Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych"

Transkrypt

1 LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej

2 LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej

3 Nadprzewodnictwo dlaczego taki temat?

4 Nadprzewodnictwo dlaczego taki temat? Aspekty poznawcze: za badanie nadprzewodnictwa 5-krotnie przyznawano Nagrody Nobla z fizyki (w sumie dla 10 osób)

5 Nadprzewodnictwo dlaczego taki temat? Aspekty poznawcze: za badanie nadprzewodnictwa 5-krotnie przyznawano Nagrody Nobla z fizyki (w sumie dla 10 osób) Aspekty technologiczne: nowe technologie w energetyce, medycynie itp.

6 Nadprzewodnictwo dlaczego taki temat? Aspekty poznawcze: za badanie nadprzewodnictwa 5-krotnie przyznawano Nagrody Nobla z fizyki (w sumie dla 10 osób) Aspekty technologiczne: nowe technologie w energetyce, medycynie itp. Aktualne wyzwania: rola efektów topologicznych, kwazicza stki Majorany...

7 Opór elektryczny istota zjawiska

8 Opór elektryczny istota zjawiska Pod wpływem zewne trznych pól (elektrycznego, magnetycznego, gradientu temperatur) elektrony walencyjne dryfuja w przestrzeni, generuja c pra d.

9 Opór elektryczny istota zjawiska Ruch elektronów odbywa sie w sieci jonów ulegaja c procesom rozpraszania, co przejawia sie jako opór I = 1 R U prawo Ohma

10 Opór elektryczny istota zjawiska Prawo Ohma można zapisać w równoważnej postaci J = σ E σ przewodnictwo właściwe ρ 1/σ opór właściwy

11 Opór elektryczny istota zjawiska Opór całkowity wynosi R = ρ l A,

12 Opór elektryczny istota zjawiska Opór całkowity wynosi R = ρ l A, gdzie opór właściwy ρ

13 Opór elektryczny istota zjawiska Opór całkowity wynosi R = ρ l A, gdzie opór właściwy ρ zależy od: rodzaju materiału,

14 Opór elektryczny istota zjawiska Opór całkowity wynosi R = ρ l A, gdzie opór właściwy ρ zależy od: rodzaju materiału, temperatury.

15 Opór elektryczny istota zjawiska Opór całkowity wynosi R = ρ l A, gdzie opór właściwy ρ zależy od: rodzaju materiału, temperatury. 1/ρ = nq2 τ m (model P. Drude go) σ 1/ρ n koncentracja elektronów w pasmie przewodnictwa

16 Opór elektryczny znaczenie struktury pasmowej

17 Opór elektryczny znaczenie struktury pasmowej

18 Opór elektryczny znaczenie struktury pasmowej

19 Opór elektryczny znaczenie struktury pasmowej Temperatura wpływa na wartość n w półprzewodnikach i izolatorach.

20 Opór elektryczny przykłady w temperaturze 20 o C

21 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m aluminium żelazo 2, Ω m 1, Ω m

22 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m aluminium żelazo 2, Ω m 1, Ω m grafit german krzem 2, Ω m 4, Ω m 6, Ω m

23 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m aluminium żelazo 2, Ω m 1, Ω m grafit german krzem diament guma teflon 2, Ω m 4, Ω m 6, Ω m Ω m Ω m Ω m

24 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m aluminium żelazo 2, Ω m 1, Ω m grafit german krzem diament guma teflon 2, Ω m 4, Ω m 6, Ω m Ω m Ω m Ω m Wartości oporu różnia sie o ponad 30 rze dów wielkości!

25 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m. przewodniki aluminium 2, Ω m żelazo grafit german krzem diament guma teflon 1, Ω m 2, Ω m 4, Ω m 6, Ω m Ω m Ω m Ω m Wartości oporu różnia sie o ponad 30 rze dów wielkości!

26 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m. przewodniki aluminium 2, Ω m żelazo 1, Ω m grafit 2, Ω m 4, Ω m german. półprzewodniki krzem diament guma teflon 6, Ω m Ω m Ω m Ω m Wartości oporu różnia sie o ponad 30 rze dów wielkości!

27 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m. przewodniki aluminium 2, Ω m żelazo 1, Ω m grafit 2, Ω m 4, Ω m german. półprzewodniki krzem 6, Ω m diament Ω m Ω m guma. izolatory teflon Ω m Wartości oporu różnia sie o ponad 30 rze dów wielkości!

28 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika.

29 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

30 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

31 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

32 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

33 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

34 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

35 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

36 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

37 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

38 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

39 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

40 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

41 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

42 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

43 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]

44 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika.

45 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika.. (Lejda, Holandia) Heike Kamerlingh Onnes

46 Nadprzewodniki efekt Meissnera

47 Nadprzewodniki efekt Meissnera Nadprzewodniki charakteryzuja sie jednocześnie idealnym diamagnetyzmem. Zjawisko to polega na całkowitym ekranowaniu pola magnetycznego. W. Meissner, R. Ochsenfeld ( 1933 r. )

48 Nadprzewodniki efekt Meissnera Pole magnetyczne wnika jedynie do niewielkiej głe bokości przy powierzchni. B(x) = B 0 e x/λ x Heinz i Fritz London (1935 r.)

49 Nadprzewodniki efekt Meissnera Zjawisko Meissnera wykorzystuje sie np. do profilowania linii sił pola magnetycznego.

50 Nadprzewodniki efekt Meissnera W ten sposób można skompensować siłe grawitacji, uzyskuja c efekt lewitacji.

51 Nadprzewodniki efekt Meissnera W ten sposób można skompensować siłe grawitacji, uzyskuja c efekt lewitacji.

52 Nadprzewodniki efekt Meissnera W ten sposób można skompensować siłe grawitacji, uzyskuja c efekt lewitacji.

53 Nadprzewodniki efekt Meissnera Perspektywa: Skarpety lewituja ce wraz z właścicielem?

54 Nadprzewodniki kolejne odkrycia

55 Nadprzewodniki kolejne odkrycia Stan nadprzewodza cy został później odkryty w kilku innych pierwiastkach oraz stopach. Oto wybrane przykłady:

56 Nadprzewodniki kolejne odkrycia Stan nadprzewodza cy został później odkryty w kilku innych pierwiastkach oraz stopach. Oto wybrane przykłady: 80 ciekly N 2 60 T c (K) ciekly H 2 Nb 3 Ge Nb 3 Sn Nb Pb NbN V Si Nb Al Ge 3 Hg rok

57 Nadprzewodniki kolejne odkrycia Stan nadprzewodza cy został później odkryty w kilku innych pierwiastkach oraz stopach. Oto wybrane przykłady: 80 ciekly N 2 skroplony azot 60 T c (K) ciekly H 2 Nb 3 Ge Nb 3 Sn Nb Pb NbN V Si Nb Al Ge 3 Hg rok skroplony neon skroplony wodór skroplony hel

58 Istota nadprzewodnictwa pomocne fakty Kluczowe znaczenie dla zrozumienia mechanizmu (konwencjonalnego) nadprzewodnictwa miało:

59 Istota nadprzewodnictwa pomocne fakty Kluczowe znaczenie dla zrozumienia mechanizmu (konwencjonalnego) nadprzewodnictwa miało: odkrycie efektu izotopowego (1950 r.) T c 1 M M - masa jonów

60 Teoria nadprzewodnictwa 1957 r. Za opracowanie mikroskopowej teorii nadprzewodnictwa (tzw. teorie BCS) przyznano Nagrode Nobla w 1972 roku.

61 Nadprzewodnictwo zjawisko emergentne

62 Nadprzewodnictwo zjawisko emergentne Elektrony w powierzchni Fermiego:

63 Nadprzewodnictwo zjawisko emergentne Elektrony w powierzchni Fermiego: ła cza sie w pary (Coopera)

64 Nadprzewodnictwo zjawisko emergentne Elektrony w powierzchni Fermiego: w pary (Coopera) ła cza sie i kolektywnie na zewne trzne zaburzenia reaguja

65 Nadprzewodnictwo zjawisko emergentne Elektrony w powierzchni Fermiego: ła cza sie w pary (Coopera) i kolektywnie reaguja na zewne trzne zaburzenia (jak gigantyczny superatom identycznych obiektów!)

66 Nadprzewodnictwo zjawisko emergentne Elektrony w powierzchni Fermiego: ła cza sie w pary (Coopera) i kolektywnie reaguja na zewne trzne zaburzenia (jak gigantyczny superatom identycznych obiektów!) Kondensat par Coopera jest odpowiedzialny za:

67 Nadprzewodnictwo zjawisko emergentne Elektrony w powierzchni Fermiego: ła cza sie w pary (Coopera) i kolektywnie reaguja na zewne trzne zaburzenia (jak gigantyczny superatom identycznych obiektów!) Kondensat par Coopera jest odpowiedzialny za: idealne przewodnictwo (ruch bez rozpraszania)

68 Nadprzewodnictwo zjawisko emergentne Elektrony w powierzchni Fermiego: ła cza sie w pary (Coopera) i kolektywnie reaguja na zewne trzne zaburzenia (jak gigantyczny superatom identycznych obiektów!) Kondensat par Coopera jest odpowiedzialny za: idealne przewodnictwo idealny diamagnetyzm (ruch bez rozpraszania) (efekt Meissnera)

69 Nadprzewodnictwo zjawisko emergentne Elektrony w powierzchni Fermiego: ła cza sie w pary (Coopera) i kolektywnie reaguja na zewne trzne zaburzenia (jak gigantyczny superatom identycznych obiektów!) Kondensat par Coopera jest odpowiedzialny za: idealne przewodnictwo idealny diamagnetyzm (ruch bez rozpraszania) (efekt Meissnera) nowe zjawiska (efekt Josephsona, wiry kwantowe itp.)

70 Efekt Josephsona pra d par Coopera

71 Efekt Josephsona pra d par Coopera nadprzew. 1 izolator nadprzew. 2 I > 0 U=0 Zła cze utworzone z dwóch nadprzewodników i cienkiej warstwy izolatora.

72 Efekt Josephsona pra d par Coopera SQUID Superconducting QUantum Interferometer Device. Takie urza dzenia sa w stanie wykryć bardzo małe pola magnetyczne T.

73 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć

74 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć Alex Müller, Georg Bednorz / IBM Rüschlikon, Szwajcaria / W 1986 r. odkryto, że materiał ceramiczny La 2 x Sr x CuO 4 (który dla x=0 jest izolatorem typu Motta) w zakresie domieszkowania 0,05 < x < 0,25 staje nadprzewodnikiem. sie Maksymalna temperatura krytyczna La 2 x Sr x CuO 4 wynosi T c =36 K.

75 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć Alex Müller, Georg Bednorz. Nagroda Nobla, 1987 r. / IBM Rüschlikon, Szwajcaria / W 1986 r. odkryto, że materiał ceramiczny La 2 x Sr x CuO 4 (który dla x=0 jest izolatorem typu Motta) w zakresie domieszkowania 0,05 < x < 0,25 staje sie nadprzewodnikiem. Maksymalna temperatura krytyczna La 2 x Sr x CuO 4 wynosi T c =36 K.

76 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć Odkrycie to zapocza tkowało burzliwy okres historii rozwoju nadprzewodnictwa.

77 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć Odkrycie to zapocza tkowało burzliwy okres historii rozwoju nadprzewodnictwa. 180 * HgBa 2 Ca 2 Cu 3 O 8+δ HgBa 2 Ca 2 Cu 3 O 8+δ 120 Tl 2 Ba 2 Ca 2 Cu 3 O 10 T c (K) ciekly N 2 Bi 2 Ba 2 Ca 2 Cu 3 O 10 YBa 2 Cu 3 O 7 δ La 2 δ Sr δ CuO 4 20 ciekly H Nb 2 Nb 3 Sn 3 Ge Hg Pb Nb NbN V Si Nb Al Ge rok

78 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć Odkrycie to zapocza tkowało burzliwy okres historii rozwoju nadprzewodnictwa. 180 * HgBa 2 Ca 2 Cu 3 O 8+δ HgBa 2 Ca 2 Cu 3 O 8+δ T c (K) ciekly N 2 Tl 2 Ba 2 Ca 2 Cu 3 O 10 Bi 2 Ba 2 Ca 2 Cu 3 O 10 YBa 2 Cu 3 O 7 δ temp. pow. Ksie życa skroplony azot La 2 δ Sr δ CuO 4 20 ciekly H Nb 2 Nb 3 Sn 3 Ge Hg Pb Nb NbN V Si Nb Al Ge rok temp. pow. Plutonu skroplony wodór skroplony hel

79 2. Nowy rozdział nadprzewodnictwa: rola efektów topologicznych

Lublin, 23 X 2012 r. Nadprzewodnictwo. - od badań podstawowych do zastosowań. Tadeusz Domański Instytut Fizyki UMCS

Lublin, 23 X 2012 r. Nadprzewodnictwo. - od badań podstawowych do zastosowań. Tadeusz Domański Instytut Fizyki UMCS Lublin, 23 X 2012 r. Nadprzewodnictwo - od badań podstawowych do zastosowań Tadeusz Domański Instytut Fizyki UMCS Lublin, 23 X 2012 r. Nadprzewodnictwo - od badań podstawowych do zastosowań Tadeusz Domański

Bardziej szczegółowo

Lublin, 27 XI 2015 r. Nadprzewodnictwo. możliwość realizowania ujemnego oporu. Tadeusz Domański Instytut Fizyki UMCS

Lublin, 27 XI 2015 r. Nadprzewodnictwo. możliwość realizowania ujemnego oporu. Tadeusz Domański Instytut Fizyki UMCS Lublin, 27 XI 2015 r. Nadprzewodnictwo możliwość realizowania ujemnego oporu Tadeusz Domański Instytut Fizyki UMCS Lublin, 27 XI 2015 r. Nadprzewodnictwo możliwość realizowania ujemnego oporu Tadeusz Domański

Bardziej szczegółowo

Nadprzewodniki: właściwości i zastosowania

Nadprzewodniki: właściwości i zastosowania Lublin, 21 września 2012 r. Nadprzewodniki: właściwości i zastosowania Tadeusz Domański Instytut Fizyki Uniwersytet M. Curie-Skłodowskiej Lublin, 21 września 2012 r. Nadprzewodniki: właściwości i zastosowania

Bardziej szczegółowo

Zamiast przewodnika z miedzi o bardzo dużych rozmiarach możemy zastosowad niewielki nadprzewodnik niobowo-tytanowy

Zamiast przewodnika z miedzi o bardzo dużych rozmiarach możemy zastosowad niewielki nadprzewodnik niobowo-tytanowy Nadprzewodniki Nadprzewodnictwo Nadprzewodnictwo stan materiału polegający na zerowej rezystancji, jest osiągany w niektórych materiałach w niskiej temperaturze. Nadprzewodnictwo zostało wykryte w 1911

Bardziej szczegółowo

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2. Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze

Bardziej szczegółowo

NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były

NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były FIZYKA I TECHNIKA NISKICH TEMPERATUR NADPRZEWODNICTWO NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli nadprzewodnictwo w złożonym tlenku La 2 CuO 4 (tlenku miedziowo-lantanowym,

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA

POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA ENERGETYKI I APARATURY PRZEMYSŁOWEJ NADPRZEWODNICTWO I EFEKT MEISSNERA Katarzyna Mazur Inżynieria Mechaniczno-Medyczna Sem. 9 1. Przypomnienie istotnych

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Nadprzewodnictwo. Nadprzewodnictwo

S. Baran - Podstawy fizyki materii skondensowanej Nadprzewodnictwo. Nadprzewodnictwo Nadprzewodnictwo Definicja, odkrycie nadprzewodnictwo spadek oporu elektrycznego do zera poniżej charakterystycznej temperatury zwanej temperaturą krytyczną. Po raz pierwszy zaobserwował nadprzewodnictwo

Bardziej szczegółowo

LEWITACJA MAGNETYCZNA Z WYKORZYSTANIEM ZJAWISKA NADPRZEWODNICTWA

LEWITACJA MAGNETYCZNA Z WYKORZYSTANIEM ZJAWISKA NADPRZEWODNICTWA LEWITACJA MAGNETYCZNA Z WYKORZYSTANIEM ZJAWISKA NADPRZEWODNICTWA Prof. nz. dr hab. inż. Antoni Cieśla, AKADEMIA GÓRNICZO - HUTNICZA Wydział EAIiIB Katedra Elektrotechniki i Elektroenergetyki Agenda wykładu:

Bardziej szczegółowo

Nadprzewodnictwo i nadciekłość w układach oddziałuja. cych mieszanin bozonowo-fermionowych. Tadeusz Domański

Nadprzewodnictwo i nadciekłość w układach oddziałuja. cych mieszanin bozonowo-fermionowych. Tadeusz Domański Toruń, 22 września 2006 r. Nadprzewodnictwo i nadciekłość w układach oddziałuja cych mieszanin bozonowo-fermionowych Tadeusz Domański Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures

Bardziej szczegółowo

Nadprzewodnikowe zasobniki energii (SMES)

Nadprzewodnikowe zasobniki energii (SMES) Nadprzewodnikowe zasobniki energii (SMES) Superconducting Magnetic Energy Storage dr hab. inŝ. Antoni Cieśla, prof. n. Wydział EAIiE Katedra Elektrotechniki i Elektroenergetyki Agenda wystąpienia: 1. Gromadzenie

Bardziej szczegółowo

Nadprzewodniki nowe fakty i teorie

Nadprzewodniki nowe fakty i teorie Warszawa, 13 września 2005 r. Nadprzewodniki nowe fakty i teorie T. DOMAŃSKI Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures Schemat referatu: Schemat referatu: Wste

Bardziej szczegółowo

Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Anna Rutkowska IMM sem. 2 mgr

Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Anna Rutkowska IMM sem. 2 mgr Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie Anna Rutkowska IMM sem. 2 mgr Gdańsk, 2012 Spis treści: 1. Nadprzewodnictwo...3 2. Efekt Meissnera...5 2.1 Lewitacja...5 3. Zastosowanie...6 3.1

Bardziej szczegółowo

Duży, mały i zerowy opór. Od czego zależy, czy materiał przewodzi prąd?

Duży, mały i zerowy opór. Od czego zależy, czy materiał przewodzi prąd? Duży, mały i zerowy opór Od czego zależy, czy materiał przewodzi prąd? 2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Page 1 Przewodnictwo

Bardziej szczegółowo

Wybrane zastosowania nadprzewodników wysokotemperaturowych

Wybrane zastosowania nadprzewodników wysokotemperaturowych Wybrane zastosowania nadprzewodników wysokotemperaturowych Ryszard Pałka Department of Electrical Engineering West Pomeranian University of Technology Szczecin KETiI Zakres prezentacji 1. Wprowadzenie

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

WŁAŚCIWOŚCI ELEKTRYCZNE. Oddziaływanie pola elektrycznego na materiał. Przewodnictwo elektryczne. Podstawy Nauki o Materiałach

WŁAŚCIWOŚCI ELEKTRYCZNE. Oddziaływanie pola elektrycznego na materiał. Przewodnictwo elektryczne. Podstawy Nauki o Materiałach Podstawy Nauki o Materiałach WŁAŚCIWOŚCI ELEKTRYCZNE Oddziaływanie pola elektrycznego na materiał Pole elektromagnetyczne MATERIAŁ Przepływ prądu Polaryzacja Odkształcenie Namagnesowanie... Przepływ prądu

Bardziej szczegółowo

) (*#)$+$$ poniedziałki 13:30-15:00 wtorki 12:00-14:00 pitek 8:30-10:00

) (*#)$+$$ poniedziałki 13:30-15:00 wtorki 12:00-14:00 pitek 8:30-10:00 poniedziałki 13:30-15:00 wtorki 12:00-14:00 pitek 8:30-10:00 8 wykładów, 3 wiczenia: w, w, w, w, c, w, w, c, w, w, c(kolo) kolokwium na ostatnich cw. historia zerowy opór efekt Meissnera temperatura, pole

Bardziej szczegółowo

Nadprzewodniki wysokotemperaturowe. Joanna Mieczkowska

Nadprzewodniki wysokotemperaturowe. Joanna Mieczkowska Nadprzewodniki wysokotemperaturowe Joanna Mieczkowska Zastosowanie nadprzewodnictwa na szeroką skalę, szczególnie do przesyłania energii na duże odległości, było dotychczas ograniczone z powodu konieczności

Bardziej szczegółowo

Nadprzewodniki wysokotemperatu rowe. I nie tylko.

Nadprzewodniki wysokotemperatu rowe. I nie tylko. Nadprzewodniki wysokotemperatu rowe. I nie tylko. Odkrycie nadprzewodnictwa: H. Kamerlingh Onnes (1911) Table from Burns Pierwiastki Li: pierwiastek o najwyższej T c K. Shimizu et al., Nature 419, 597

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Nadprzewodniki wysokotemperaturowe. Zastosowania nadprzewodników starych i nowych. Koniec odkryć?

Nadprzewodniki wysokotemperaturowe. Zastosowania nadprzewodników starych i nowych. Koniec odkryć? Nadprzewodniki wysokotemperaturowe. Zastosowania nadprzewodników starych i nowych. Koniec odkryć? 1 Główne nadprzewodniki Compound wysokotemperaturowe:t c T b liquid nitrogen Hg-1223 Tl-2223 Tl-1223 Bi-2223

Bardziej szczegółowo

Pierwiastki nadprzewodzące

Pierwiastki nadprzewodzące Pierwiastki nadprzewodzące http://www.magnet.fsu.edu/education/tutorials/magnetacademy/superconductivity101/fullarticle.html Materiały nadprzewodzące Rodzaj Materiał c (K) Uwagi Związki międzymetaliczne

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Nagrody Nobla z dziedziny fizyki ciała. Natalia Marczak Fizyka Stosowana, semestr VII

Nagrody Nobla z dziedziny fizyki ciała. Natalia Marczak Fizyka Stosowana, semestr VII Nagrody Nobla z dziedziny fizyki ciała stałego Natalia Marczak Fizyka Stosowana, semestr VII Zaczęł ęło o się od Alfred Bernhard Nobel (1833 1896) Nadprzewodnictwo Kamerlingh-Onnes Heike (1853-1926) 1926)

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Nadpłynność i nadprzewodnictwo

Nadpłynność i nadprzewodnictwo Nadpłynność i nadprzewodnictwo Krzysztof Byczuk Instytut Fizyki Teoretycznej, Wydział Fizyki, Uniwersytet Warszawski 13 marzec 2019 www.fuw.edu.pl/ byczuk Tarcie, opór, dysypacja... pomaga... przeszkadza...

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie.

Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Aleksandra Galikowska IMM, sem.2, st.ii Spis treści 1. Wstęp, historia... 3 2. Nadprzewodnictwo... 4 3. Własności nadprzewodników... 5 3. Teoria

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

Przyrządy i układy półprzewodnikowe

Przyrządy i układy półprzewodnikowe Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15

Bardziej szczegółowo

NADPRZEWODNICTWO PRZEWODNICTWO ELEKTRYCZNE METALI PRZEWODNICTWO ELEKTRYCZNE METALI. rezystywność

NADPRZEWODNICTWO PRZEWODNICTWO ELEKTRYCZNE METALI PRZEWODNICTWO ELEKTRYCZNE METALI. rezystywność rezystancja szczątkowa rezystywność NADPRZEWODNICTWO PRZEWODNICTWO ELEKTRYCZNE METALI Klasyczna Teoria Drudego (1900) nośnikami ładunku są elektrony swobodne podlegające rozkładowi oltzmanna, wszystkie

Bardziej szczegółowo

W1. Właściwości elektryczne ciał stałych

W1. Właściwości elektryczne ciał stałych W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Prawo Ohma. qnv. E ρ U I R U>0V. v u E +

Prawo Ohma. qnv. E ρ U I R U>0V. v u E + Prawo Ohma U>0V J v u J qnv u - E + J qne d J gęstość prądu [A/cm 2 ] n koncentracja elektronów [cm -3 ] ρ rezystywność [Ωcm] σ - przewodność [S/cm] E natężenie pola elektrycznego [V/cm] I prąd [A] R rezystancja

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Kondensat Bosego-Einsteina okiem teoretyka

Kondensat Bosego-Einsteina okiem teoretyka Kondensat Bosego-Einsteina okiem teoretyka Krzysztof Sacha Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński Plan: Kondensacja Bosego-Einsteina. Teoretyczny opis kondensatu. Przyk lady.

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

P R A C O W N I A

P R A C O W N I A P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I

Bardziej szczegółowo

Struktura elektronowa

Struktura elektronowa Struktura elektronowa Struktura elektronowa atomów układ okresowy pierwiastków: 1) elektrony w atomie zajmują poziomy energetyczne od dołu, inaczej niż te gołębie (w Australii, ale tam i tak chodzi się

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules

Bardziej szczegółowo

Kwazicza stki Bogoliubova w nadprzewodnikach

Kwazicza stki Bogoliubova w nadprzewodnikach Lublin, 20 stycznia 2009 r. Kwazicza stki Bogoliubova w nadprzewodnikach TADEUSZ DOMAŃSKI http://kft.umcs.lublin.pl/doman/lectures Plan referatu: Plan referatu: Wprowadzenie / istota stanu nadprzewodza

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

N a d p r z e w o d n i c t w o - przegla d faktów i koncepcji

N a d p r z e w o d n i c t w o - przegla d faktów i koncepcji Katowice, 12 listopada 2008 r. N a d p r z e w o d n i c t w o - przegla d faktów i koncepcji T. DOMAŃSKI Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures Plan referatu:

Bardziej szczegółowo

Gazy kwantowe. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Gazy kwantowe. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Cele Cele Wyznaczenie średniego obsadzenia średniej energii równania stanu dla nieodziałujących gazów kwantowych fermionowego (gaz elektronowy w ciele stałym) bozonowego (kondensaty)

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Sprawozdanie z laboratorium inżynierii nowych materiałów

Sprawozdanie z laboratorium inżynierii nowych materiałów P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium inżynierii nowych materiałów Temat: Badanie podstawowych właściwości nadprzewodnika wysokotemperaturowego. Marcin Kowalski, Aleksandra

Bardziej szczegółowo

m e vr =nh Model atomu Bohra

m e vr =nh Model atomu Bohra Wykład II Model atomu Bohra Postulaty Bohr a 1.Elektrony poruszają się wokół jądra po orbitach stacjonarnych.. Atom emituje promieniowanie, gdy elektron przechodzi z jednej orbity stacjonarnej na drugą.

Bardziej szczegółowo

Ładunki puszczamy w ruch. Wykład 12

Ładunki puszczamy w ruch. Wykład 12 Ładunki puszczamy w ruch. Wykład 12 Prawa przepływu prądu stałego 12. 1. Podstawowe definicje dla prądu elektrycznego 12.2. Elektrony w ciałach stałych pasma energetyczne 12.3. Prawo Ohma 12.3.1.Opór elektryczny

Bardziej szczegółowo

Ładunki puszczamy w ruch. Wykład 12

Ładunki puszczamy w ruch. Wykład 12 Ładunki puszczamy w ruch. Wykład 12 Prawa przepływu prądu stałego 12. 1. Podstawowe definicje dla prądu elektrycznego 12.2. Elektrony w ciałach stałych pasma energetyczne 12.3. Prawo Ohma 12.3.1.Opór elektryczny

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA

POLITECHNIKA GDAŃSKA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY,,ZMIANA WŁASNOŚCI CIAŁ W TEMPERATURACH KRIOGENICZNYCH Jakub Bazydło Inżynieria Mechaniczno-Medyczna Sem. II mgr GDAŃSK 2012/2013 1. KRIOGENIKA Kriogenika - Słowo

Bardziej szczegółowo

Nadprzewodnictwo. Eryk Buk. 29 października 2018 r.

Nadprzewodnictwo. Eryk Buk. 29 października 2018 r. 29 października 2018 r. Plan seminarium Definicja i podstawowe właściwości nadprzewodników. Przykłady nadprzewodników.. Co to są nadprzewodniki? Pierwsza własność (Kamerlingh Onnes, 1911) Nadprzewodnik

Bardziej szczegółowo

Światowy kryzys energetyczny a nadprzewodniki absolutnie niezbędne absolutne zero oporności

Światowy kryzys energetyczny a nadprzewodniki absolutnie niezbędne absolutne zero oporności Karol Fijałkowski 1, Wojciech Grochala Wydział Chemii i ICM, Uniwersytet Warszawski Światowy kryzys energetyczny a nadprzewodniki absolutnie niezbędne absolutne zero oporności Wstęp W ostatnim czasie coraz

Bardziej szczegółowo

Spis treści. nadprzewodnictwo. Historia nadprzewodnictwa... Historia nadprzewodnictwa. Pierwsze osiagnięcia

Spis treści. nadprzewodnictwo. Historia nadprzewodnictwa... Historia nadprzewodnictwa. Pierwsze osiagnięcia Spis treści 1 Historia nadprzewodnictwa Pierwsze osiagnięcia dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 2 Wstęp Podstawowe własności Rodzaje nadprzewodnictwa

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Cia!a sta!e. W!asno"ci elektryczne cia! sta!ych. Inne w!asno"ci

Cia!a sta!e. W!asnoci elektryczne cia! sta!ych. Inne w!asnoci Cia!a sta!e Podstawowe w!asno"ci cia! sta!ych Struktura cia! sta!ych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencja! kontaktowy

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Konwersatorium 1. Zagadnienia na konwersatorium

Konwersatorium 1. Zagadnienia na konwersatorium Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

Przyrządy półprzewodnikowe

Przyrządy półprzewodnikowe Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal

Bardziej szczegółowo

W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej.

W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej. W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej. Na całość pracy składają się dwie części (cz. I Fizyka klasyczna J. Massalski, M. Massalska).

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

30/01/2018. Wykład XI: Właściwości elektryczne. Treść wykładu: Wprowadzenie

30/01/2018. Wykład XI: Właściwości elektryczne. Treść wykładu: Wprowadzenie Wykład XI: Właściwości elektryczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Wprowadzenie 2. a) wiadomości podstawowe b) przewodniki

Bardziej szczegółowo

Zjawisko termoelektryczne

Zjawisko termoelektryczne 34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: NIM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2016/2017 Kod: NIM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Fizyka ciała stałego Rok akademicki: 2016/2017 Kod: NIM-1-306-s Punkty ECTS: 5 Wydział: Metali Nieżelaznych Kierunek: Inżynieria Materiałowa Specjalność: Poziom studiów: Studia I stopnia

Bardziej szczegółowo

EFEKT HALLA W PÓŁPRZEWODNIKACH.

EFEKT HALLA W PÓŁPRZEWODNIKACH. Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Andrzej Kubiaczyk 30 EFEKT HALLA W PÓŁPRZEWODNIKACH. 1. Podstawy fizyczne 1.1. Ruch ładunku w polu elektrycznym i magnetycznym Na ładunek

Bardziej szczegółowo

100 lat fizyki niskich temperatur i nadprzewodnictwa

100 lat fizyki niskich temperatur i nadprzewodnictwa 100 lat fizyki niskich temperatur i nadprzewodnictwa Tadeusz Wasiutyński IFJ PAN 9 maja 2013 Wstęp teoria BCS teoria Ginzburga Landaua nowe nadprzewodniki wysokotemperaturowe co z tego mamy Heike Kamerlingh

Bardziej szczegółowo

Wykład Prąd elektryczny w próżni i gazach. 14 Pole magnetyczne 14.1 Podstawowe informacje doświadczalne

Wykład Prąd elektryczny w próżni i gazach. 14 Pole magnetyczne 14.1 Podstawowe informacje doświadczalne Wykład 9 11 Prąd elektryczny w próżni i gazach 11.1 Przewodnictwo elektronowe 11.2 Przewodnictwo niesamoistne 11.3 Przewodnictwo samoistne 12 Nadprzewodnictwo 13 Półprzewodniki 13.1 Rodzaje półprzewodników

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

Własności magnetyczne materii

Własności magnetyczne materii Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego

Bardziej szczegółowo

Instytutu Ceramiki i Materiałów Budowlanych

Instytutu Ceramiki i Materiałów Budowlanych Instytutu Ceramiki i Materiałów Budowlanych Scientific Works of Institute of Ceramics and Building Materials Nr 27 (październik grudzień) Prace są indeksowane w BazTech i Index Copernicus ISSN 1899-3230

Bardziej szczegółowo

Pole przepływowe prądu stałego

Pole przepływowe prądu stałego Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Techniki niskotemperaturowe w Inżynierii Mechaniczno Medycznej Zmiana własności ciał w temperaturach kriogenicznych Prowadzący: dr inż. Waldemar Targański Emilia

Bardziej szczegółowo

Siła magnetyczna działająca na przewodnik

Siła magnetyczna działająca na przewodnik Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach

Bardziej szczegółowo

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016 Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak

Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka

Bardziej szczegółowo

Własności elektronowe amorficznych stopów Si/Me:H w pobliżu przejścia izolator-metal

Własności elektronowe amorficznych stopów Si/Me:H w pobliżu przejścia izolator-metal 1 Własności elektronowe amorficznych stopów Si/Me:H w pobliżu przejścia izolator-metal Gęste pary metali (wzrost gęstości -> I-M) niemetale poddane wysokiemu ciśnieniu -> I-M Cs-CsH (wzrost ciśnienia wodoru

Bardziej szczegółowo

W5. Rozkład Boltzmanna

W5. Rozkład Boltzmanna W5. Rozkład Boltzmanna Podstawowym rozkładem w klasycznej fizyce statystycznej jest rozkład Boltzmanna E /( kt ) f B ( E) Ae gdzie: A jest stałą normalizacyjną, k stałą Boltzmanna 5 k 8.61710 ev / K Został

Bardziej szczegółowo

Pierwiastek: Na - Sód Stan skupienia: stały Liczba atomowa: 11

Pierwiastek: Na - Sód Stan skupienia: stały Liczba atomowa: 11 ***Dane Pierwiastków Chemicznych*** - Układ Okresowy Pierwiastków 2.5.1.FREE Pierwiastek: H - Wodór Liczba atomowa: 1 Masa atomowa: 1.00794 Elektroujemność: 2.1 Gęstość: [g/cm sześcienny]: 0.0899 Temperatura

Bardziej szczegółowo

UKŁAD OKRESOWY PIERWIASTKÓW

UKŁAD OKRESOWY PIERWIASTKÓW UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Wykład 9 Wprowadzenie do krystalochemii

Wykład 9 Wprowadzenie do krystalochemii Wykład 9 Wprowadzenie do krystalochemii 1. Krystalografia a krystalochemia. 2. Prawa krystalochemii 3. Sieć krystaliczna i pozycje atomów 4. Bliskie i dalekie uporządkowanie. 5. Kryształ a cząsteczka.

Bardziej szczegółowo

Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH

Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Współpraca: Akademickie Centrum Materiałów i Nanotechnologii dr Michał Zegrodnik, prof. Józef Spałek

Bardziej szczegółowo

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO.

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. Funkcja rozkładu Fermiego-Diraca T=0K T>0K 1 f ( E ) = 0 dla dla E E F E > EF f ( E, T ) 1 = E E F kt e + 1 1 T>0K Funkcja rozkładu Fermiego-Diraca

Bardziej szczegółowo

Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE

Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE Laboratorium z Fizyki Materiałów 00 Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY.WIADOMOŚCI OGÓLNE Przewodnictwo elektryczne ciał stałych można opisać korzystając

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych

Przewodnictwo elektryczne ciał stałych Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

Nadprzewodnictwo w temperaturze pokojowej. Janusz Typek

Nadprzewodnictwo w temperaturze pokojowej. Janusz Typek Nadprzewodnictwo w temperaturze pokojowej Janusz Typek Plan prezentacji Room-temperature superconductivity (RTSC) Zasady nadprzewodnictwa Podział znanych nadprzewodników Pre-historia RTSC Doniesienia o

Bardziej szczegółowo