Ćwiczenie Technika Mikroprocesorowa komputery 001 Układy sekwencyjne cz. 1
|
|
- Antonina Lipińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie Technika Mikroprocesorowa komputery 001 Układy sekwencyjne cz. 1 TECHNIKA MIKROPROCESOROWA 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII AKADEMIA GÓRNICZO-HUTNICZA Cele ćwiczenia Zapoznanie z pakietami narzędziowymi MMLogic oraz Digital Works Poznanie budowy i zasad działania przerzutników Nabycie umiejętności wykorzystania przerzutników w prostych układach sekwencyjnych Wstęp Dotychczas poznane układy logiczne bramki, układy bramek realizujące funkcje logiczne itp., były układami kombinacyjnymi. Oznacza to że stan wyjścia bramki lub układu bramek realizującego funkcję, zależał tylko od podanej kombinacji sygnałów na wejścia układu oraz jego połączeń wewnętrznych, miedzy bramkami, modułami. Układy cyfrowe sekwencyjne charakteryzują się tym, że stan na ich wyjściu (wyjściach) zależy nie tylko od podanych sygnałów wejściowych i połączeń między elementami układu, ale również od stanu w chwilach poprzednich zapamiętanych w układzie. Układy sekwencyjne dzielą się na: asynchroniczne bez modułu zegara zmiana sygnałów wejściowych X natychmiast powoduje zmianę wyjść Y (Q). W związku z tym układy te są szybkie, ale jednocześnie podatne na zjawisko hazardu i wyścigu synchroniczne z modułem zegara zmiana stanu wewnętrznego następuje wyłącznie w określonych chwilach, które wyznacza sygnał zegarowy (ang. clock). Każdy układ synchroniczny posiada wejście zegarowe oznaczane zwyczajowo symbolami C, CLK lub CLOCK. Charakterystyczne dla układów synchronicznych, jest to, iż nawet gdy stan wejść się nie zmienia, to stan wewnętrzny - w kolejnych taktach zegara - może ulec zmianie Najbardziej popularnymi układami sekwencyjnymi są: przerzutniki, rejestry, liczniki czy proste pamięci. Pakiet MMLogic Pakiet Multimedia Logic to narzędzie umożliwiające symulację pracy układów cyfrowych, logicznych i mikroprocesorowych. Pomimo niewielkich rozmiarów pliku instalacyjnego (1,4 MB!!! mieścił się na dawnej dyskietce 3,5 ), dysponuje jednak szeroką gamą narzędzi użytkowych i gotowych modułów logicznych, pozwalających na budowę modeli nawet bardzo zaawansowanych funkcjonalnie układów cyfrowych i mikroprocesorowych. Więcej informacji i możliwość pobrania pliku instalacyjnego (FREE!!!) na stronie: Po instalacji - warto zajrzeć do katalogu Examples, gdzie znajdują się przykładowe, gotowe już modele symulacyjne bardzo proste i złożone. Niektóre z plików przykładowych są również wykorzystywane w ćwiczeniach, zwłaszcza przy poznawaniu wybranych elementów i modułów układów sekwencyjnych. Ścieżka do ogólnego katalogu przykładów (EXAMPLES): C:\Program Files\Softronics\Mulimedia Logic\Examples KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII 1/8
2 Środowisko pracy MMLogic najważniejsze elementy OKNO PAKIETU: Rysunek 1 Panel startowy pakietu MMLogic Najważniejsze elementy w programie MMLogic, niezbędne do rozpoczęcia pracy w pakiecie symulacyjnym pokazano na rysunku 1. W Palecie Narzędzi znajdują się wszystkie elementy dostępne w pakiecie do budowy modeli układów cyfrowych i mikroprocesorowych. Można wydzielić w nich pewne grupy schematycznie widoczne na rysunku 2. Rysunek 2 Paleta narzędzi (zaznaczono najważniejsze wykorzystywane w ćwiczeniach) KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII 2/8
3 Ważne: Standardowo szybkość realizacji symulacji ustawiona jest w pakiecie na wartość maksymalną. Jednak by zauważyć i analizować zmiany sygnałów szczególnie w przypadku układów sekwencyjnych, może być konieczna jej zmiana i ustawienie konkretnych częstotliwości pracy zegara polecane: 5 Hz, 10 Hz. Jak dokonać zmiany pokazano na rysunku 3. Rysunek 3 Menu zmiany prędkości symulacji częstotliwość zegara Program ćwiczenia 1) Przerzutniki podstawowe elementy układów sekwencyjnych 2) Weryfikacja działania przerzutników RS i JK, JK-MS tabele prawdy/stanów, przebiegi czasowe Przerzutniki podstawowe informacje i symulacje Przerzutnik (ang. flip flop) jest układem cyfrowym wyposażonym w pamięć. W przypadku bramki cyfrowej stan jej wyjścia jest bezpośrednio uzależniony od stanów panujących na wejściach - opisuje to funkcja logiczna realizowana przez bramkę. W przerzutniku jest nieco inaczej - zapamiętuje on swój stan wewnętrzny. Stan ten może być zmieniony przez odpowiednie wysterowanie wejść. Typowy przerzutnik jest układem cyfrowym posiadającym kilka wejść sterujących oraz dwa wyjścia komplementarne Q i Q, na których panują zawsze przeciwne stany logiczne (z dokładnością do czasu propagacji sygnałów wewnątrz przerzutnika - zjawisko Hazardu). PRZERZUTNIK RS --- W najprostszym przerzutniku RS stan wysoki na wejściu S (ang. Set - ustawianie), wymusza przejście wyjścia Q w stan 1. Z kolei stan wysoki na wejściu R (ang. Reset - zerowanie), wymusza przejście wyjścia Q w stan 0. Stan wyjścia Q może się również zmieniać pod wpływem określonej kombinacji stanów wejść (obrazują to tabele prawdy/stanów). Widok bloku przerzutnika RS w pakiecie MMLogic pokazano na rysunku 4. Rysunek 4 Przerzutnik RS blok oraz schemat wewnętrzny na bramkach NAND KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII 3/8
4 Przerzutnik powstaje dzięki sprzężeniu zwrotnemu (ang. feed back) wyjść z wejściami. Sprzężenie to powoduje, iż przerzutnik utrzymuje ostatni stan wyjść Qn-1 po przejściu stanów logicznych na wejściach w stan neutralny. Przerzutnik może być wykonany z użyciem różnych bramek najczęściej NAND lub NOR patrz: rysunek 5. Rysunek 5 Przerzutniki RS i ich tabele stanów (kolor czerwony sygnałów 1 logiczna) Stany zaznaczone w tabelach na czerwono stany zabronione w przerzutniku RS. Wówczas wynikowy stan wyjścia Q jest nieokreślony - może być równy 1 lub 0, w zależności od wewnętrznych hazardów w sieci logicznej przerzutnika - nie daje się przewidzieć. Symulacja pracy przerzutnika RS: 1. Otworzyć w pakiecie MMLogic plik RSFF.LGI z katalogu Examples\Basic. 2. Uruchomić symulację i obserwować efekt działania 3. Przerwać symulację i zapisać plik pod nazwą RSFF1.LGI --- w katalogu STUDENT na dysku D:\ 4. Do tego pliku dodać blok przerzutnika RS (Flip-Flop) z palety narzędzi, dwa przełączniki typu Switch (nie Push) oraz dwie diody LED. 5. Podłączyć przełączniki do wejść przerzutnika, a diody do wyjść. 6. Uruchomić symulację i obserwować pracę obu układów. 7. Zanalizować i odpowiedzieć: Z jakich bramek zbudowany jest blok przerzutnika RS? Dlaczego lepiej stosować w obsłudze przerzutnika RS przyciski Push na wejściach zadających sygnały Set i Reset? PRZERZUTNIK JK i JK-MS --- Podstawową wadą przerzutnika RS jest oczywiście stan nieustalony. Aby wyeliminować tę niedogodność, zaproponowano w prowadzenie zegara taktującego, od którego stanu zależy reakcja przerzutnika na zmiany sygnałów Set i Reset. Taki przerzutnik nazwano RS Clocked lub JK (gdzie wejścia R i S zamieniono na J i K), a jego budowę i tabelę stanów pokazano na rysunku 6. Rysunek 6 Przerzutnik JK i jego tabela stanów (kolor czerwony sygnałów 1 logiczna) KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII 4/8
5 Obserwacja pracy przerzutnika RS taktowanego lub JK PAKIET MMLogic: 1. Otworzyć w pakiecie MMLogic plik CLKRSFF.LGI z katalogu Examples\Basic. 2. Uruchomić symulację i obserwować efekt działania zmieniając stany na wejściach i wyzwalając plik wejście CLK. 3. Przerwać symulację i zapisać plik pod nazwą CLKRSFF 1.LGI --- w katalogu STUDENT na dysku D:\ 4. Do pliku dodać blok oscylatora (Oscillator) z palety narzędzi i podłączyć go zamiast przełącznika C (L) Clock. 5. W parametrach oscylatora (prawy klawisz myszy, opcja Properties ) ustawić cykle Hi i Lo na 2. W parametrach symulacji zmienić częstotliwość zegara (Simulation Rate) na 5 Hz. 6. Uruchomić symulację, zmieniać stany wejść R i S i obserwować zachowanie układu. WNIOSEK: Zachowanie układu nie jest do końca zadowalające. Przy zadaniu R=1 i S=1 powstają na wyjściu oscylacyjne zmiany sygnału, zależne od częstotliwości zegara CLK. Aby pozbyć się kłopotów z doborem czasu trwania impulsu zegarowego (ważne tylko dla J=1 i K=1), często stosuje się układ Master/Slave, z buforowaniem zmian sygnału przez czas jednego cyklu zegarowego. W ten sposób powstaje przerzutnik JK-MS, zwykle wyzwalany zboczem sygnału zegarowego, zatem nie wystąpią w nim problemy ze wzbudzaniem się układu. Budowa i tabela stanów pokazana na rysunku 7. Rysunek 7 Przerzutnik JK-MS wyzwalany zboczem narastającym i jego tabela stanów (kolor czerwony sygnałów 1 logiczna) Symulacja pracy przerzutnika JK-MS PAKIET MMLogic: 1. Otworzyć w pakiecie MMLogic plik JKFF.LGI z katalogu Examples\Basic. 2. Uruchomić symulację i obserwować efekt działania (na początku mogą być stany nieustalone należy zadać np. wej. J na 1 i puścić impuls CLK) 3. Przerwać symulację i zapisać plik pod nazwą JKFF1.LGI --- w katalogu STUDENT na dysku D:\ 4. Do tego pliku dodać blok oscylatora (Oscillator) z palety narzędzi i podłączyć go zamiast przełącznika C (L) Clock. 5. W parametrach oscylatora (prawy klawisz myszy, opcja Properties ) ustawić cykle Hi i Lo na 2. W parametrach symulacji zmienić częstotliwość zegara (Simulation Rate) na 5 Hz. 6. Uruchomić symulację i zmieniać kolejno stany wejść J i K (J=1 K=0, J=0 K=1, J=0 K=0, J=1, K=1), obserwując zmiany stanu wyjść Q i /Q. 7. Zanalizować i odpowiedzieć: Jaka jest tabela stanów wyjść Q i /Q przy jakich stanach J i K stan wyjścia Q się nie zmienia? jak zachowuje się wyjście Q przy J=1 i K=1? 8. Porównać wnioski własne z symulacji z tabelą pokazaną na rysunku 7 KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII 5/8
6 Przebiegi czasowe przerzutnika JK-MS wyzwalanego zboczami (Edgge triggered): W budowie wewnętrznej przerzutnika JK-MS można wydzielić dwa bloki: Master i Slave. Dla każdego z nich teoretycznie (do analizy) możliwe jest wypuszczenie sygnału wyjść Q1 i Q2 jak na rysunku 8. Rysunek 8 Przerzutniki JK-MS z zaznaczeniem struktury wewnętrznej i wyjściami roboczymi Q1 i Q2 Dzięki temu możliwe jest przeanalizowanie pracy przerzutnika JK-MS i wyznaczenie dla niego przebiegów czasowych sygnału wyjściowego, zależnie od sygnałów wejściowych J i K oraz CLK. Zakłada się początkowy stan Q1 i Q2 = 0. Na przykład: Rysunek 9 Przebiegi czasowe sygnałów CLK, J i K dla przerzutnika JK-MS Do symulacji układu przerzutnika JK-MS wyzwalanego zboczami i rejestracji jego przebiegów czasowych, wykorzystany będzie pakiet Digital Works. Pakiet Digital Works 3.04 Pakiet Digital Works to kolejne narzędzie do symulacji układów cyfrowych. Ma mniej rozbudowane menu dostępnych gotowych elementów i modułów logicznych, jednak umożliwia budowanie własnych makr i ich wykorzystywanie jako gotowych bloków w plikach symulacyjnych. W ćwiczeniu wykorzystamy jedno z narzędzi pakietu Digital Works, pozwalające na śledzenie zmian sygnałów w czasie, a zatem pokazanie i rejestrację przebiegów czasowych układów logicznych. KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII 6/8
7 OKNO PAKIETU: Rysunek 10 Okno główne pakietu Digital Works Symulacja pracy przerzutnika JK-MS PAKIET Digital Works: 1. Otworzyć w pakiecie Digital Works nowy plik, nadać mu nazwę i zapisać --- w katalogu STUDENT na dysku D:\ 2. Do symulacji dodać elementy: a. Przerzutnik JK b. Blok Zegara - połączyć z wejściem clock przerzutnika c. Dwie diody LED połączyć je z wyjściami przerzutnika nadać im nazwy Q i /Q (prawy klawisz myszy na diodzie LED i wpisać Text) wybrać też opcję Add to Logic History d. Dwa obiekty Sequence Generator połączyć je odpowiednio do wejść J i K przerzutnika - nadać im nazwy seq--j i seq--k (prawy klawisz myszy na obiekcie i wpisać Text) wybrać też opcję Add to Logic History 3. Do obiektów Sequence Generator wpisać sekwencję zmiany sygnałów prawy klawisz myszy Edit Sequence i wpisać słowa 8 bitowe jakie wynikają z wykresów na rysunku 9 a. Dla seq J: Dla seq K: W OPCJE symulacji ustawić szybkość symulacji na 1 Hz 5. Otworzyć okno LOGIC HISTORY (rysunek 11) ustawić w nim długość rejestracji przebiegów - zakres cykli zegarowych na 8 6. Uruchomić symulację i obserwować przebiegi 7. Zaproponować inne sekwencje sygnałów na wejściach J i K oraz wydłużyć czas rejestracji przebiegów do 16 cykli - obserwować przebiegi, wysnuć wnioski co do zależności sygnału wyjściwoego od zmian sygnałów na wejściach J i K 8. NA KONIEC komentarz prowadzącego zajęcia zapis tabeli stanów dla przerzutnika JK-MS różnica w wyzwalaniu poziomem i zboczami KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII 7/8
8 Rysunek 11 Okno rejestratora przebiegów czasowych LOGIC HISTORY PODSUMOWANIE Po zajęciach Student powinien: znać i wyjaśnić różnicę między układami kombinacyjnymi a sekwencyjnymi znać budowę, zasadę działania i tabele stanów przerzutników RS znać budowę, zasadę działania i tabele stanów przerzutników JK i JK-MS oraz narysować i przeanalizować ich przebiegi czasowe Materiały: Polecam stronę WWW: oraz pozycje zebrane w literaturze na mojej stronie WWW: KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII 8/8
Przerzutniki RS i JK-MS lab. 04 Układy sekwencyjne cz. 1
Przerzutniki RS i JK-MS lab. 04 Układy sekwencyjne cz. 1 PODSTAWY TECHNIKI MIKROPROCESOROWEJ 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA
Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1
Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1 PODSTAWY TECHNIKI CYFROWEJ I MIKROPROCESOROWEJ EIP KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA
Ćwiczenie MMLogic 002 Układy sekwencyjne cz. 2
Ćwiczenie MMLogic 002 Układy sekwencyjne cz. 2 TECHNIKA MIKROPROCESOROWA 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA WWW.AGH.EDU.PL
Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB
Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby
Proste układy sekwencyjne
Proste układy sekwencyjne Układy sekwencyjne to takie w których niektóre wejścia są sterowany przez wyjściaukładu( zawierają sprzężenie zwrotne ). Układy sekwencyjne muszą zawierać elementy pamiętające
Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp:
Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Licznik elektroniczny - układ cyfrowy, którego zadaniem jest zliczanie wystąpień sygnału zegarowego. Licznik złożony
Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D
AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest
PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające
PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające Zapamiętywanie wartości wybranych zmiennych binarnych, jak również sekwencji tych wartości odbywa się w układach
Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1
Część 3 Układy sekwencyjne Układy sekwencyjne i układy iteracyjne - grafy stanów 18.11.2017 TCiM Wydział EAIiIB Katedra EiASPE 1 Układ cyfrowy - przypomnienie Podstawowe informacje x 1 x 2 Układ cyfrowy
Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2
Cyfrowe układy sekwencyjne 5 grudnia 2013 Wojciech Kucewicz 2 Układy sekwencyjne Układy sekwencyjne to takie układy logiczne, których stan wyjść zależy nie tylko od aktualnego stanu wejść, lecz również
TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH
Praca laboratoryjna 2 TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Cel pracy poznanie zasad funkcjonowania przerzutników różnych typów w oparciu o różne rozwiązania układowe. Poznanie sposobów
Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2
tatyczne i dynamiczne badanie przerzutników - ćwiczenie 2. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz
dwójkę liczącą Licznikiem Podział liczników:
1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.
Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.
Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych
Ćwiczenie Digital Works 003 Układy sekwencyjne i kombinacyjne
TECHNIKA MIKROPROCESOROWA 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA WWW.AGH.EDU.PL Temat: Narzędzia: Digital Works pakiet
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur Piotr Fita Elektronika cyfrowa i analogowa Układy analogowe - przetwarzanie sygnałów, których wartości zmieniają się w sposób ciągły w pewnym zakresie
Statyczne badanie przerzutników - ćwiczenie 3
Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz
Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne
Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne Ćwiczenie nr 4: Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest
Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne
Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych
Liczniki, rejestry lab. 08 Mikrokontrolery WSTĘP
Liczniki, rejestry lab. 08 PODSTAWY TECHNIKI CYFROWEJ I MIKROPROCESOROWEJ EIP KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA WWW.AGH.EDU.PL
UKŁADY CYFROWE. Układ kombinacyjny
UKŁADY CYFROWE Układ kombinacyjny Układów kombinacyjnych są bramki. Jedną z cech układów kombinacyjnych jest możliwość przedstawienia ich działania (opisu) w postaci tabeli prawdy. Tabela prawdy podaje
Ćw. 7: Układy sekwencyjne
Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy
Cyfrowe układy scalone c.d. funkcje
Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe
Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).
Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów
Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01
ĆWICZENIE 01 Ćwiczenie 01 - Strona nr 1 Polecenie: Bez użycia narzędzi elektronicznych oraz informatycznych, wykonaj konwersje liczb z jednego systemu liczbowego (BIN, OCT, DEC, HEX) do drugiego systemu
Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja
Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja 0.1 29.10.2013 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące
Układy kombinacyjne - przypomnienie
SWB - Układy sekwencyjne - wiadomości podstawowe - wykład 4 asz 1 Układy kombinacyjne - przypomnienie W układzie kombinacyjnym wyjście zależy tylko od wejść, SWB - Układy sekwencyjne - wiadomości podstawowe
WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie
Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu
Temat: Sprawdzenie poprawności działania przerzutników. Wstęp: Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu cyfrowego, przeznaczonego do przechowywania i ewentualnego
Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem
Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,
Podział układów cyfrowych. rkijanka
Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych
Układy sekwencyjne. 1. Czas trwania: 6h
Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów
LICZNIKI LABORATORIUM. Elektronika AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI Rev.1.0 1. Wprowadzenie Celem ćwiczenia
Układy sekwencyjne. 1. Czas trwania: 6h
Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów
Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania.
Badanie liczników asynchronicznych - Ćwiczenie 4 1. el ćwiczenia Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich
Plan wykładu. Architektura systemów komputerowych. Cezary Bolek
Architektura systemów komputerowych Poziom układów logicznych. Układy sekwencyjne Cezary Bolek Katedra Informatyki Plan wykładu Układy sekwencyjne Synchroniczność, asynchroniczność Zatrzaski Przerzutniki
LICZNIKI PODZIAŁ I PARAMETRY
LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność
Programowalne układy logiczne
Programowalne układy logiczne Przerzutniki Szymon Acedański Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 20 maja 2013 Przerzutnik synchroniczny Układ synchroniczny wyzwalany ustalonym
LEKCJA. TEMAT: Funktory logiczne.
TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość
UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Układem sekwencyjnym nazywamy układ
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM.
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI ELWIS Rev.1.0 1. Wprowadzenie Celem
1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.
Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.
LABORATORIUM ELEKTRONIKI. Jakub Kaźmierczak. 2.1 Sekwencyjne układy pamiętające
2 Cyfrowe układy sekwencyjne Cel ćwiczenia LABORATORIUM ELEKTRONIKI Celem ćwiczenia jest zapoznanie się z cyfrowymi elementami pamiętającymi, budową i zasada działania podstawowych przerzutników oraz liczników
Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.
Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają
Programowalne układy logiczne
Programowalne układy logiczne Układy synchroniczne Szymon Acedański Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 26 października 2015 Co to jest układ sekwencyjny? W układzie sekwencyjnym,
Ćwiczenie SIB-C2. System automatyki budynkowej standardu KNX - funkcje podstawowe wej/wyj, funkcje czasowe, załączanie/wyłączanie, topologia sieci
Ćwiczenie SIB-C2. System automatyki budynkowej standardu KNX - funkcje podstawowe wej/wyj, funkcje czasowe, załączanie/wyłączanie, topologia SYSTEMY INTELIGENTNYCH BUDYNKÓW KATEDRA ENERGOELEKTRONIKI I
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 6 BADANIE UKŁADÓW SEKWENCYJNYCH A. Cel ćwiczenia. - Poznanie przeznaczenia i zasady działania przerzutnika
Projekt prostego układu sekwencyjnego Ćwiczenia Audytoryjne Podstawy Automatyki i Automatyzacji
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Projekt prostego układu sekwencyjnego Ćwiczenia Audytoryjne Podstawy Automatyki i Automatyzacji mgr inż. Paulina Mazurek Warszawa 2013 1 Wstęp Układ
Układy sekwencyjne - wiadomości podstawowe - wykład 4
SWB - Układy sekwencyjne - wiadomości podstawowe - wykład 4 asz 1 Układy sekwencyjne - wiadomości podstawowe - wykład 4 Adam Szmigielski aszmigie@pjwstk.edu.pl Laboratorium robotyki s09 SWB - Układy sekwencyjne
Krótkie przypomnienie
Krótkie przypomnienie Prawa de Morgana: Kod Gray'a A+ B= Ā B AB= Ā + B Układ kombinacyjne: Tablicy prawdy Symbolu graficznego Równania Boole a NOR Negative-AND w.11, p.1 XOR Układy arytmetyczne Cyfrowe
Architektura komputerów Wykład 2
Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana
Podstawy Techniki Cyfrowej Liczniki scalone
Podstawy Techniki Cyfrowej Liczniki scalone Liczniki scalone są budowane zarówno jako asynchroniczne (szeregowe) lub jako synchroniczne (równoległe). W liczniku równoległym sygnał zegarowy jest doprowadzony
CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE
Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z
Ćwiczenie 6. Przerzutniki bistabilne (Flip-Flop) Cel
Ćwiczenie 6 Przerzutniki bistabilne (Flip-Flop) Cel Poznanie zasady działania i charakterystycznych właściwości różnych typów przerzutników bistabilnych. Wstęp teoretyczny. Przerzutniki Flip-flop (FF),
Logiczne układy bistabilne przerzutniki.
Przerzutniki spełniają rolę elementów pamięciowych: -przy pewnej kombinacji stanów na pewnych wejściach, niezależnie od stanów innych wejść, stany wyjściowe oraz nie ulegają zmianie; -przy innej określonej
Projektowanie i badanie liczników synchronicznych i asynchronicznych
Laboratorium Podstaw Techniki Cyfrowej dr Marek Siłuszyk mgr Arkadiusz Wysokiński Ćwiczenie 08 PTC Projektowanie i badanie liczników synchronicznych i asynchronicznych opr. tech. Mirosław Maś Uniwersytet
Automatyzacja i robotyzacja procesów produkcyjnych
Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb
LABORATORIUM PODSTAW ELEKTRONIKI. Komputerowa symulacja układów różniczkujących
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 23 Komputerowa symulacja
Układy sekwencyjne przerzutniki 2/18. Przerzutnikiem nazywamy elementarny układ sekwencyjny, wyposaŝony w n wejść informacyjnych (x 1.
Przerzutniki Układy sekwencyjne przerzutniki 2/18 Pojęcie przerzutnika Przerzutnikiem nazywamy elementarny układ sekwencyjny, wyposaŝony w n wejść informacyjnych (x 1... x n ), 1-bitową pamięć oraz 1 wyjście
W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres
PROJEKTOWANIE LICZNIKÓW (skrót wiadomości) Autor: Rafał Walkowiak W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres rafal.walkowiak@cs.put.poznan.pl 1. Synchroniczne łączenie liczników
Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki
Politechnika Wrocławska, Wydział PP 1. Cel ćwiczenia Zapoznanie z wybranymi cyfrowymi układami sekwencyjnymi. Poznanie właściwości, zasad działania i sposobów realizacji przerzutników oraz liczników. 2.
ĆWICZENIE 7. Wprowadzenie do funkcji specjalnych sterownika LOGO!
ćwiczenie nr 7 str.1/1 ĆWICZENIE 7 Wprowadzenie do funkcji specjalnych sterownika LOGO! 1. CEL ĆWICZENIA: zapoznanie się z zaawansowanymi możliwościami mikroprocesorowych sterowników programowalnych na
Ćwiczenie 27C. Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych
Ćwiczenie 27C Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych Cel ćwiczenia Poznanie budowy i zasad działania oraz właściwości układów synchronicznych, aby zapewnić podstawy
LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW
POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:
Podstawowe układy cyfrowe
ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,
1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych
.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić
Modulatory PWM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE
Modulatory PWM CELE ĆWICZEŃ Poznanie budowy modulatora szerokości impulsów z układem A741. Analiza charakterystyk i podstawowych obwodów z układem LM555. Poznanie budowy modulatora szerokości impulsów
Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014
Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie LABORATORIUM Teoria Automatów. Grupa ćwiczeniowa: Poniedziałek 8.
Akademia Górniczo-Hutnicza im. isława Staszica w Krakowie LABORATORIUM Teoria Automatów Temat ćwiczenia Przerzutniki L.p. Imię i nazwisko Grupa ćwiczeniowa: Poniedziałek 8.000 Ocena Podpis 1. 2. 3. 4.
U 2 B 1 C 1 =10nF. C 2 =10nF
Dynamiczne badanie przerzutników - Ćwiczenie 3. el ćwiczenia Zapoznanie się z budową i działaniem przerzutnika astabilnego (multiwibratora) wykonanego w technice TTL oraz zapoznanie się z działaniem przerzutnika
Na początek: do firmowych ustawień dodajemy sterowanie wyłącznikiem ściennym.
Na początek: do firmowych ustawień dodajemy sterowanie wyłącznikiem ściennym. Mamy dwa rodzaje wyłączników ściennych: 1. Stabilny który zazwyczaj wszyscy używają do włączania oświetlenia. Nazywa się stabilny
Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch)
DSCH2 to program do edycji i symulacji układów logicznych. DSCH2 jest wykorzystywany do sprawdzenia architektury układu logicznego przed rozpoczęciem projektowania fizycznego. DSCH2 zapewnia ergonomiczne
Ćwiczenie 23. Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia
Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia Ćwiczenie 23 Poznanie symboli własności. Zmierzenie parametrów podstawowych bramek logicznych TTL i CMOS. Czytanie schematów elektronicznych,
Synteza strukturalna automatów Moore'a i Mealy
Synteza strukturalna automatów Moore'a i Mealy Formalna definicja automatu: A = < Z, Q, Y, Φ, Ψ, q 0 > Z alfabet wejściowy Q zbiór stanów wewnętrznych Y alfabet wyjściowy Φ funkcja przejść q(t+1) = Φ (q(t),
Podstawy Elektroniki dla Informatyki. Pętla fazowa
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Pętla fazowa Ćwiczenie 6 2015 r. 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem pętli fazowej. 2. Konspekt
Asynchroniczne statyczne układy sekwencyjne
Asynchroniczne statyczne układy sekwencyjne Układem sekwencyjnym nazywany jest układ przełączający, posiadający przynajmniej jeden taki stan wejścia, któremu odpowiadają, zależnie od sygnałów wejściowych
LICZNIKI Liczniki scalone serii 749x
LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających
Badanie właściwości skramblera samosynchronizującego
Badanie właściwości skramblera samosynchronizującego Skramblery są układami służącymi do zmiany widma sekwencji cyfrowych przesyłanych torami transmisyjnymi.bazują na rejestrach przesuwnych ze sprzeżeniami
Projektowania Układów Elektronicznych CAD Laboratorium
Projektowania Układów Elektronicznych CAD Laboratorium ĆWICZENIE NR 3 Temat: Symulacja układów cyfrowych. Ćwiczenie demonstruje podstawowe zasady analizy układów cyfrowych przy wykorzystaniu programu PSpice.
Podstawy Automatyki. Wykład 13 - Wprowadzenie do układów sekwencyjnych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 13 - Wprowadzenie do układów sekwencyjnych. Instytut Automatyki i Robotyki Warszawa, 2016 Pojęcia podstawowe Posłużmy się ponownie przykładem układu sterującego pracą siłowników, wymuszającego realizację
LABORATORIUM PODSTAWY ELEKTRONIKI PRZERZUTNIKI
LABORATORIUM PODSTAWY ELETRONII PRZERZUTNII el ćwiczenia Zapoznanie się z budową i zasada działania przerzutników synchronicznych jak i asynchronicznych. Poznanie przerzutników asynchronicznych odniesione
Aby w pełni przetestować układ o trzech wejściach IN_0, IN_1 i IN_2 chcemy wygenerować wszystkie możliwe kombinacje sygnałów wejściowych.
Generowanie sygnałów testowych VHDL Wariant współbieżny (bez procesu): sygnał
Układy czasowo-licznikowe w systemach mikroprocesorowych
Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość
LABORATORIUM TECHNIKI IMPULSOWEJ I CYFROWEJ (studia zaoczne) Układy uzależnień czasowych 74121, 74123
KATEDRA ELEKTRONIKI AGH Wydział EAIiE LAORATORIUM TECHNIKI IMPULSOWEJ I CYFROWEJ (studia zaoczne) Układy uzależnień czasowych 74121, 74123 I. KONSPEKT 1 Zaprojektować układ o przebiegach czasowych jak
Sławomir Kulesza. Projektowanie automatów asynchronicznych
Sławomir Kulesza Technika cyfrowa Projektowanie automatów asynchronicznych Wykład dla studentów III roku Informatyki Wersja 3.0, 03/01/2013 Automaty skończone Automat skończony (Finite State Machine FSM)
Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne
Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych.
Cel. Poznanie zasady działania i budowy liczników zliczających ustaloną liczbę impulsów. Poznanie kodów BCD, 8421 i Rys. 9.1.
Ćwiczenie 8 Liczniki zliczające, kody BCD, 8421, 2421 Cel. Poznanie zasady działania i budowy liczników zliczających ustaloną liczbę impulsów. Poznanie kodów BCD, 8421 i 2421. Wstęp teoretyczny. Przerzutniki
Podstawy Elektroniki dla Elektrotechniki. Układy cyfrowe - bramki logiczne i przerzutniki
AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Układy cyfrowe - bramki logiczne i przerzutniki Ćwiczenie 6a, 6b Instrukcja do ćwiczeń symulacyjnych (6a) Instrukcja do ćwiczeń sprzętowych
LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY
LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY Cel ćwiczenia Zapoznanie się z budową i zasadą działania rejestrów cyfrowych wykonanych w ramach TTL. Zestawienie przyrządów i połączenie rejestru by otrzymać
Ćw. 8 Bramki logiczne
Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.
Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55
Układy cyfrowe Funkcje logiczne AND A B X = A B... 2/55 Funkcje logiczne OR A B X = A + B NOT A A... 3/55 Twierdzenia algebry Boole a A + B = B + A A B = B A A + B + C = A + (B+C( B+C) ) = (A+B( A+B) )
LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program
LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program Przygotował: Jakub Wawrzeńczak 1. Wprowadzenie Lekcja przedstawia wykorzystanie środowiska LabVIEW 2016
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych REJESTRY
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych REJESTRY Laboratorium Techniki Cyfrowej i Mikroprocesorowej Ćwiczenie IV Opracowano na podstawie
BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO
Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz
WPROWADZENIE DO ŚRODOWISKA SCICOS
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCICOS Materiały pomocnicze do ćwiczeń laboratoryjnych Oryginał: Modeling and Simulation in Scilab/Scicos Stephen L.
Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny
AGH Katedra Elektroniki Podstawy Elektroniki dla Teleinformatyki 2014 r. Generator relaksacyjny Ćwiczenie 6 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów
KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 212
KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki ów Cyfrowych ćwiczenie Temat: Automat asynchroniczny. Cel ćwiczenia Celem ćwiczenia jest nabycie praktycznej umiejętności projektowania
Przerzutniki. Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem
2-3-29 Przerzutniki Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem (dotychczas mówiliśmy o układach logicznych kombinatorycznych - stan wyjść określony jednoznacznie przez
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TEHNIKA YFOWA 2 T1300 020 Ćwiczenie Nr 6 EALIZAJA FUNKJI EJETOWYH W TUKTUAH
Podstawy Elektroniki dla Informatyki. Generator relaksacyjny
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki 2015 r. Generator relaksacyjny Ćwiczenie 5 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów