WYKŁAD 7 Dr hab. inż. Karol Malecha, prof. Uczelni

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYKŁAD 7 Dr hab. inż. Karol Malecha, prof. Uczelni"

Transkrypt

1 Mikrosystemy ceramiczne WYKŁAD 7 Dr hab. inż. Karol Malecha, prof. Uczelni

2 Wykład 7 Wytwarzanie struktur 3D Łączenie LTCC z innymi materiałami Integracja przeźroczystego szkła z modułem LTCC Łączenie PDMS / LTCC Bonding anodowy LTCC/Si Łączenie LTCC / LTCC

3 Wykład 7 Wytwarzanie struktur 3D Łączenie LTCC z innymi materiałami Integracja przeźroczystego szkła z modułem LTCC Łączenie PDMS / LTCC Bonding anodowy LTCC/Si Łączenie LTCC / LTCC

4 Wytwarzanie struktur 3D Laminacja wieloetapowa Laminacja pseudo-izostatyczna

5 Wytwarzanie struktur 3D Materiały pomocnicze (SVM sacrificial volume material) Metoda wytnij i wypełnij Metoda składaj i laminuj

6 Wytwarzanie struktur 3D Metoda Zalety Wady Laminacja wieloetapowa Laminacja pseudoizostatyczna Możliwość wykonywania struktur 3D powierzchniowych i zagrzebanych (rozmiary od 50 mm do dziesiątek mm). Możliwość wykonywania struktur 3D powierzchniowych i zagrzebanych (rozmiary od 50 mm do dziesiątek mm). Czasochłonna. Możliwe rozwarstwienie struktury. Lekkie deformacje wykonanych struktur. Czasochłonna (przygotowanie formy). Niemożliwe wytwarzanie struktur zagrzebanych i wiszących. Metoda wytnij i wypełnij (warstwy węglowe) Materiały mineralne jako SVM Możliwość wykonywania struktur 3D powierzchniowych i zagrzebanych (rozmiary od 100 mm do 10 mm). Elementy wiszące z ceramiki LTCC (np. mostek, belka). Wspiera struktury w czasie laminacji i wypalania. Możliwość wytworzenia w pełni zamkniętych i zagrzebanych struktur. (rozmiary od 100 mm do 10 mm). Wiszące warstwy grube. Wspiera struktury w czasie laminacji i wypalania. Trudne wypełnianie materiałem SVM. Możliwe zanieczyszczenie wykonanych struktur. Trudne kształtowanie materiału SVM. Wykonana struktura ma kształt (profil) nadrukowanej pasty SVM. Niemożliwe wykonywanie struktur otwartych. Możliwe zanieczyszczenie wykonanych struktur.

7 Wykład 7 Wytwarzanie struktur 3D Łączenie LTCC z innymi materiałami Integracja przeźroczystego szkła z modułem LTCC Łączenie PDMS / LTCC Bonding anodowy LTCC/Si Łączenie LTCC / LTCC

8 Łączenie LTCC z innymi materiałami LTCC szkło LTCC polimer (PDMS) LTCC krzem LTCC ceramika LTCC metal współwypalanie utlenianie plazmowe bonding anodowy szkliwo niskotemperaturowe szkliwo niskotemperaturowe

9 Integracja przeźroczystego szkła z modułem LTCC Nieprzezroczystość mikrosystemów ceramicznych jest poważnym ograniczeniem technologii LTCC. Uniemożliwia ona obserwację zjawisk i kontrolę procesów zachodzących we wnętrzu mikrosystemu, takich jak: mieszanie, zmiana barwy, fluorescencja, transport cząstek zawieszonych w przepływającym medium, M. Baeza et al., ACh, 2010 M. Gongora-Rubio et al., SNA, 2001

10 Integracja przeźroczystego szkła z modułem LTCC

11 Integracja przeźroczystego szkła z modułem LTCC K. Peterson et al., IMAPS PL, 2007

12 Integracja przeźroczystego szkła z modułem LTCC

13 Ugięcie okna [mm] Integracja przeźroczystego szkła z modułem LTCC Widok powierzchni struktury szkła i LTCC z zaznaczonym napięciem powierzchniowym Zależność ugięcia od średnicy okna [mm] Bembnowicz et al., JECS., 2010

14 Integracja przeźroczystego szkła z modułem LTCC Bembnowicz et al., JECS., 2010.

15 Integracja przeźroczystego szkła z modułem LTCC Sposób wykonywania okna prostopadłego do powierzchni podłoża LTCC Bembnowicz et al., JECS., 2010.

16 Integracja przeźroczystego szkła z modułem LTCC Materiał Zalety Wady Szkło szafirowe Szkło sodowe Przeźroczystość CTE szkła dopasowane do CTE materiału LTCC Kompatybilny ze standardowym procesem technologicznym LTCC (laminowanie termokompresyjne, współwypalanie) Bardzo dobra próżnioszczelność (He) Przeźroczystość Niski koszt Nie jest wymagane stosowanie materiału pomocniczego SVM Kompatybilne z procesem współwypalania Próżnioszczelność Wysoka cena Wymagane stosowanie materiału pomocniczego SVM Nie można stosować laminacji termokompresyjnej Okno szklane wygina się podczas procesu wypalania Niedopasowanie CTE

17 Integracja przeźroczystego szkła z modułem LTCC Mikrosystemy wykonane ze szkła / LTCC wykazują pewne ograniczenia technologiczne ze względu na bardzo wysoką temperaturę wypalania (> 850 o C) Przy użyciu standardowej technologii LTCC lub szkła / LTCC niemożliwe jest umieszczenie wrażliwych na temperaturę materiałów (bio)chemicznych: katalizatorów, nośników enzymu, warstw receptora,

18 Wykład 7 Wytwarzanie struktur 3D Łączenie LTCC z innymi materiałami Integracja przeźroczystego szkła z modułem LTCC Łączenie PDMS / LTCC Bonding anodowy LTCC/Si Łączenie LTCC / LTCC

19 Wspomagany plazmą proces wiązania PDMS / LTCC

20 Wspomagany plazmą proces wiązania PDMS / LTCC Przygotowanie powierzchni ceramiki LTCC Drukowanie szkliwa Suszenie szkliwa (120 C, 5 min) Szkliwo wypalane wraz z ceramiką (co-firing) Szkliwo wypalane osobno (post-firing)

21 Wspomagany plazmą proces wiązania PDMS / LTCC

22 Wspomagany plazmą proces wiązania PDMS / LTCC Zmiany na powierzchni LTCC i PDMS (badania XPS) Wpływ plazmy tlenowej na skład powierzchni szkliwionej ceramiki LTCC Wpływ plazmy tlenowej na skład powierzchni polimeru (PDMS)

23 Wspomagany plazmą proces wiązania PDMS / LTCC Zmiany na powierzchni LTCC i PDMS (badania ATR-FTIR) SiO 4 O-Si-O Si-OH -OH Widma ATR-FTIR zmierzone dla szkliwionej ceramiki LTCC i PDMS przed i po procesie modyfikacji plazmą tlenu.

24 Wspomagany plazmą proces wiązania PDMS / LTCC Zmiany na powierzchni LTCC i PDMS (zwilżalność) a b Q H2O = 74 o Q H2O = 103 o c d Q H2O = 3 o Q H2O = 13 o Krople wody destylowanej umieszczone na powierzchni szkliwionej ceramiki LTCC (a, c) oraz PDMS (b, d) przed (a, b) i po (c, d) modyfikacji plazmą tlenu.

25 Wspomagany plazmą proces wiązania PDMS / LTCC Zmiany na powierzchni LTCC i PDMS (zwilżalność) Zmiany kąta zwilżania modyfikowanych powierzchni PDMS oraz szkliwionej ceramiki LTCC w czasie

26 Wspomagany plazmą proces wiązania PDMS / LTCC S. Haines et al., SIA, Si-O-Si C. Wang et al., ASS, 2006.

27 Połączenie LTCC - polimer PDMS

28 Połączenie LTCC - polimer PDMS A B C D A B C D

29 Połączenie LTCC - polimer PDMS Mikrosystemy hybrydowe PDMS / LTCC wykorzystują zalety obu: PDMS - materiał przeźroczysty - precyzyjne struktury mikroprzepływowe o rozmiarach mniejszych niż 10 µm mogą być wykonywane za pomocą różnych technik (litografia, wytłaczanie na gorąco, ablacja laserowa...) LTCC Integracja różnych urządzeń elektronicznych i optoelektronicznych na sztywnym podłożu wielowarstwowym: - ścieżki przewodzące i elementy R, L, C, - źródła światła, fotodetektory, światłowody, - grzejniki, - przetworniki, - układy MEMS, -

30 Podsumowanie - łączenie ceramiki LTCC z przeźroczystym materiałem polimerowym Połączenie obu materiałów następuje na skutek modyfikacji ich powierzchni plazmą tlenu. Na powierzchni polimeru, po procesie plazmowania, w miejsce niepolarnych grup metylowych ( CH3) pojawiają się polarne grupy hydroksylowe ( OH). Powierzchnia polimeru zmienia swój charakter z silnie hydrofobowego na hydrofilowy. Podobne efekty obserwowano dla szkliwionej ceramiki LTCC. Po procesie modyfikacji plazmą tlenu na jej powierzchni powstają grupy silanowe (Si OH) oraz wolne rodniki tlenowe. Gdy obie tak aktywowane powierzchnie polimeru i ceramiki zostaną przyłożone do siebie następuję trwałe połączenie pomiędzy obydwoma materiałami na skutek utworzenia wiązania kowalencyjnego typu Si O Si. Maksymalny czas, przez który aktywacja powierzchni obu materiałów jest stabilna, wynosi 15 minut od momentu wyciągnięcia próbek z reaktora plazmowego. Wykonane przy zastosowaniu tej metody hybrydowe układy mikroprzepływowe PDMS/LTCC charakteryzują się dużą szczelnością.

31 Wykład 7 Wytwarzanie struktur 3D Łączenie LTCC z innymi materiałami Integracja przeźroczystego szkła z modułem LTCC Łączenie PDMS / LTCC Bonding anodowy LTCC/Si Łączenie LTCC / LTCC

32 Bonding anodowy LTCC/Si Zalety wykorzystanie technologii LTCC do połączenia z Si: wielofunkcyjność wielowarstwowego podłoża LTCC wykonanie hermetycznej obudowy układu Si w LTCC zmniejszenie wielkości obudowy dzięki bezpośredniemu połączeniu nieobudowanego chipu Si i ceramiki LTCC stosowanie standardowej technologii grubowarstwowej możliwość wytworzenia lokalnych połączeń LTCC-Si kontrolowanych przez odpowiednie przygotowanie powierzchni surowej lub wypalonej ceramiki integracja elementów biernych z ceramiką LTCC (przeniesienie elementów z drogiego chipu na LTCC)

33 Bonding anodowy LTCC/Si Krzem Szkło Elektroda (katoda) V Stolik grzejny o (400 C) Proces łączenia metodą bondingu anodowego

34 Bonding anodowy LTCC/Si Warunki wykonania dobrego połączenia: Współczynnik rozszerzalności cieplnej (CTE) LTCC musi być dopasowany do CTE krzemu Podłoże LTCC powinno zawierać jony Na+ o odpowiednim stężeniu Jony Na+ są niezbędne do wystąpienia migracji jonów między płytką krzemową, a podłożem LTCC Kompatybilność z grubowarstwowymi systemami metalizacji

35 Bonding anodowy LTCC/Si Istotne parametry procesu łączenia: w zakresie temperatur 25 o C 400 o C różnica CTE LTCC i Si musi być mniejsza niż ± 0,2 ppm/k odpowiednia zawartość jonów Na + (1 2 wt. %) minimalna chropowatość powierzchni: Ra < 100 nm i płaskość < 5 µm/10 mm temperatura procesu: 350 o C 450 o C

36 Bonding anodowy LTCC/Si Łączenie anodowe standardowej ceramiki LTCC z płytką Si za pomocą odpowiedniego szkła (Pyrex) naniesionego techniką sitodruku Łączenie anodowe specjalnej folii LTCC charakteryzującej się współczynnikiem rozszerzalności termicznej CTE zbliżonym do Si (3,4 ppm/ o C) oraz odpowiednią zawartością jonów Na + (około 1,7 wt %)

37 Proces bondingu anodowego LTCC/Si Si wnęka LTCC Połączenie ceramiki LTCC z podłożem krzemowym (zdjęcia w podczerwieni). Rusu et al., JMM., 2006.

38 CTE (ppm/k) Bonding anodowy LTCC/Si (specjalna folia LTCC BGK79) Temperatura ( o C) Temperatura ( o C) Muller et al., CICMT., 2005.

39 Bonding anodowy LTCC/Si (specjalna folia LTCC BGK79) LTCC połączone z Si metodą bondingu anodowego (d LTCC = 50 mm, d Si = 100 mm) Przekrój LTCC połączonego z krzemem (obraz SEM) Muller et al., CICMT., 2005.

40 Bonding anodowy LTCC/Si (specjalna folia LTCC BGK79) elektrody LTCC Si szkło Czujnik przyspieszenia LTCC/Si/szkło (widok schematyczny) Czujnik przyspieszenia, podłoże LTCC połączone z płytką Si: przed i po podziale (4,5 x 7,2 x 1,5 mm 3 ) Muller et al., CICMT., 2005.

41 Wykład 7 Wytwarzanie struktur 3D Łączenie LTCC z innymi materiałami Integracja przeźroczystego szkła z modułem LTCC Łączenie PDMS / LTCC Bonding anodowy LTCC/Si Łączenie LTCC / LTCC

42 Łączenie LTCC / LTCC Wypalone ceramiki LTCC mogą być łączone ze sobą przy użyciu grubej warstwy szkła niskotemperaturowego Maksymalna temperatura procesu wypalania musi być wyższa niż temperatura zeszklenia warstwy szkliwa (~700 o C)

43 Łączenie LTCC / LTCC Spektrometr ruchliwości jonów (Ion Mobility Spectrometer) - rura wykonana z 400 warstw LTCC połączonych po wypaleniu Siedem segmentów połączonych za pomocą szkła niskotemperaturowego Plumlee et al., CICMT., 2007.

44 Wykład 7 Podsumowanie Wytwarzanie struktur 3D Łączenie LTCC z innymi materiałami Łączenie PDMS / LTCC Bonding anodowy LTCC/Si Integracja przeźroczystego szkła z modułem LTCC Łączenie LTCC / LTCC

WYKŁAD 6 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 6 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 6 Dr hab. inż. Karol Malecha, prof. Uczelni Wykład 6 Wykonywanie struktur przestrzennych Laminacja wysoko i niskociśnieniowa (przypomnienie) Laminacja wieloetapowa Laminacja

Bardziej szczegółowo

WYKŁAD 4 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 4 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 4 Dr hab. inż. Karol Malecha, prof. Uczelni Plan wykładu - Podstawy technologii LTCC (Low Temperature Cofired Ceramics, niskotemperaturowa współwypalana ceramika) Wykonywanie

Bardziej szczegółowo

WYKŁAD 5 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 5 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 5 Dr hab. inż. Karol Malecha, prof. Uczelni Plan wykładu - Materiały i procesy wykorzystywane do wytwarzania mikrosystemów mikroobróbka surowej folii LTCC cd. - wytłaczanie

Bardziej szczegółowo

Technologie mikro- nano-

Technologie mikro- nano- Technologie mikro- nano- część Prof. Golonki 1. Układy wysokotemperaturowe mogą być nanoszone na następujące podłoże ceramiczne: a) Al2O3 b) BeO c) AlN 2. Typowe grubości ścieżek w układach grubowarstwowych:

Bardziej szczegółowo

LTCC. Low Temperature Cofired Ceramics

LTCC. Low Temperature Cofired Ceramics LTCC Low Temperature Cofired Ceramics Surowa ceramika - green tape Folia LTCC: 100-200µm, mieszanina ceramiki, szkła i nośnika ceramicznego Technika sitodruku: warstwy (ścieŝki przewodzące, rezystory,

Bardziej szczegółowo

WYKŁAD 3 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 3 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 3 Dr hab. inż. Karol Malecha, prof. Uczelni Plan wykładu - Podstawy technologii LTCC (Low Temperature Cofired Ceramics, niskotemperaturowa współwypalana ceramika) Etapy wytwarzania

Bardziej szczegółowo

WYKŁAD 2 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 2 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 2 Dr hab. inż. Karol Malecha, prof. Uczelni Plan wykładu - Podstawy technologii grubowarstwowej - Materiały i procesy TECHNOLOGIA GRUBOWARSTWOWA Układy grubowarstwowe wytwarza

Bardziej szczegółowo

Elementy technologii mikroelementów i mikrosystemów. USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1

Elementy technologii mikroelementów i mikrosystemów. USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1 Elementy technologii mikroelementów i mikrosystemów USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1 Elementy technologii mikroelementów i mikrosystemów Typowe wymagania klasy czystości: 1000/100

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 05/18

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 05/18 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 230200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 422004 (22) Data zgłoszenia: 26.06.2017 (51) Int.Cl. H05B 6/64 (2006.01)

Bardziej szczegółowo

Wprowadzenie Elementy elektroniczne w obudowach SO, CC i QFP Elementy elektroniczne w obudowach BGA i CSP

Wprowadzenie Elementy elektroniczne w obudowach SO, CC i QFP Elementy elektroniczne w obudowach BGA i CSP Plan wykładu Wprowadzenie Elementy elektroniczne w obudowach SO, CC i QFP Elementy elektroniczne w obudowach BGA i CSP Montaż drutowy i flip-chip struktur nie obudowanych Tworzywa sztuczne i lepkospręż

Bardziej szczegółowo

Technologia ogniw paliwowych w IEn

Technologia ogniw paliwowych w IEn Technologia ogniw paliwowych w IEn Mariusz Krauz 1 Wstęp Opracowanie technologii ES-SOFC 3 Opracowanie technologii AS-SOFC 4 Podsumowanie i wnioski 1 Wstęp Rodzaje ogniw paliwowych Temperatura pracy Temperatura

Bardziej szczegółowo

PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL BUP 26/06

PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL BUP 26/06 PL 212025 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 212025 (13) B1 (21) Numer zgłoszenia: 375716 (51) Int.Cl. H01L 27/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

WYKŁAD 12 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 12 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 12 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystem przepływowy (mtas, Lab-on-chip) Jeden system zapewniający wszystkie niezbędne analizy dla danego rodzaju problemu

Bardziej szczegółowo

Osiągnięcia Uzyskane wyniki

Osiągnięcia Uzyskane wyniki 1. Osiągnięcia Najważniejsze osiągnięcia projektu to: Bliższe poznanie fizykochemicznych efektów (m.in. zmiana struktury geometrycznej powierzchni i składu chemicznego) modyfikowania warstwy wierzchniej

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

Zalety przewodników polimerowych

Zalety przewodników polimerowych Zalety przewodników polimerowych - Giętkie, otrzymywane w postaci folii - Lekkie (wysoka gęstość energii/kg) - Bezpieczne (przy przestrzeganiu zaleceń użytkowania) Wady - Degradacja na skutek starzenia,

Bardziej szczegółowo

WYKŁAD 11 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 11 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 11 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrofluidyka - idea 1971 obecnie P. Garstecki, LoC Summer School, 2010 Zalety układów mikroprzepływowych szybkie, łatwe w obsłudze,

Bardziej szczegółowo

ĆW. 11. TECHNOLOGIA I WŁAŚCIWOŚCI POLIMEROWYCH REZYSTORÓW

ĆW. 11. TECHNOLOGIA I WŁAŚCIWOŚCI POLIMEROWYCH REZYSTORÓW ĆW.. TECHNOLOGIA I WŁAŚCIWOŚCI POLIMEROWYCH REZYSTORÓW CEL ĆWICZENIA. Zapoznanie się z technologią polimerowych warstw grubych na przykładzie elementów rezystywnych. Określenie wpływu rodzaju i zawartości

Bardziej szczegółowo

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Elektrolity polimerowe 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Zalety - Giętkie, otrzymywane w postaci folii - Lekkie (wysoka gęstość energii/kg)

Bardziej szczegółowo

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła Wzmacnianie szkła Laminowanie szkła. Są dwa sposoby wytwarzania szkła laminowanego: 1. Jak na zdjęciach, czyli umieszczenie polimeru pomiędzy warstwy szkła i sprasowanie całego układu; polimer (PVB ma

Bardziej szczegółowo

Montaż w elektronice_cz.03_elementy elektroniczne w obudowach BGA i CSP.ppt. Plan wykładu

Montaż w elektronice_cz.03_elementy elektroniczne w obudowach BGA i CSP.ppt. Plan wykładu Plan wykładu Wprowadzenie Elementy elektroniczne w obudowach SO, CC i QFP Elementy elektroniczne w obudowach BGA i CSP Montaż drutowy i flip-chip struktur nie obudowanych Tworzywa sztuczne i lepkospręż

Bardziej szczegółowo

ZASADY KONSTRUKCJI APARATURY ELEKTRONICZNEJ

ZASADY KONSTRUKCJI APARATURY ELEKTRONICZNEJ Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej ZASADY KONSTRUKCJI APARATURY ELEKTRONICZNEJ Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Cele i bariery Ogólne

Bardziej szczegółowo

UNIWERSYTET OPOLSKI - KONSORCJANT NR 8. projektu pt.: Nowe przyjazne dla środowiska kompozyty polimerowe z wykorzystaniem surowców odnawialnych

UNIWERSYTET OPOLSKI - KONSORCJANT NR 8. projektu pt.: Nowe przyjazne dla środowiska kompozyty polimerowe z wykorzystaniem surowców odnawialnych UNIWERSYTET OPOLSKI - KONSORCJANT NR 8 projektu pt.: Nowe przyjazne dla środowiska kompozyty polimerowe z wykorzystaniem surowców odnawialnych Zadanie nr 5. Ocena wpływu czynników środowiskowych oraz obciążeń

Bardziej szczegółowo

Laboratorium Ochrony przed Korozją. Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM

Laboratorium Ochrony przed Korozją. Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM

Bardziej szczegółowo

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174002 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 300055 (22) Data zgłoszenia: 12.08.1993 (5 1) IntCl6: H01L21/76 (54)

Bardziej szczegółowo

Układy scalone. wstęp układy hybrydowe

Układy scalone. wstęp układy hybrydowe Układy scalone wstęp układy hybrydowe Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana

Bardziej szczegółowo

Technologia wytwarzania stałotlenkowych ogniw paliwowych w IEn OC Cerel

Technologia wytwarzania stałotlenkowych ogniw paliwowych w IEn OC Cerel Technologia wytwarzania stałotlenkowych ogniw paliwowych w IEn OC Cerel Mariusz Krauz Ryszard Kluczowski 1 Wstęp 2 Opracowanie technologii AS-SOFC 3 Badania otrzymanych ogniw 4 Podsumowanie i wnioski 1

Bardziej szczegółowo

Wykład VI: Proszki, włókna, warstwy. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład VI: Proszki, włókna, warstwy. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład VI: Proszki, włókna, warstwy JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Nauka o Materiałach Właściwości materiałów zależą także od formy występowania

Bardziej szczegółowo

PL B BUP 23/17. KONSTANTY MARSZAŁEK, Kraków, PL ARTUR RYDOSZ, Olszanica, PL WUP 08/18. rzecz. pat.

PL B BUP 23/17. KONSTANTY MARSZAŁEK, Kraków, PL ARTUR RYDOSZ, Olszanica, PL WUP 08/18. rzecz. pat. RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229704 (13) B1 (21) Numer zgłoszenia: 417038 (51) Int.Cl. G01N 27/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 29.04.2016

Bardziej szczegółowo

METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI. Wykład piąty Materiały elektroniczne płyty z obwodami drukowanymi PCB (Printed Circuit Board)

METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI. Wykład piąty Materiały elektroniczne płyty z obwodami drukowanymi PCB (Printed Circuit Board) METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI Wykład piąty Materiały elektroniczne płyty z obwodami drukowanymi PCB (Printed Circuit Board) Co to jest płyta z obwodem drukowanym? Obwód drukowany (ang. Printed

Bardziej szczegółowo

WYKŁAD 9 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 9 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 9 Dr hab. inż. Karol Malecha, prof. Uczelni WYKŁAD 9 LTCC - czujniki, mikrosystemy Układy grzejne Układy chłodzące Ogniwa paliwowe WYKŁAD 9 LTCC - czujniki, mikrosystemy

Bardziej szczegółowo

WYKŁAD 13 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 13 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 13 Dr hab. inż. Karol Malecha, prof. Uczelni Wykład 13 Mikrosystemy ceramiczne Generatory zimnej plazmy - wprowadzenie - generatory z wyładowaniem barierowym - generatory

Bardziej szczegółowo

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 06/14

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 06/14 PL 223622 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223622 (13) B1 (21) Numer zgłoszenia: 403511 (51) Int.Cl. G01T 1/04 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów

Bardziej szczegółowo

Mikrosystemy ceramiczne

Mikrosystemy ceramiczne Mikrosystemy ceramiczne WYKŁAD 1 Dr hab. inż. Karol Malecha, prof. Uczelni (M11 p. 144 ul. Długa) Wydział Elektroniki Mikrosystemów i Fotoniki Egzamin: 28 styczeń 2019, poniedziałek Wykłady dostępne na

Bardziej szczegółowo

Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO

Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO Instytut Metalurgii i Inżynierii Materiałowej im. Aleksandra Krupkowskiego

Bardziej szczegółowo

TECHNOLOGIA STRUKTUR MOEMS

TECHNOLOGIA STRUKTUR MOEMS Różne wyniki trawienia krzemu TECHNOLOGIA STRUKTUR MOEMS prof. nzw. Romuald B. Beck Wykład 3 Warszawa, czerwiec 2008 Wytwarzanie belki (belka krzemowa) Magnetic Force Microscope MFM Ostrze do analizy MFM

Bardziej szczegółowo

30/01/2018. Wykład VI: Proszki, włókna, warstwy. Nauka o Materiałach. Treść wykładu:

30/01/2018. Wykład VI: Proszki, włókna, warstwy. Nauka o Materiałach. Treść wykładu: Wykład VI: Proszki, włókna, warstwy JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Nauka o Materiałach Właściwości materiałów zależą także od formy występowania

Bardziej szczegółowo

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO Cel ćwiczenia: Zapoznanie się z metodą pomiaru grubości cienkich warstw za pomocą interferometrii odbiciowej światła białego, zbadanie zjawiska pęcznienia warstw

Bardziej szczegółowo

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA II Ćw. 6: ANODOWE OKSYDOWANIE ALUMINIUM

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA II Ćw. 6: ANODOWE OKSYDOWANIE ALUMINIUM Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją GALWANOTECHNIKA II Ćw. 6: ANODOWE

Bardziej szczegółowo

Synteza nanocząstek magnetycznych pokrytych modyfikowaną skrobią dla zastosowań biomedycznych

Synteza nanocząstek magnetycznych pokrytych modyfikowaną skrobią dla zastosowań biomedycznych Synteza nanocząstek magnetycznych pokrytych modyfikowaną skrobią dla zastosowań biomedycznych mgr Katarzyna Węgrzynowska-Drzymalska Katedra Chemii i Fotochemii Polimerów Wydział Chemii Uniwersytet Mikołaja

Bardziej szczegółowo

Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak

Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak Nasdaq: IPG Photonics(IPGP) Zasada działania laserów włóknowych Modułowość laserów włóknowych IPG

Bardziej szczegółowo

Właściwości, degradacja i modyfikacja hydrożeli do zastosowań w uprawach roślinnych (zadania 2, 3 i 11)

Właściwości, degradacja i modyfikacja hydrożeli do zastosowań w uprawach roślinnych (zadania 2, 3 i 11) Właściwości, degradacja i modyfikacja hydrożeli do zastosowań w uprawach roślinnych (zadania 2, 3 i 11) Anna Jakubiak-Marcinkowska, Sylwia Ronka, Andrzej W. Trochimczuk Zakład Materiałów Polimerowych i

Bardziej szczegółowo

Politechnika Politechnika Koszalińska

Politechnika Politechnika Koszalińska Politechnika Politechnika Instytut Mechatroniki, Nanotechnologii i Technik Próżniowych NOWE MATERIAŁY NOWE TECHNOLOGIE W PRZEMYŚLE OKRĘTOWYM I MASZYNOWYM IIM ZUT Szczecin, 28 31 maja 2012, Międzyzdroje

Bardziej szczegółowo

PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL BUP 11/09

PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL BUP 11/09 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 208829 (13) B1 (21) Numer zgłoszenia: 383802 (51) Int.Cl. G01N 31/20 (2006.01) G01N 31/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

FRIALIT -DEGUSSIT Ceramika Beztlenkowa Płytki testowe wafli krzemowych przy produkcji półprzewodników

FRIALIT -DEGUSSIT Ceramika Beztlenkowa Płytki testowe wafli krzemowych przy produkcji półprzewodników FRIALIT -DEGUSSIT Ceramika Beztlenkowa Płytki testowe wafli krzemowych przy produkcji półprzewodników Zastosowanie: Produkcja płyt testowych Materiał: Azotek krzemu (Si 3 N 4 ) FRIALIT HP79 or FRIALIT

Bardziej szczegółowo

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Wzornictwo Ceramiki i Szkła Rok akademicki: 2013/2014 Kod: CCE-2-201-WC-s Punkty ECTS: 9 Wydział: Inżynierii Materiałowej i Ceramiki Kierunek: Ceramika Specjalność: Wzornictwo ceramiki i

Bardziej szczegółowo

Powłoki cienkowarstwowe

Powłoki cienkowarstwowe Powłoki cienkowarstwowe Wstęp Powody zastosowania powłok znaczne straty energii - w układach o dużej ilości elementów optycznych (dalmierze, peryskopy, wzierniki) przykład : peryskop - 12% światła wchodzącego

Bardziej szczegółowo

Konkurs Fizyczne Ścieżki. Most wodny. wykonanie: Michał Porębski i Seweryn Panek V Liceum Ogólnoksztąłcace w Bielsku-Białej

Konkurs Fizyczne Ścieżki. Most wodny. wykonanie: Michał Porębski i Seweryn Panek V Liceum Ogólnoksztąłcace w Bielsku-Białej Konkurs Fizyczne Ścieżki Most wodny wykonanie: Michał Porębski i Seweryn Panek V Liceum Ogólnoksztąłcace w Bielsku-Białej Cel Przedstawienie i wyjaśnienie zjawiska powstawania wodnego mostu. Konieczne

Bardziej szczegółowo

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis Wykład IV Polikryształy I Jerzy Lis Treść wykładu I i II: 1. Budowa polikryształów - wiadomości wstępne. 2. Budowa polikryształów: jednofazowych porowatych z fazą ciekłą 3. Metody otrzymywania polikryształów

Bardziej szczegółowo

Materiały w bateriach litowych.

Materiały w bateriach litowych. Materiały w bateriach litowych. Dlaczego lit? 1. Pierwiastek najbardziej elektrododatni ( pot. 3.04V wobec standardowej elektrody wodorowej ). 2. Najlżejszy metal ( d = 0.53 g/cm 3 ). 3. Gwarantuje wysoką

Bardziej szczegółowo

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Modelowanie mikrosystemów - laboratorium Ćwiczenie 1 Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Zadania i cel ćwiczenia. Celem ćwiczenia jest dobranie

Bardziej szczegółowo

PLAN STUDIÓW A Z O PG_ CHEMIA OGÓLNA B E E O PG_ FIZYKA

PLAN STUDIÓW A Z O PG_ CHEMIA OGÓLNA B E E O PG_ FIZYKA WYDZIAŁ: KIERUNEK: poziom kształcenia: profil: forma studiów: Wydział Chemiczny Chemia budowlana I stopnia - inżynierskie ogólnoakademicki stacjonarne PLAN STUDIÓW Lp. O/F Semestr 1 kod modułu/ przedmiotu*

Bardziej szczegółowo

PL B1. W.C. Heraeus GmbH,Hanau,DE ,DE, Martin Weigert,Hanau,DE Josef Heindel,Hainburg,DE Uwe Konietzka,Gieselbach,DE

PL B1. W.C. Heraeus GmbH,Hanau,DE ,DE, Martin Weigert,Hanau,DE Josef Heindel,Hainburg,DE Uwe Konietzka,Gieselbach,DE RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 204234 (13) B1 (21) Numer zgłoszenia: 363401 (51) Int.Cl. C23C 14/34 (2006.01) B22D 23/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Nanokompozyty polimerowe. Grzegorz Nieradka Specjalista ds. procesu technologicznego Krosno,

Nanokompozyty polimerowe. Grzegorz Nieradka Specjalista ds. procesu technologicznego Krosno, Nanokompozyty polimerowe Grzegorz Nieradka Specjalista ds. procesu technologicznego Krosno, 19.11.2015 PLAN PREZENTACJI Nanotechnologia czym jest i jakie ma znaczenie we współczesnym świecie Pojęcie nanowłókna

Bardziej szczegółowo

Elementy technologii mikroelementów i mikrosystemów. Typowe wymagania klasy czystości: 1000/100 (technologie 3 µm)

Elementy technologii mikroelementów i mikrosystemów. Typowe wymagania klasy czystości: 1000/100 (technologie 3 µm) Elementy technologii mikroelementów i mikrosystemów Typowe wymagania klasy czystości: 1000/100 (technologie 3 µm) np. pamięci: 64k 1000/100 >1M 100/10 USF_4 Technologia M.Kujawińska, T.Kozacki, M.Józwik

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007 r. Kierownik

Bardziej szczegółowo

Innowacyjne rozwiązanie materiałowe implantu stawu biodrowego Dr inż. Michał Tarnowski Prof. dr hab. inż. Tadeusz Wierzchoń

Innowacyjne rozwiązanie materiałowe implantu stawu biodrowego Dr inż. Michał Tarnowski Prof. dr hab. inż. Tadeusz Wierzchoń Innowacyjne rozwiązanie materiałowe implantu Dr inż. Michał Tarnowski Prof. dr hab. inż. Tadeusz Wierzchoń Zespół Obróbek Jarzeniowych Zakład Inżynierii Powierzchni Wydział Inżynierii Materiałowej TRIBOLOGIA

Bardziej szczegółowo

CERAMIKI PRZEZROCZYSTE

CERAMIKI PRZEZROCZYSTE prof. ICiMB dr hab. inż. Adam Witek CERAMIKI PRZEZROCZYSTE Projekt współfinansowany z Europejskiego Funduszu Społecznego i Budżetu Państwa PO CO NAM PRZEZROCZYSTE CERAMIKI? Pręty laserowe dla laserów ciała

Bardziej szczegółowo

TECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone,

TECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone, TECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone, 1. Technologia wykonania złącza p-n W rzeczywistych złączach

Bardziej szczegółowo

PAN. Kraków

PAN. Kraków PAN ~ Instytut Katalizy i Fizykochemii Powierzchni im. Jerzego Habera liilllll Polskiej Akademii Nauk KNO I KrajowyNaukowy ~ JIII Ośrodek Wiodący Kraków 03.02.2015 OCENA PRACY DOKTORSKIEJ MGR BARTOSZA

Bardziej szczegółowo

Wykład 2. Wprowadzenie do metod membranowych (część 2)

Wykład 2. Wprowadzenie do metod membranowych (część 2) Wykład 2 Wprowadzenie do metod membranowych (część 2) Mechanizmy filtracji membranowej Model kapilarny Model dyfuzyjny Model dyfuzyjny Rozpuszczalność i szybkość dyfuzji Selektywność J k D( c c ) / l n

Bardziej szczegółowo

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Modelowanie mikrosystemów - laboratorium Ćwiczenie 1 Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Zadania i cel ćwiczenia. Celem ćwiczenia jest dobranie

Bardziej szczegółowo

MATERIAŁY SUPERTWARDE

MATERIAŁY SUPERTWARDE MATERIAŁY SUPERTWARDE Twarde i supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych zastosowaniach jak szlifowanie i polerowanie, cięcie, prasowanie, synteza i badania

Bardziej szczegółowo

CIENKOŚCIENNE KONSTRUKCJE METALOWE

CIENKOŚCIENNE KONSTRUKCJE METALOWE CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 2: Materiały, kształtowniki gięte, blachy profilowane MATERIAŁY Stal konstrukcyjna na elementy cienkościenne powinna spełniać podstawowe wymagania stawiane stalom:

Bardziej szczegółowo

Wykład 5 Fotodetektory, ogniwa słoneczne

Wykład 5 Fotodetektory, ogniwa słoneczne Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę

Bardziej szczegółowo

LABORATORIUM PRZEMIAN ENERGII

LABORATORIUM PRZEMIAN ENERGII LABORATORIUM PRZEMIAN ENERGII BADANIE OGNIWA PALIWOWEGO TYPU PEM I. Wstęp Ćwiczenie polega na badaniu ogniwa paliwowego typu PEM. Urządzenia tego typy są obecnie rozwijane i przystosowywane do takich aplikacji

Bardziej szczegółowo

MIKROSYSTEMY. Ćwiczenie nr 2a Utlenianie

MIKROSYSTEMY. Ćwiczenie nr 2a Utlenianie MIKROSYSTEMY Ćwiczenie nr 2a Utlenianie 1. Cel ćwiczeń: Celem zajęć jest wykonanie kompletnego procesu mokrego utleniania termicznego krzemu. W skład ćwiczenia wchodzą: obliczenie czasu trwania procesu

Bardziej szczegółowo

Aleksandra Świątek KOROZYJNA STALI 316L ORAZ NI-MO, TYTANU W POŁĄ ŁĄCZENIU Z CERAMIKĄ DENTYSTYCZNĄ W ROZTWORZE RINGERA

Aleksandra Świątek KOROZYJNA STALI 316L ORAZ NI-MO, TYTANU W POŁĄ ŁĄCZENIU Z CERAMIKĄ DENTYSTYCZNĄ W ROZTWORZE RINGERA WYśSZA SZKOŁA INśYNIERII DENTYSTYCZNEJ IM. PROF. MEISSNERA W USTRONIU WYDZIAŁ INśYNIERII DENTYSTYCZNEJ Aleksandra Świątek,,ODPORNOŚĆ KOROZYJNA STALI 316L ORAZ STOPÓW W TYPU CO-CR CR-MO, CR-NI NI-MO, TYTANU

Bardziej szczegółowo

PL 203790 B1. Uniwersytet Śląski w Katowicach,Katowice,PL 03.10.2005 BUP 20/05. Andrzej Posmyk,Katowice,PL 30.11.2009 WUP 11/09 RZECZPOSPOLITA POLSKA

PL 203790 B1. Uniwersytet Śląski w Katowicach,Katowice,PL 03.10.2005 BUP 20/05. Andrzej Posmyk,Katowice,PL 30.11.2009 WUP 11/09 RZECZPOSPOLITA POLSKA RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203790 (13) B1 (21) Numer zgłoszenia: 366689 (51) Int.Cl. C25D 5/18 (2006.01) C25D 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ PRACOWNIA MATERIAŁOZNAWSTWA

Bardziej szczegółowo

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Nowoczesne metody metalurgii proszków Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Metal injection moulding (MIM)- formowanie wtryskowe Metoda ta pozwala na wytwarzanie

Bardziej szczegółowo

WYKŁAD 14 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 14 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 14 Dr hab. inż. Karol Malecha, prof. Uczelni Wykład 14 Mikrosystemy ceramiczne Układy ceramiczne do przeprowadzania reakcji polimerazy łańcuchowej (PCR) Układy mikrofalowo-mikroprzepływowe

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 20/10

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 20/10 PL 219060 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219060 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 390244 (22) Data zgłoszenia: 21.01.2010 (51) Int.Cl.

Bardziej szczegółowo

Technologia ceramiki: -zaawansowanej -ogniotrwałej Jerzy Lis, Dariusz Kata Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Technologia ceramiki: -zaawansowanej -ogniotrwałej Jerzy Lis, Dariusz Kata Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Technologia szkła i ceramiki Technologia ceramiki: -zaawansowanej -ogniotrwałej Jerzy Lis, Dariusz Kata Katedra Technologii Ceramiki i Materiałów Ogniotrwałych PODSTAWOWE IMANENTNE WŁAŚCIWOŚCI TWORZYW

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 9

Dobór materiałów konstrukcyjnych cz. 9 Dobór materiałów konstrukcyjnych cz. 9 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Materiały na uszczelki Ashby M.F.:

Bardziej szczegółowo

Eliminacja odkształceń termicznych w procesach spawalniczych metodą wstępnych odkształceń plastycznych z wykorzystaniem analizy MES

Eliminacja odkształceń termicznych w procesach spawalniczych metodą wstępnych odkształceń plastycznych z wykorzystaniem analizy MES Eliminacja odkształceń termicznych w procesach spawalniczych metodą wstępnych odkształceń plastycznych z wykorzystaniem analizy MES Mirosław Raczyński Streszczenie: W pracy przedstawiono wyniki wstępnych

Bardziej szczegółowo

Politechnika Wrocławska Wydział Podstawowych Problemów Techniki

Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wydział Podstawowych Problemów Techniki specjalność FOTONIKA 3,5-letnie studia stacjonarne I stopnia (studia inżynierskie) FIZYKA TECHNICZNA Charakterystyka wykształcenia: - dobre

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3,

Bardziej szczegółowo

Plan wykładu. 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD

Plan wykładu. 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD Plan wykładu 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD Monitor LCD Monitor LCD (ang. Liquid Crystal Display) Budowa monitora

Bardziej szczegółowo

Środki sprzęgające (promotory adhezji)

Środki sprzęgające (promotory adhezji) Środki sprzęgające (promotory adhezji) (ang. coupling agents, adhesion promoters) Małocząsteczkowe związki metalolub metaloidoorganiczne posiadające zdolność tworzenia trwałego wiązania między materiałem

Bardziej szczegółowo

Rozdział 2. Rezystancyjne czujniki gazów na podłożu ceramicznym

Rozdział 2. Rezystancyjne czujniki gazów na podłożu ceramicznym Rozdział 2. Rezystancyjne czujniki gazów na podłożu ceramicznym Przy projektowaniu sensorów istotny jest wybór materiału gazoczułego, podłoża, technika wytwarzania warstw (grubowarstwowa lub cienkowarstwowa),

Bardziej szczegółowo

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym Dotacje na innowacje Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym Viktor Zavaleyev, Jan Walkowicz, Adam Pander Politechnika Koszalińska

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia

Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 1 Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia Zadania i cel ćwiczenia. Celem

Bardziej szczegółowo

Brenntag Polska Sp. z o.o.

Brenntag Polska Sp. z o.o. Brenntag Polska Sp. z o.o. Testy laboratoryjne środków chemicznych dedykowanych do nawadniania złóż ropy naftowej przy wykorzystaniu wodno-zwilżających polifrakcyjnych nanoemulsji E.Czekalska, K. Czeszyk,

Bardziej szczegółowo

PL B1. Sposób wytwarzania kompozytów włóknistych z osnową polimerową, o podwyższonej odporności mechanicznej na zginanie

PL B1. Sposób wytwarzania kompozytów włóknistych z osnową polimerową, o podwyższonej odporności mechanicznej na zginanie RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210460 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 387681 (22) Data zgłoszenia: 02.04.2009 (51) Int.Cl. C08J 3/24 (2006.01)

Bardziej szczegółowo

Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak

Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka

Bardziej szczegółowo

Nowoczesne materiały konstrukcyjne : wybrane zagadnienia / Wojciech Kucharczyk, Andrzej Mazurkiewicz, Wojciech śurowski. wyd. 3. Radom, cop.

Nowoczesne materiały konstrukcyjne : wybrane zagadnienia / Wojciech Kucharczyk, Andrzej Mazurkiewicz, Wojciech śurowski. wyd. 3. Radom, cop. Nowoczesne materiały konstrukcyjne : wybrane zagadnienia / Wojciech Kucharczyk, Andrzej Mazurkiewicz, Wojciech śurowski. wyd. 3. Radom, cop. 2011 Spis treści Wstęp 9 1. Wysokostopowe staliwa Cr-Ni-Cu -

Bardziej szczegółowo

Czy prąd przepływający przez ciecz zmienia jej własności chemiczne?

Czy prąd przepływający przez ciecz zmienia jej własności chemiczne? Czy prąd przepływający przez ciecz zmienia Zadanie Zmierzenie charakterystyki prądowo-napięciowej elektrolitu zawierającego roztwór siarczanu miedzi dla elektrod miedzianych. Obserwacja widocznych zmian

Bardziej szczegółowo

Wykład IV: Polikryształy I. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład IV: Polikryształy I. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład IV: Polikryształy I JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu (część I i II): 1. Budowa polikryształów - wiadomości wstępne.

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

Unikalne cechy płytek i szalek IBIDI

Unikalne cechy płytek i szalek IBIDI Unikalne cechy płytek i szalek IBIDI Grubość płytki jest kluczowym aspektem jakości obrazowania. Typowa grubość szkiełek nakrywkowych wynosi 0,17 mm (170 µm). Większość obiektywów stosowanych do mikroskopii

Bardziej szczegółowo

(62) Numer zgłoszenia, z którego nastąpiło wydzielenie:

(62) Numer zgłoszenia, z którego nastąpiło wydzielenie: PL 223874 B1 RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 223874 (21) Numer zgłoszenia: 413547 (22) Data zgłoszenia: 10.05.2013 (62) Numer zgłoszenia,

Bardziej szczegółowo

FRIALIT -DEGUSSIT Ceramika tlenkowa Rury o przekroju prostokątnym

FRIALIT -DEGUSSIT Ceramika tlenkowa Rury o przekroju prostokątnym FRIALIT -DEGUSSIT Ceramika tlenkowa Rury o przekroju prostokątnym Zastosowanie: Przemysł drukarski Materiał: Tlenek glinu DEGUSSIT AL23 Produkcja FRIATEC Wiele materiałów używanych przy produkcji folii

Bardziej szczegółowo

Diody elektroluminescencyjne na bazie GaN z powierzchniowymi kryształami fotonicznymi

Diody elektroluminescencyjne na bazie GaN z powierzchniowymi kryształami fotonicznymi Diody elektroluminescencyjne na bazie z powierzchniowymi kryształami fotonicznymi Krystyna Gołaszewska Renata Kruszka Marcin Myśliwiec Marek Ekielski Wojciech Jung Tadeusz Piotrowski Marcin Juchniewicz

Bardziej szczegółowo