Wykład 5 Technologie na urządzenia mobilne. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl
|
|
- Czesław Kowalczyk
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wykład 5 Technologie na urządzenia mobilne Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl
2 Zapoznanie się z architekturą ARM Porównanie cech rdzeni ARM7, ARM9, Cortex Peryferia występujące w procesorach z rodziny ARM
3 ARM7, ARM9 Cortex-M STM32 Cortex -M3.pdf _Architecture.pdf - ARMv8
4 1983:(Acorn Computers; Roger Wilson, Steve Furber; MOS 6502) 1985: ARM1 (wersja testowa) 1987: ARM2 (wersja produkcyjna): dane 32bit, 26bit przestrzeń adresowa, 16x32bit Rejestry, 30tyś tranzystorów brak mikrokodu, brak cache, szybszy od : ARM3 Apple + Acorn -> 1990: Advanced RISC Machines (ARM Ltd.) 1991: ARM6 (PDA- Apple Newton ARM610) 1993: ARM7 1995: ARM9 1998: ARM10
5 ARM: Advanced RISC Machine, pierwotnie Acorn RISC Machine Architektura 32 bitowa Niski pobór mocy (stosowanie w systemach wbudowanych) Obecnie stosowany prawie we wszystkim (HDD, telefony komórkowe, routery, kalkulatory, zabawki)
6 Wszystkie rozkazy wykonują się w ściśle określonym czasie zwykle 1 cykl 4 bitowy kod warunkowy na początku każdej instrukcji Łączenie operacji przesunięcia i obrotu w rejestrze z instrukcjami arytmetycznymi, logicznymi, przesyłania danych np.: "a += (j << 2);"
7 Kod C int gcd(int i, int j) { while (i!= j) if (i > j) i -= j; else j -= i; return i; } Kod asm b test loop subgt Ri,Ri,Rj suble Rj,Rj,Ri test cmp Ri,Rj bne loop
8 Obecnie rdzeń ARM wspiera 32-bit ARM i 16- bit Thumb Instruction Set Architectures (ISAs) Rozszerzenia dla Java acceleration (Jazelle ) security (TrustZone ) Intelligent Energy Manager (IEM) SIMD NEONTM technologies.
9 ARMv4 Najstarszy z obecnie jeszcze wspieranych rdzeni, implementowany w niektórych ARM7 oraz Intel StrongARM 32bit ISA w 32bit przestrzeni adresowej ARMv4T Dodany 16-bit tryb Thumb - oszczędność do 35% kodu
10 ARMv5TE (1999) Wprowadzone ulepszenia Thumb ARM Enhanced DSP możliwości DSP na zwykłym CPU ARMv5TEJ (2000) Jazelle Techonology wspieranie sprzętowe a nie programowe (JVM) obsługi Java. Przyspieszenie 8x, 80% mniejsze zapotrzebowanie na moc.
11 ARMv6 (2001) Ulepszenia w systemie pamięci, przechwytywanie wyjątków, środowisko wieloprocesorowe SIMD (Single Instruction Mulpiple Data) Thumb-2 oraz TrustZone jako opcje ARMv6
12 ARMv7 żyje pod rodziną procesorów Cortex 3 Profile: A systemy z pamięcią wirtualną oraz aplikacje użytkownika R Real Time Systems M - mikrokontrolery oraz aplikacje o niskich kosztach (Cortex-M3) Każdy profil implementuje w sobie technologie Thumb-2
13 NEON Media Acceleration Technology Jest to architektura hybrydowa 64/128 bit SIMD Stworzona w celu przyspieszenia wydajności aplikacji multimedialnych oraz przetwarzania sygnałów (kodowanie/dekodowanie video, grafika 3D, przetwarzanie mowy, dekodowanie dźwięku, przetwarzanie obrazu, telefonia, synteza dźwięku) OpenMAX API
14 Opcjonalna architektura koporcesora Obsługuje arytmetykę pojedynczej oraz podwójnej precyzji W pełni kompatybilna z IEEE 754 Wpomaga takie operacje jak skalowanie, transformacja 2D oraz 3D, filtracja cyfrowa Obecnie implementowana w ARM9, ARM10, ARM11
15 Rozszerzenie bezpieczeństwa dla architektury ARM Implementacja w procesorze chroniąca pamięć wewnętrzną jak i zewnętrzna przed atakami ze strony programu Technologia dostarcza bezpieczne środowisko dla elementów systemowycvh takie jak: zarządzanie kluczami, authentication
16 Znakomite upakowanie kodu Wydajność 32-bitowa na pamięciach 8/16 bit przy magistrali 8/16bit MIPS/Wat, RISC Małe wymiary układu niski koszt produkcji Dekompresja oraz dekodowanie bez strat na wydajności
17
18 Bit-banging manipulacja bitami: 1MB pamięci jest rzutowany na 32MB lokalizacji bitowej. Dostęp do pamięci z adresem niewyrównanym
19 Aplikacje ( Application ) Cortex-A Czasu rzeczywistego ( Real-Time) Cortex-R Mikrokontroler ( Microcontroller ) Cortex-M Przykłady: Rdzeń: Cortex-M3 profil: ARMv7-M (thumb2) Rdzeń: Cortex-M0 profil: ARMv6-M (mniej instrukcji)
20 Windows CE,.NET Micro Framework, Symbian OS, FreeRTOS, ecos, INTEGRITY, Nucleus PLUS, MicroC/OS-II, QNX, RTEMS, BRTOS, RTXC Quadros, ThreadX, Unison OS, utasker, VxWorks, MQX oraz OSE Apple ios, Android, BSD, GNU/Linux, Inferno, Plan 9 from Bell Labs, Solaris, WebOS Linux BSD (FreeBSD, ios, OpenBSD) OpenSolaris
21 AT91SAM7S64 64kB FLASH 512 stron / 128B każda Dostęp do pamięci w pojedynczym cyklu Flagi zabezpieczania sektorów oraz pamięci 16kB SRAM Wykonywanie rozkazów w 3 stopniowym pipeline (Instruction Fetch (F), Decode (D), Execute (E) )
22
23
24
25 Zasilanie: VDDIN (zasilanie Vreg, ADC V) VDDOUT (wyjście z Vreg, 1,8V) VDDIO (zasilanie lini wejscia/wyjścia oraz USB 3.3V lub 1.8V) VDDFLASH (3.3V) VDDCORE (1.8V) VDDPLL (VDDOUT) Pobór prądu: statyczny 60uA, dynamiczny 50mA
26 Zasilanie
27 Tryb DEBUG Zintegrowany EmbeddedICE (embedded incircuit emulator) : Dostep przez JTAG Dwa ukłądy watchpoint Kanał dla wymiany informacji debugującej Układ debug: 2 pin UART, chip ID, debug interrupt JTAG
28 Kontroler Pamięci (Memmory Controller) Blokowanie dostępu do pamięci Zapis/odczyt z pamięci Sprawdzanie poprawności adresowania danych oraz wyrównania danych Przemapowanie pamięci (uruchamianie programu z pamięci SRAM)
29 Organizacja pamięci
30 Zegar oraz Power Management Controller
31 AIC (Advandec Interrupt controller) sprawdza nirq, nfiq; przerwania maskowalne oraz wektorowane, 8 poziomów priorytetów, PIT (Periodic Interval Timer) - 20bit programowalny licznik + 12bit licznik okresu WatchDog timer - 12bit klucz, SCK, może generować reset lub programowy int, może być wyłączony gry w trybie debug Real-Time Timer - 32bity, alarm, SCK, programowalny preskaler 16bit
32 Interfejsy SPI Serial Peripheral Interface (4 pinowy wybó układu slave, Master lub Slave, 8/16bit data, programowalna faza i polaryzacja pinów wyboru, programowanie opóźnienia TWI two-wire interface USART Universal Synchronous asynchronous Receiver Transceiver (RS232, RS485, IrDA) możliwość ustawienia lokalnego echa SSC Serial Synchronous Controller Timer Counter pomiar częstotliwości, zliczanie zdarzęń, pomiar okresu, generowanie impulsów, Delay, PWM
33 PWM (Pulse Width modulation) 4 kanaly USB (2.0) ADC (Analog Digital Converter) 8 kanałów, 10-bit 384k sample/sec; Wyzwalanie sprzętowe/programowe, poprzez pin zewnętrzny, TC 0 do 2 Kontroler DMA komunikacja pomiędzy pamięcią a urządzeniem peryferyjnym (USART, debug, SPI, SSC, ADC)
34 LM3S811 32bit ARM Cortex-M3 v7m Thumb, Thumb-2 50MHz 64kB FLASH 8KB SRAM
35 SystemTimer (SysTick) Sprzętowe dzielenie oraz jedno-cyklowe mnożenie Zintegrowany NVIC (Nester Vectored Interrupt Controller) 26 przerwań z 8 poziomami Memory protection Unit Pozwala na dostęp do danych niewyrównanych Atomowa manipulacja bitami
36 General-Purpose Timers (3 sztuki, 16bit, 32bit) Watchdog SSI (wewnętrzny loopback) UART (16x8 TX; 16x12 RX) ADC (4 x 10bit, 500ksample/sec, temp sens) Analog Comprator I2C PWM (3bloki,16bit, każdy dwa komparatory)
37
38
39 ZEGAR
40 Zasilanie Supply V Zintegrowany LDO (Low Drop-Out) regulator V Pobór prądu max 95mA (50MHz, PLL, while(1), FLASH, Periph ON)
41 GPIO
42 ARM Cortex -M3 Flash aż do 512kB Moduł CRC SRAM aż do 64kB FSMC (Flexible Static Memmory Controller): PC Card/Compact Flash, SRAM, PSRAM, NOR, NAND Port równoległy LCD NVIC (Nested Vector Interrupt Controller) 60 przerwać i 16 poziomów EXTI (External Interrupt Controller)
43 Tryby bootowania: Flash Pamieć systemowa (bootloader z aktywnyn USART1) SRAM Zasilanie - 2,0 3,6V POR (Power-On Reset)/PDR (Power-Down Reset) Tryby oszczędzania zasilania DMA, RTC, Timery, I2C, USART, SPI, I2S, SDIO(SD/SDIO/MMC), CAN, USB, GPIO, ADC, DAC, Czujnik temperatury
44 Schemat blokowy
45 Zegar
46
47 Do 100MHz NVIC ISP (In-System Programming) IAP (In-Application Programming) Flash max 512kB 32/16kB SRAMs dla CPU oraz jeden/dwa 16kB SRAM z osobną scieżką Ethernet, USB Host/Device/OTG, UART (RS232,RS485,IrDA), CAN 2.0B, SPI, SSP, I2C, I2S 70x GPIO, 12bit ADC, 10bit DAC, timery, PWM, RTC,
48
49 Features ARM7TDMI ARM Cortex-M3 Architecture ARMv4T (von Neumann) ARMv7-M (Harvard) ISA Support Thumb/ARM Thumb/Thumb-2 Pipline 3-stage 3-stage + branch speculation Interrupts FIQ/IRQ NMI + 1 to 240 physical interrupts Interrupt Latency cycles 12 cycles Inter-Interrupt Latency 24 cycles 6 cycles Sleep Modes None Integrated Memory Protection None 8 region MPU Dhrystone 0.95DMIPS/MHz (ARM) 0.74DMIPS/MHz (Thumb) 1.25DMIPS/MHz Power Consumption 0.28mW/MHz 0.19mW/MHz Area 0.62mm2 0.82mm2
50
51
52 Cortex Microcontroller Software Interface Standard Warstwa opisu sprzętu niezależna od producenta Składa się z następujących komponentów: CMSIS-CORE oferują interfejs do Cortex-M0, Cortex-M3, Cortex-M4, SC000, SC300 CMSIS-DSP biblioteka DSP (ponad 60 funkcji w stałoprzecinkowej i zmiennoprzecinkowej implementacji) CMSIS-RTOS API CMSIS-SVD System View Description XML
Wykład 2. Mikrokontrolery z rdzeniami ARM
Wykład 2 Źródło problemu 2 Wstęp Architektura ARM (Advanced RISC Machine, pierwotnie Acorn RISC Machine) jest 32-bitową architekturą (modelem programowym) procesorów typu RISC. Różne wersje procesorów
Wykład 4. Przegląd mikrokontrolerów 16-bit: - PIC24 - dspic - MSP430
Wykład 4 Przegląd mikrokontrolerów 16-bit: - PIC24 - dspic - MSP430 Mikrokontrolery PIC Mikrokontrolery PIC24 Mikrokontrolery PIC24 Rodzina 16-bitowych kontrolerów RISC Podział na dwie podrodziny: PIC24F
Wykład 2. Mikrokontrolery z rdzeniami ARM
Źródło problemu 2 Wstęp Architektura ARM (Advanced RISC Machine, pierwotnie Acorn RISC Machine) jest 32-bitową architekturą (modelem programowym) procesorów typu RISC. Różne wersje procesorów ARM są szeroko
Wykład 5. Architektura ARM
Wykład 5 Architektura ARM Plan wykładu ARM co to jest? od historii od dzisiaj Wersje architektury ARMv1 ARMv7 Rodziny obecnie w użyciu ARM7 Cortex-A9 Listy instrukcji ARM, Thumb, Thumb-2, NEON, Jazelle
Wykład 6. Mikrokontrolery z rdzeniem ARM
Wykład 6 Mikrokontrolery z rdzeniem ARM Plan wykładu Cortex-A9 c.d. Mikrokontrolery firmy ST Mikrokontrolery firmy NXP Mikrokontrolery firmy AnalogDevices Mikrokontrolery firmy Freescale Mikrokontrolery
Wykład 2. Przegląd mikrokontrolerów 8-bit: -AVR -PIC
Wykład 2 Przegląd mikrokontrolerów 8-bit: -AVR -PIC Mikrokontrolery AVR Mikrokontrolery AVR ATTiny Główne cechy Procesory RISC mało instrukcji, duża częstotliwość zegara Procesory 8-bitowe o uproszczonej
Procesory firmy ARM i MIPS
Procesory firmy ARM i MIPS 1 Architektura procesorów ARM Architektura ARM (Advanced RISC Machine, pierwotnie Acorn RISC Machine) jest 32-bitową architekturą (modelem programowym) procesorów typu RISC.
Szkolenia specjalistyczne
Szkolenia specjalistyczne AGENDA Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin info@gryftec.com
Wykład 7. Architektura mikroprocesorów powtórka
Wykład 7 Architektura mikroprocesorów powtórka Architektura mikroprocesorów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit:
1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33
Spis treści 3 1. Wprowadzenie...11 1.1. Wstęp...12 1.2. Mikrokontrolery rodziny ARM...13 1.3. Architektura rdzenia ARM Cortex-M3...15 1.3.1. Najważniejsze cechy architektury Cortex-M3... 15 1.3.2. Rejestry
Spis treści. Wykaz ważniejszych skrótów Wprowadzenie Rdzeń Cortex-M Rodzina mikrokontrolerów XMC
Wykaz ważniejszych skrótów... 8 1. Wprowadzenie... 9 1.1. Wstęp... 10 1.2. Opis zawartości książki... 12 1.3. Korzyści płynące dla Czytelnika... 13 1.4. Profil Czytelnika... 13 2. Rdzeń Cortex-M0...15
Charakterystyka mikrokontrolerów. Przygotowali: Łukasz Glapiński, Mateusz Kocur, Adam Kokot,
Charakterystyka mikrokontrolerów Przygotowali: Łukasz Glapiński, 171021 Mateusz Kocur, 171044 Adam Kokot, 171075 Plan prezentacji Co to jest mikrokontroler? Historia Budowa mikrokontrolera Wykorzystywane
3. Sygnały zegarowe i ich konfiguracja, mechanizmy bezpieczeństwa... 47
Spis treści 3 1. Rdzeń Cortex-M3...9 1.1. Firma ARM i jej wyroby...10 1.2. Rodzina rdzeni Cortex...12 1.3. Ogólne spojrzenie na architekturę rdzenia Cortex-M3...13 1.4. Rejestry podstawowe...16 1.5. Przestrzeń
Procesory Blackfin. Część 1
Procesory Blackfin. Część 1 Wykład 7 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Charakterystyka rodziny
Cortex-M3 ST Microelectronics core processor capabilities. Możliwości procesorów z rdzeniem Cortex-M3 firmy ST Microelectronics
Marcin Gąsiorek V rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy Cortex-M3 ST Microelectronics core processor capabilities The paper presents the capabilities of the ARM Cortex-M3
Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie:
Zaliczenie Termin zaliczenia: 14.06.2007 Sala IE 415 Termin poprawkowy: >18.06.2007 (informacja na stronie: http://neo.dmcs.p.lodz.pl/tm/index.html) 1 Współpraca procesora z urządzeniami peryferyjnymi
1.2. Architektura rdzenia ARM Cortex-M3...16
Od Autora... 10 1. Wprowadzenie... 11 1.1. Wstęp...12 1.1.1. Mikrokontrolery rodziny ARM... 14 1.2. Architektura rdzenia ARM Cortex-M3...16 1.2.1. Najważniejsze cechy architektury Cortex-M3... 16 1.2.2.
Kurs Elektroniki. Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26
Kurs Elektroniki Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26 Mikrokontroler - autonomiczny i użyteczny system mikroprocesorowy, który do swego działania wymaga minimalnej liczby elementów dodatkowych.
MIKROKONTROLERY I MIKROPROCESORY
PLAN... work in progress 1. Mikrokontrolery i mikroprocesory - architektura systemów mikroprocesorów ( 8051, AVR, ARM) - pamięci - rejestry - tryby adresowania - repertuar instrukcji - urządzenia we/wy
System czasu rzeczywistego
System czasu rzeczywistego Definicje System czasu rzeczywistego (real-time system) jest to system komputerowy, w którym obliczenia prowadzone równolegle z przebiegiem zewnętrznego procesu mają na celu
STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107
Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity
Mikrokontroler AVR ATmega32 - wykład 9
SWB - Mikrokontroler AVR ATmega32 - wykład 9 asz 1 Mikrokontroler AVR ATmega32 - wykład 9 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Mikrokontroler AVR ATmega32 - wykład 9 asz 2 CechyµC ATmega32 1.
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Współpraca z układami peryferyjnymi i urządzeniami zewnętrznymi Testowanie programowe (odpytywanie, przeglądanie) System przerwań Testowanie programowe
SYSTEMY OPERACYJNE WYKŁAD 1 INTEGRACJA ZE SPRZĘTEM
SYSTEMY OPERACYJNE WYKŁAD 1 INTEGRACJA ZE SPRZĘTEM Marcin Tomana marcin@tomana.net SKRÓT WYKŁADU Zastosowania systemów operacyjnych Architektury sprzętowe i mikroprocesory Integracja systemu operacyjnego
Architektura mikroprocesorów z rdzeniem ColdFire
Architektura mikroprocesorów z rdzeniem ColdFire 1 Rodzina procesorów z rdzeniem ColdFire Rdzeń ColdFire V1: uproszczona wersja rdzenia ColdFire V2. Tryby adresowania, rozkazy procesora oraz operacje MAC/EMAC/DIV
Wykład 3. Przegląd mikrokontrolerów 8-bit: STM8
Wykład 3 Przegląd mikrokontrolerów 8-bit: - 8051 - STM8 Mikrokontrolery 8051 Rodzina 8051 wzięła się od mikrokontrolera Intel 8051 stworzonego w 1980 roku Mikrokontrolery 8051 były przez długi czas najpopularniejszymi
Architektura Systemów Komputerowych. Rozwój architektury komputerów klasy PC
Architektura Systemów Komputerowych Rozwój architektury komputerów klasy PC 1 1978: Intel 8086 29tys. tranzystorów, 16-bitowy, współpracował z koprocesorem 8087, posiadał 16-bitową szynę danych (lub ośmiobitową
Embedded Solutions Automaticon 2012. Efektywne pomiary i sterowanie przy użyciu systemu wbudowanego MicroDAQ
Embedded Solutions Automaticon 2012 Efektywne pomiary i sterowanie przy użyciu systemu wbudowanego MicroDAQ Grzegorz Skiba info@embedded-solutions.pl 1 Plan seminarium Budowa systemu MicroDAQ Zastosowanie
Kurs programowania mikrokontrolerów ARM z rodziny Cortex-M3
Kurs programowania mikrokontrolerów ARM z rodziny Cortex-M3 organizowany przez: Koło Naukowe Mikrosystemów ONYKS we współpracy z: Wydawnictwem BTC Polskim przedstawicielstwem STMicroelectronics Plan spotkania
Mikroprocesory i Mikrosterowniki
Mikroprocesory i Mikrosterowniki Wykład 1 Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Konsultacje Pn,
Technika Mikroprocesorowa
Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa
Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści
Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów2 2. ISP..2 3. I/O Ports..3 4. External Interrupts..4 5. Analog Comparator5 6. Analog-to-Digital Converter.6 7.
UTK ARCHITEKTURA PROCESORÓW 80386/ Budowa procesora Struktura wewnętrzna logiczna procesora 80386
Budowa procesora 80386 Struktura wewnętrzna logiczna procesora 80386 Pierwszy prawdziwy procesor 32-bitowy. Zawiera wewnętrzne 32-bitowe rejestry (omówione zostaną w modułach następnych), pozwalające przetwarzać
Architektura ARM. Materiały do wykładu. Marcin Peczarski. 19 maja 2015. Instytut Informatyki Uniwersytet Warszawski
7 1 2 Materiały do wykładu Architektura ARM Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 19 maja 2015 7 1 2 1 ARM = Advanced RISC Machines Międzynarodowa firma, mająca główną siedzibę w
Systemy wbudowane Mikrokontrolery
Systemy wbudowane Mikrokontrolery Budowa i cechy mikrokontrolerów Architektura mikrokontrolerów rodziny AVR 1 Czym jest mikrokontroler? Mikrokontroler jest systemem komputerowym implementowanym w pojedynczym
System mikroprocesorowy i peryferia. Dariusz Chaberski
System mikroprocesorowy i peryferia Dariusz Chaberski System mikroprocesorowy mikroprocesor pamięć kontroler przerwań układy wejścia wyjścia kontroler DMA 2 Pamięć rodzaje (podział ze względu na sposób
Mikroprocesory i Mikrosterowniki
Mikroprocesory i Mikrosterowniki Wykład 1 Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Konsultacje Pn,
STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107
Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32 Butterfly Zestaw STM32 Butterfly jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity
Bibliografia: pl.wikipedia.org www.intel.com. Historia i rodzaje procesorów w firmy Intel
Bibliografia: pl.wikipedia.org www.intel.com Historia i rodzaje procesorów w firmy Intel Specyfikacja Lista mikroprocesorów produkowanych przez firmę Intel 4-bitowe 4004 4040 8-bitowe x86 IA-64 8008 8080
Systemy Wbudowane. Arduino, AVR. Arduino. Arduino. Arduino. Oprogramowanie. Mikrokontroler. Mikrokontroler Platforma Arduino. Arduino IDE: Arduino C:
Mikrokontroler Platforma Systemy Wbudowane IDE:, AVR mgr inż. Marek Wilkus Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Kraków Mikrokontroler AVR Uno Środowisko Terminal Uruchamianie http://home.agh.edu.pl/~mwilkus
Podstawowe zagadnienia
SWB - Systemy operacyjne w systemach wbudowanych - wykład 14 asz 1 Podstawowe zagadnienia System operacyjny System czasu rzeczywistego Systemy wbudowane a system operacyjny Przykłady systemów operacyjnych
2. Code Composer Studio v4 zintegrowane środowisko projektowe... 41
3 Wstęp...11 1. Procesory serii TMS320F2802x/3x/6x Piccolo... 15 1.1. Organizacja układów procesorowych serii F2802x Piccolo...23 1.2. Organizacja układów procesorowych serii F2803x Piccolo...29 1.3. Organizacja
Systemy na Chipie. Robert Czerwiński
Systemy na Chipie Robert Czerwiński Cel kursu Celem kursu jest zapoznanie słuchaczy ze współczesnymi metodami projektowania cyfrowych układów specjalizowanych, ze szczególnym uwzględnieniem układów logiki
Współpraca procesora ColdFire z urządzeniami peryferyjnymi
Współpraca procesora ColdFire z urządzeniami peryferyjnymi 1 Współpraca procesora z urządzeniami peryferyjnymi Interfejsy dostępne w procesorach rodziny ColdFire: Interfejs równoległy, Interfejsy szeregowe:
Elementy składowe systemu komputerowego
SWB - Systemy wbudowane - wprowadzenie - wykład 9 asz 1 Elementy składowe systemu komputerowego Podstawowe elementy składowe: procesor z ALU pamięć komputera (zawierająca dane i program) urządzenia wejścia/wyjścia
ZL29ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107
ZL29ARM Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw ZL29ARM jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity Line (STM32F107).
Inkubator AVR Podstawy obsługi i programowania mikrokontrolerów rodziny. CZĘŚĆ I. Wprowadzenie i hardware Co na temat AVR każdy wiedzieć powinien? Producent: ATMEL (www.atmel.com) Instrukcje wykonywane
Spis treúci. Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1. Przedmowa... 9. Wstęp... 11
Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1 Spis treúci Przedmowa... 9 Wstęp... 11 1. Komputer PC od zewnątrz... 13 1.1. Elementy zestawu komputerowego... 13 1.2.
Procesory w FPGA H D L. dr inż. Paweł Tomaszewicz Instytut Telekomunikacji Politechnika Warszawska
Procesory w FPGA 1 System w FPGA SOPC - System on a Programmable Chip System mikroprocesorowy w układzie programowalnym: softprocesor zrealizowany w logice układu FPGA NIOS2 Altera Microblaze Xilinx OpenRISC
Podstawy Systemów Wbudowanych
Podstawy Systemów Wbudowanych Wykład 8: Wprowadzenie do układów SoC - Raspberry PI Angelika Tefelska Dariusz Tefelski Zakład Fizyki Jądrowej, Wydział Fizyki PW 28 kwietnia 2017 Angelika Tefelska Dariusz
Architektura komputerów
Architektura komputerów Wykład 12 Jan Kazimirski 1 Magistrale systemowe 2 Magistrale Magistrala medium łączące dwa lub więcej urządzeń Sygnał przesyłany magistralą może być odbierany przez wiele urządzeń
11.Mikrokomputeryjednoukładowe
Materiały do wykładu 11.Mikrokomputeryjednoukładowe Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 14maja2008 Podstawowe cechy(1) 11.1 Innenazwy mikrokontroler mikroprocesor do zastosowań
Liczniki z zastosowaniem
Liczniki z zastosowaniem FPGA i µc Fizyka Medyczna, studia II stopnia, Dozymetria i elektronika w medycynie 1 Zliczanie impulsów Źródło impulsów Kondycjonowanie Licznik Wyświetlacz Układ czasowy 2 Liczniki
2. Architektura mikrokontrolerów PIC16F8x... 13
Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator
Sygnały DRQ i DACK jednego kanału zostały użyte do połączenia kaskadowego obydwu sterowników.
Płyty główne Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz Układ DMA Układ DMA zawiera dwa sterowniki przerwań 8237A połączone kaskadowo. Każdy sterownik 8237A
Wykład Mikrokontrolery i mikrosystemy Cele wykładu:
Wykład Mikrokontrolery i mikrosystemy Cele wykładu: Poznanie podstaw budowy, zasad działania i sterowania mikrokontrolerów i ich urządzeń peryferyjnych. Niezbędna wiedza do dalszego samokształcenia się
Architektura mikroprocesorów TEO 2009/2010
Architektura mikroprocesorów TEO 2009/2010 Plan wykładów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit: 8051, ST7 Wykład
ARM y jakich (jeszcze) nie znacie
ARM y jakich (jeszcze) nie znacie Jak zareaguje przeciętny inżynier elektronik na propozycję budowy sterownika na mikrokontrolerze 32 bitowym? W większości przypadków nie potraktuje jej serio, zwłaszcza
WYKŁAD 5. Zestaw DSP60EX. Zestaw DSP60EX
Zestaw DSP60EX Karta DSP60EX współpracuje z sterownikiem DSP60 i stanowi jego rozszerzenie o interfejs we/wy cyfrowy, analogowy oraz użytkownika. Karta z zamontowanym sterownikiem pozwala na wykorzystanie
RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC,
RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, zapoczątkowana przez i wstecznie zgodna z 16-bitowym procesorem
Wstęp...9. 1. Architektura... 13
Spis treści 3 Wstęp...9 1. Architektura... 13 1.1. Schemat blokowy...14 1.2. Pamięć programu...15 1.3. Cykl maszynowy...16 1.4. Licznik rozkazów...17 1.5. Stos...18 1.6. Modyfikowanie i odtwarzanie zawartości
Wbudowane układy komunikacyjne cz. 1 Wykład 10
Wbudowane układy komunikacyjne cz. 1 Wykład 10 Wbudowane układy komunikacyjne UWAGA Nazwy rejestrów i bitów, ich lokalizacja itd. odnoszą się do mikrokontrolera ATmega32 i mogą być inne w innych modelach!
Technika mikroprocesorowa
Technika mikroprocesorowa zajmuje się przetwarzaniem danych w oparciu o cyfrowe programowalne układy scalone. Systemy przetwarzające dane w oparciu o takie układy nazywane są systemami mikroprocesorowymi
Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne
Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...
o Instalacja środowiska programistycznego (18) o Blink (18) o Zasilanie (21) o Złącza zasilania (22) o Wejścia analogowe (22) o Złącza cyfrowe (22)
O autorze (9) Podziękowania (10) Wstęp (11) Pobieranie przykładów (12) Czego będę potrzebował? (12) Korzystanie z tej książki (12) Rozdział 1. Programowanie Arduino (15) Czym jest Arduino (15) Instalacja
Charakterystyka mikrokontrolerów
Charakterystyka mikrokontrolerów 1. Historia powstania Pierwszym mikrokontrolerem (a nie mikroprocesorem) był wyprodukowany pod koniec roku 1972 przez Texas Instruments procesor TMS1000. Łączył on w sobie
Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski
Układ wykonawczy, instrukcje i adresowanie Dariusz Chaberski System mikroprocesorowy mikroprocesor C A D A D pamięć programu C BIOS dekoder adresów A C 1 C 2 C 3 A D pamięć danych C pamięć operacyjna karta
prowadzący: mgr inż. Piotr Prystupiuk
prowadzący: mgr inż. Piotr Prystupiuk Instytut Tele- i Radiotechniczny WARSZAWA Zaawansowane technologie teleinformatyczne i systemy informatyczne do budowy zintegrowanych platform obsługi inteligentnych
2. Budowa układów procesorowych rodziny TMS320C
3 Wstęp...8 1. Procesory sygnałowe DSC (Digital Signal Controllers)...11 1.1. Przegląd układów procesorowych czasu rzeczywistego...13 1.2. Procesory rodziny TMS320C2000 firmy Texas Instruments...15 2.
Architektura Systemów Komputerowych. Bezpośredni dostęp do pamięci Realizacja zależności czasowych
Architektura Systemów Komputerowych Bezpośredni dostęp do pamięci Realizacja zależności czasowych 1 Bezpośredni dostęp do pamięci Bezpośredni dostęp do pamięci (ang: direct memory access - DMA) to transfer
ADuCino 360. Zestaw uruchomieniowy dla mikrokontrolerów ADuCM360/361
Zestaw uruchomieniowy dla mikrokontrolerów ADuCM360/361 ADuCino 360 Zestaw ADuCino jest tanim zestawem uruchomieniowym dla mikrokontrolerów ADuCM360 i ADuCM361 firmy Analog Devices mechanicznie kompatybilnym
Mikroprocesory rodziny INTEL 80x86
Mikroprocesory rodziny INTEL 80x86 Podstawowe wła ciwo ci procesora PENTIUM Rodzina procesorów INTEL 80x86 obejmuje mikroprocesory Intel 8086, 8088, 80286, 80386, 80486 oraz mikroprocesory PENTIUM. Wprowadzając
Programowanie mikrokontrolerów AVR
Programowanie mikrokontrolerów AVR Czym jest mikrokontroler? Mikrokontroler jest małym komputerem podłączanym do układów elektronicznych. Pamięć RAM/ROM CPU wykonuje program Układy I/O Komunikacje ze światem
Timery w mikrokontrolerach STM32F3
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Podstawy Programowania Mikroprocesorów i Procesorów DSP Timery w mikrokontrolerach
Mikroprocesory i mikrosterowniki
Mikroprocesory i mikrosterowniki Wykład 1 wstęp, budowa mikrokontrolera Wydział Elektroniki Mikrosystemów i Fotoniki Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Piotr Markowski
MODUŁ UNIWERSALNY UNIV 3
1. Cechy Moduł służy do budowy modułów systemu automatyki domowej HAPCAN. - Zawiera procesor CPU (PIC18F26K80) - Transceiver CAN MCP2551 - Układ wyprowadzeń zgodny z DIL-24 (15,24mm) - Zgodny z CAN 2.0B
Komunikacja w mikrokontrolerach. Wydział Elektroniki Mikrosystemów i Fotoniki Piotr Markowski
Komunikacja w mikrokontrolerach Wydział Elektroniki Mikrosystemów i Fotoniki Piotr Markowski Treść kursu Programowanie mikrokontrolerów AVR (ATMEL) Orientacja na komunikację międzyukładową w C Literatura
Budowa Mikrokomputera
Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,
1. Wstęp Różnice pomiędzy mikrokontrolerami ST7 a ST7LITE Rdzeń mikrokontrolerów ST7FLITE... 15
3 1. Wstęp... 9 2. Różnice pomiędzy mikrokontrolerami ST7 a ST7LITE... 11 3. Rdzeń mikrokontrolerów ST7FLITE... 15 3.1. Jednostka centralna...16 3.2. Organizacja i mapa pamięci...19 3.2.1. Pamięć RAM...20
Podstawy Techniki Mikroprocesorowej
Podstawy Techniki Mikroprocesorowej Architektury mikroprocesorów Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com.
Układy czasowo-licznikowe w systemach mikroprocesorowych
Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość
Jednym słowem mikroprocesor to procesor wykonany w skali mikro w technologii mikroelektronicznej. Procesor to układ (urządzenie) przetwarzające
1 Jednym słowem mikroprocesor to procesor wykonany w skali mikro w technologii mikroelektronicznej. Procesor to układ (urządzenie) przetwarzające informacje z zewnątrz. Lub jeszcze inaczej Procesor (ang.
Sprawdzian test egzaminacyjny 2 GRUPA I
... nazwisko i imię ucznia Sprawdzian test egzaminacyjny 2 GRUPA I 1. Na rys. 1 procesor oznaczony jest numerem A. 2 B. 3 C. 5 D. 8 2. Na rys. 1 karta rozszerzeń oznaczona jest numerem A. 1 B. 4 C. 6 D.
ZL6ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC213x. Tab. 1. Zestawienie najważniejszych parametrów wybranych mikrokontrolerów z rodziny LPC213x
ZL6ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC213x (rdzeń ARM7TMDI-S) Kompatybilny z zestawem MCB2130 firmy Keil! Zestaw ZL6ARM opracowano z myślą o elektronikach chcących szybko zaznajomić się
Pośredniczy we współpracy pomiędzy procesorem a urządzeniem we/wy. W szczególności do jego zadań należy:
Współpraca mikroprocesora z urządzeniami zewnętrznymi Urządzenia wejścia-wyjścia, urządzenia których zadaniem jest komunikacja komputera z otoczeniem (zwykle bezpośrednio z użytkownikiem). Do najczęściej
Wykład Mikroprocesory i kontrolery
Wykład Mikroprocesory i kontrolery Cele wykładu: Poznanie podstaw budowy, zasad działania mikroprocesorów i układów z nimi współpracujących. Podstawowa wiedza potrzebna do dalszego kształcenia się w technice
Szkolenie C. Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3. Broszura informacyjna Wersja 1.
Szkolenie C Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 Broszura informacyjna Wersja 1.0 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin
Metody optymalizacji soft-procesorów NIOS
POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Technik Informacyjnych Instytut Telekomunikacji Zakład Podstaw Telekomunikacji Kamil Krawczyk Metody optymalizacji soft-procesorów NIOS Warszawa, 27.01.2011
Stosowanie tego urządzenia zwiększa możliwości stosowanego sprzętu jak i sofware.
There are no translations available. DEVKIT8500A/D DevKit8500D DM3730 Evaluation Kit DevKit8500A AM3715 Evaluation Kit Jest to kontynuakcja świetnego DevKit8000. Stosowanie tego urządzenia zwiększa możliwości
Układy zegarowe w systemie mikroprocesorowym
Układy zegarowe w systemie mikroprocesorowym 1 Sygnał zegarowy, sygnał taktujący W każdym systemie mikroprocesorowym jest wymagane źródło sygnałów zegarowych. Wszystkie operacje wewnątrz jednostki centralnej
MMstm32F103Vx. Instrukcja uŝytkownika REV 1.1. Many ideas one solution
MMstm32F103Vx REV 1.1 Instrukcja uŝytkownika Evalu ation Board s for 51, AVR, ST, PIC microcontrollers Sta- rter Kits Embedded Web Serve rs Prototyping Boards Minimodules for microcontrollers, etherdesigning
Programowanie w asemblerze ARM wprowadzenie
Programowanie w asemblerze ARM wprowadzenie 17 stycznia 2017 Historia Firma ARM Ltd. powstała w 1990 roku jako Advanced RISC Machines Ltd., joint venture firm Acorn Computers, Apple Computer i VLSI Technology.
Zewnętrzne układy peryferyjne cz. 1 Wykład 12
Zewnętrzne układy peryferyjne cz. 1 Wykład 12 Wyświetlacz LCD zgodny z HD44780 Wyświetlacz LCD zgodny z HD44780 2 HD44780 Standardowy sterownik alfanumerycznych wyświetlaczy LCD opracowany przez firmę
ZL5ARM. Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) Kompatybilność z zestawem MCB2100 firmy Keil
ZL5ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) ZL5ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) 1 Zestaw ZL5ARM opracowano z myślą o
1. Wprowadzenie Wstęp
1 Wprowadzenie 12 1. Wprowadzenie 1.1. Wstęp We współczesnej technice powszechne jest wykorzystanie programowalnych układów cyfrowych. Często stanowią one jeden z elementów większego urządzenia bądź systemu
Arduino dla początkujących. Kolejny krok Autor: Simon Monk. Spis treści
Arduino dla początkujących. Kolejny krok Autor: Simon Monk Spis treści O autorze Podziękowania Wstęp o Pobieranie przykładów o Czego będę potrzebował? o Korzystanie z tej książki Rozdział 1. Programowanie
Pamięci i urządzenia peryferyjne Wprowadzenie do przedmiotu
Pamięci i urządzenia peryferyjne Wprowadzenie do przedmiotu Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez
PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM PROJEKTOWANIA ZINTEGROWANEGO
II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM
Szczegółowy opis przedmiotu zamówienia. Część 1 - Laboratoryjny zestaw prototypowy
Załącznik nr 6 do SIWZ Szczegółowy opis przedmiotu zamówienia Ilość: 3 sztuki (kpl.) CPV 38434000-6 analizatory Część 1 - Laboratoryjny zestaw prototypowy Parametry urządzenia: Zintegrowany oscyloskop:
>>> Techniki rozbudowy systemów wbudowanych >>> Systemy wbudowane. Name: Mariusz Naumowicz Date: 29 maja 2019 [~]$ _ [1/32]
>>> Techniki rozbudowy systemów wbudowanych >>> Systemy wbudowane Name: Mariusz Naumowicz Date: 29 maja 2019 [~]$ _ [1/32] >>> Treści wykładu I 1. Systemy wbudowane 2. Podział procesorów 3. Tryby User