V - Filozofia Arystotelesa 2011-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Różnice w metodzie uprawiania nauki Krytyka platońskiej teorii idei Podział
Logika dla socjologów
Logika dla socjologów Część 6: Modele rozumowań. Pojęcie wynikania Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Modele rozumowań 2 Wynikanie 3 Rozumowania poprawne
Struktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j
Filozofia z elementami logiki Klasyfikacja wnioskowań II część 1
Filozofia z elementami logiki Klasyfikacja wnioskowań II część 1 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan: wnioskowania uprawdopodabniające indukcja eliminacyjna 2 Plan:
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
ćwiczenia 15 zaliczenie z oceną
Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Prawo Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb
1.1 Rachunek prawdopodobieństwa
Spis treści Spis treści 1 Wstęp 1 1.1 Rachunek prawdopodobieństwa.................. 1 1.2 Literatura.............................. 1 1.3 Podstawy.............................. 2 2 Miara prawdopodobieństwa
Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279
Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
Kraków, 14 marca 2013 r.
Scenariusze i trendy rozwojowe wybranych technologii społeczeństwa informacyjnego do roku 2025 Antoni Ligęza Perspektywy rozwoju systemów eksperckich do roku 2025 Kraków, 14 marca 2013 r. Dane informacja
Logika Stosowana. Wykład 8 - Wnioskowanie indukcyjne Część 1 Problem indukcji. Marcin Szczuka. Instytut Informatyki UW
Logika Stosowana Wykład 8 - Wnioskowanie indukcyjne Część 1 Problem indukcji Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2015/2016 Marcin Szczuka (MIMUW) Logika Stosowana
WYKŁAD 3: METODA AKSJOMATYCZNA
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 3: METODA AKSJOMATYCZNA III rok kognitywistyki UAM, 2016 2017 Plan na dziś: 1. Przypomnimy, na czym polega aksjomatyczna metoda dowodzenia twierdzeń.
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA 1. Informacje ogólne Nazwa modułu i kod (wg planu studiów) Nazwa modułu (j. ang.) Kierunek studiów Specjalność/specjalizacja Poziom kształcenia Profil kształcenia Forma studiów
JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:...
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca 2015 Imię i Nazwisko:............................................................... DZIARSKIE SKRZATY Wybierz
Kierunek: INFORMATYKA Specjalność INŻYNIERIA SYSTEMÓW INFORMATYCZNYCH
Załącznik nr 1 do uchwały Nr 18 Rady WMiI z dnia 28 marca 2017 roku Kierunek: INFORMATYKA Specjalność INŻYNIERIA SYSTEMÓW INFORMATYCZNYCH Profil kształcenia: ogólnoakademicki obowiązuje od 2017/18 Forma
Kierunek: INFORMATYKA Specjalność INŻYNIERIA SYSTEMÓW INFORMATYCZNYCH
Załącznik nr 3 do uchwały Nr 18 Rady WMiI z dnia 28 marca 2017 roku Kierunek: INFORMATYKA Specjalność INŻYNIERIA SYSTEMÓW INFORMATYCZNYCH Profil kształcenia: ogólnoakademicki obowiązuje od 2017/18 Forma
Kierunek: INFORMATYKA Specjalność INŻYNIERIA SYSTEMÓW INFORMATYCZNYCH
Załącznik nr 1 do uchwały Nr 18 Rady WMiI z dnia 28 marca 2017 roku Kierunek: INFORMATYKA Specjalność INŻYNIERIA SYSTEMÓW INFORMATYCZNYCH Profil kształcenia: ogólnoakademicki obowiązuje od 2017/18 Forma
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30
Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Poprawność semantyczna
Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych
Logika dla prawników
Logika dla prawników Wykład I: Pytania o logikę Dr Maciej Pichlak Uniwersytet Wrocławski Katedra Teorii i Filozofii Prawa mpichlak@prawo.uni.wroc.pl Tak na logikę Kodeks karny: Art. 226 1. Kto znieważa
Przedmiotowe Zasady Oceniania matematyka, geometria w ćwiczeniach, funkcje w zastosowaniach Sposoby sprawdzania osiągnięć edukacyjnych
Przedmiotowe Zasady Oceniania matematyka, geometria w ćwiczeniach, funkcje w zastosowaniach Sposoby sprawdzania osiągnięć edukacyjnych Ocenie podlegają: a) sprawdziany pisemne wiadomości: - kartkówka obejmuje
Semantyka rachunku predykatów
Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie
Elementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Wstęp do logiki. Klasyczny Rachunek Predykatów I
Wstęp do logiki Klasyczny Rachunek Predykatów I KRZ jest teorią stanowiącą wstępną część logiki formalnej, część zakładaną przez inne teorie. Przypomnijmy, jest on teorią związków logicznych między zdaniami
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Równania różniczkowe (RRO020) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 / 30
Paradygmaty dowodzenia
Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.
Podsumowanie wyników ankiety
SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera
JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca 2012 Imię i Nazwisko:........................................................... FIGLARNE POZNANIANKI Wybierz
Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Wnioskowanie bayesowskie
Wnioskowanie bayesowskie W podejściu klasycznym wnioskowanie statystyczne oparte jest wyłącznie na podstawie pobranej próby losowej. Możemy np. estymować punktowo lub przedziałowo nieznane parametry rozkładów,