Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne"

Transkrypt

1 Wstęp do Techniki Cyfrowej... Teoria automatów i układy sekwencyjne

2 Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia abstrakcji modelu przez przypisanie nazw występującym wartościom wektorów; nazwy te są niezależne od konkretnych reprezentacji. Zbiór nazw nazywamy alfabetem, nazwy literami. Pojęcie alfabetu podstawa definicji charakterystycznych dla teorii automatów, której wariantem szczegółowym jest teoria układów logicznych.

3 Automaty i ich stany Automaty pracują w dyskretnej skali czasowej zmiany liter odbywają się w ściśle określonych chwilach czasowych. Podając na wejście automatu określoną sekwencję liter, w pewnej (n-tej) chwili otrzymamy określoną literę wyjściową:..., x n-3, x n-2, x n-1, x n y n Nieskończenie wiele sekwencji liter wejściowych nawet dla skończonych liczności alfabetów wejściowych

4 Automaty i ich stany c.d. Sekwencje liter wejściowych tworzą historie automatu, reprezentowane przez jego stany wewnętrzne. Skończony alfabet wewnętrzny reprezentuje skończoną liczbę wszystkich możliwych historii danego automatu. Automat skończony alfabety charakteryzujące wejście, wyjście oraz stan wewnętrzny zawiera ograniczoną liczbę liter.

5 Automat Mealy ego Uporządkowana piątka: A = < X, S, Y, δ, λ >, gdzie: X = {x 0, x 1,..., x m-1 } alfabet wejściowy, S = {s 0, s 1,..., s l-1 } alfabet wewnętrzny (zbiór stanów), Y = {y 0, y 1,..., y n-1 } alfabet wyjściowy, δ:<x k, s k > s k+1 funkcja przejść λ:<x k, s k > y k funkcja wyjść Zakłada się ponadto, że dla funkcji przejść < x k, s k > D δ X S oraz analogicznie dla funkcji wyjść < x k, s k > D λ X S

6 Definiowanie automatu Mealy ego Definicja analityczna podanie alfabetów wejściowego, wewnętrznego, wyjściowego, funkcji przejść oraz wyjść a b c a b c Tablica przejść-wyjść Graf automatu q r q s - - z r r - s z y - s - r - y z -

7 Automat Moore a Uporządkowana piątka: A = < X, S, Y, δ, λ >, gdzie: X = {x 0, x 1,..., x m-1 } alfabet wejściowy, S = {s 0, s 1,..., s l-1 } alfabet wewnętrzny (zbiór stanów), Y = {y 0, y 1,..., y n-1 } alfabet wyjściowy, δ:<x k, s k > s k+1 funkcja przejść λ:<s k > y k funkcja wyjść

8 Definiowanie automatu Moore a Definicja analityczna analogicznie Tablica przejść-wyjść tylko jedna kolumna wartości wyjściowych Graf automatu zmieniona konwencja a b c p q r p y q q r q z r r q p y

9 Użyteczne definicje (1) Słowo wejściowe automatu A dowolna sekwencja liter alfabetu wejściowego. Jeżeli w wyniku pobudzenia automatu w stanie s słowem x końcowa litera wyjściowa jest określona, to słowo to nazywa się odpowiednim dla stanu s (x s). Dla automatu Moore a nieokreśloność stanu pociąga za sobą nieokreśloność litery wyjściowej.

10 Użyteczne definicje (2) Automat A 1 = < X, S 1, Y, δ 1, λ 1 > w stanie s 1 pokrywa automat A 2 = < X, S 2, Y, δ 2, λ 2 > w stanie s 2 (zapis s 1 s 2 ), jeśli każde słowo odpowiednie dla s 2 jest odpowiednie dla s 1 i dla każdego takiego słowa końcowe litery wyjściowe obu automatów są są sobie równe: λ 2 (x, s 2 ) = λ 1 (x, s 1 ) Automat A 1 = < X, S 1, Y, δ 1, λ 1 > pokrywa automat A 2 = < X, S 2, Y, δ 2, λ 2 > (zapis A 1 A 2 ), jeśli dla każdego stanu s 2 automatu A 2 istnieje przynajmniej jeden stan s 1 automaty A 1 taki, że s 1 s 2 A 1 A 2 Automat A 1 zawiera w sobie niejako funkcję automatu A 2 2 s S 2 s S 1 1 s 1 s 2

11 Użyteczne definicje (3) Automat A 1 = < X, S 1, Y, δ 1, λ 1 > w stanie s 1 jest nieodróżnialny od automatu A 2 = < X, S 2, Y, δ 2, λ 2 > w stanie s 2 (zapis s 1 s 2 ), jeśli każde słowo odpowiednie dla s 2 jest odpowiednie dla s 1 i odwrotnie, przy czym końcowe litery wyjściowe obu automatów są sobie równe. Graniczny (symetryczny) przypadek pokrywania. Automat A 1 = < X, S 1, Y, δ 1, λ 1 > jest nieodróżnialny od automatu A 2 = < X, S 2, Y, δ 2, λ 2 > (zapis A 1 A 2 ), jeżeli automaty te wzajemnie się pokrywają.

12 Użyteczne definicje (4) Automat A R = < X, S R, Y, δ Ρ, λ Ρ > jest zredukowanym dla automatu A = < X, S, Y, δ, λ > jeżeli automat A R pokrywa automat A i jednocześnie liczba stanów automatu zredukowanego nie jest większa od liczby stanów automatu A. Dla danego automatu może istnieć wiele automatów zredukowanych, bądź może ich nie być wcale. Każdy automat jest zredukowanym dla samego siebie. W zbiorze automatów zredukowanych znajduje się przynajmniej jeden o najmniejszej możliwej liczbie stanów wewnętrznych.

13 Relacja niesprzeczności stanów Relacja niesprzeczności stanów automatu A = < X, S, Y, δ, λ > zbiór wszystkich takich par jego stanów <s 1, s 2 >, dla których słowo odpowiednie dla jednego ze stanów, jeśli jest również odpowiednie dla drugiego, generuje z tych stanów jednakowe litery końcowe: R ~ ={<s 1, s 2 > S: x s 1 x s 2 λ(x, s 2 ) = λ(x, s 1 )}. Stany niesprzeczne oznacza się s 1 s 2. Dualnie definiuje się relację sprzeczności stanów ma ona mniejsze znaczenie i jest rzadziej używana.

14 Zbiory stanów niesprzecznych Zbiorem stanów niesprzecznych Q nazywa się zbiór, którego dowolne dwa elementy tworzą parę stanów niesprzecznych. Maksymalnym zbiorem stanów niesprzecznych Q max jest zbiór, do którego dodanie jednego elementu powoduje utratę właściwości niesprzeczności stanów. Zbiór wszystkich dla danego elementu maksymalnych zbiorów stanów niesprzecznych nazywa się rodziną maksymalnych zbiorów stanów niesprzecznych i oznacza {Q max }. Pojęcie to odgrywa kluczową role w procesie poszukiwania automatu minimalnego automatu zredukowanego o najmniejszej możliwej liczbie stanów.

15 Relacja nieodróżnialności stanów Relacja nieodróżnialności R stanów automatu A = <X, S, Y, δ, λ> jest zbiór wszystkich takich par jego stanów <s 1, s 2 >, dla których słowo odpowiednie dla jednego z nich jest jednocześnie odpowiednim dla drugiego i odwrotnie, a wygenerowane z tych stanów litery końcowe są jednakowe: Para stanów nieodróżnialnych różni się co najwyżej oznaczeniem.

16 Zbiory stanów nieodróżnialnych Zbiorem stanów nieodróżnialnych B nazywa się zbiór, którego dowolne dwa elementy tworzą parę stanów nieodróżnialnych. Maksymalnym zbiorem stanów nieodróżnialnych B max jest zbiór, do którego dodanie jednego elementu powoduje utratę właściwości nieodróżnialności stanów. Zbiór wszystkich dla danego elementu maksymalnych zbiorów stanów nieodróżnialnych nazywa się rodziną maksymalnych zbiorów stanów nieodróżnialnych i oznacza {B max }. Pojęcie to jest istotne w procesie poszukiwania automatu minimalnego dla automatu pierwotnego o dużej liczbie stanów.

17 Zamkniętość rodziny zbiorów stanów niesprzecznych Dla określonej litery wejściowej, stany następne wyznaczone dla wszystkich stanów dowolnego zbioru maksymalnego, są zawsze podzbiorem któregoś ze zbiorów maksymalnych stanów niesprzecznych tworzących tę rodzinę. Zbiory rodziny {Q max } nie muszą być rozłączne; może się zatem zdarzyć, że stany następne są jednocześnie podzbiorami kilku różnych zbiorów maksymalnych

18 Automaty ilorazowe Automaty ilorazowe budowane są na rodzinach zbiorów stanów niesprzecznych. Najczęściej buduje się je na rodzinie {Q max }, rzadziej na {B max }. Automat ilorazowy automatu pierwotnego A zbudowany dla rodziny {T j } oznacza się A/{T j }. Automatem minimalnym jest automat ilorazowy dla maksymalnie zredukowanej rodziny {Q max }. Redukcja musi zachować pełne pokrycie stanów automatu pierwotnego i warunek zamkniętości. Rodzinę taką oznacza się {P j }. Minimalizacja liczby stanów zachowuje klasę typu automatów. Relacje pokrywania, niesprzeczności i nieodróżnialności nie mogą zachodzić między automatami dwóch różnych typów.

19 Podobieństwo automatów Automaty: Moore a A 1 = < X, S 1, Y, δ 1, λ 1 > w stanie s 1 i Mealy ego A 2 = < X, S 2, Y, δ 2, λ 2 > w stanie s 2 nazywa się podobnymi (zapis s 1 s 2 ), jeśli każde słowo odpowiednie dla s 2 jest odpowiednie dla s 1 i odwrotnie, przy czym końcowe litery wyjściowe obu automatów są sobie równe. Automaty Moore a A 1 i Mealy ego A 2 nazywa się podobnymi (zapis A 1 A 2 ), jeżeli dla każdego stanu s 1 automatu A 1 istnieje przynajmniej jeden stan s 2 automatu A 2 taki, że w tych stanach automaty są podobne oraz dla każdego stanu s 2 automatu A 2 istnieje przynajmniej jeden stan s 1 automatu A 1 taki, że w tych stanach automaty są podobne.

20 Automat Mealy ego podobny do automatu Moore a Dla automatu Moore a A 1 = < X, S 1, Y, δ 1, λ 1 > można znaleźć automat podobny Mealy ego A 2 = < X, S 2, Y, δ 2, λ 2 >, jeżeli dla każdej litery wejściowej automatu Mealy ego A 2 będzie spełniona zależność: λ 2 (x,s) = λ 1 [δ(x,s)] Przykład: a b y z z y a b a b z z y y z z y y

21 Automat Moore a podobny do Mealy ego Dla każdej pary <stan następny, litera wyjściowa> automatu Mealy ego A 1 = < X, S 1, Y, δ 1, λ 1 > wprowadzamy nazwę stanu wewnętrznego automaty Moore a A 2 =<X, S 2, Y, δ 2, λ 2 >, co oznaczmy symbolem: s 2i = δ 1 (x,s 1j ) / λ 1 (x,s 1j ), przy czym λ 1 (s 2i ) = λ 1 (x,s 1j ). Zbiór tych nazw tworzy alfabet wewnętrzny S 2 automatu A 2. Korzystając z wierszy automatu Mealy ego podobny automat Moore a tworzymy w następujący sposób: - wybieramy wiersz odpowiadający stanowi następnemu z daną nazwą stanu wewnętrznego automatu Moore a, - dla tego wiersza stany następne określamy według tablicy Mealy ego, stosując nazwy stanów automatu Moore a poprzednio wyznaczone. Na koniec minimalizujemy i porządkujemy otrzymany automat.

22 Przykład a b a b y z z y z z y y a b 1 4/y A 3/z B 2 2/z C 1/y D 3 2/z C 3/z B 4 4/y A 1/y D a b A A D y B C B z C C D z D A B y

23 Synchroniczne układy sekwencyjne X Schemat ogólny Y Układ kombinacyjny S Z Pamięć Zegar

24 Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych wyznaczanych zegarem Blok kombinacyjny opisany zestawem funkcji boolowskich Blok pamięci złożony przerzutników synchronicznych elementarne pamięciowe układy logiczne - dwustanowe automaty Moore a o literach wyjściowych 0 i 1 (zwykle). zmiana stanu przerzutnika tylko w takt impulsów zegarowych, uwarunkowana wartościami na wejściu czas przebywania w jednym z dwóch stanów jest dowolnie długi

25 Przerzutnik RS RS Q a a b a 0 b b b a 1 Tablica charakterystyczna

26 Synchroniczny przerzutnik RS z bramkami NOR Q t Q t+1 R S 0 0 X 0 Bramki AND przekazują sygnały z wejść na wejście przerzutnika tylko, gdy sygnał zegarowy ma wartość X Tablica wzbudzeń Skrócona tablica charakterystyczna

27 Inne realizacje bramkowe synchronicznego przerzutnika RS Impuls zegarowy musi mieć postać krótkiego zera.

28 Przerzutnik D D Q

29 Przerzutnik D c.d.

30 Przerzutnik JK JK Q a a a b b 0 b b a b a 1

31 Przerzutnik JK c.d. J K Q t Q t Wymagany krótki czas impulsu zegarowego (krótszy niż czas propagacji). Schemat poglądowy. 1 1 ~Q t

32 Przerzutnik T T Q 0 1 a a b 0 b b a 1

33 Przerzutnik T c.d. Q t T Q t T Q t+1 0 Q t 1 ~Q t 1 1 0

34 Wyzwalanie na zboczach zegara przerzutnik JK czas trwania impulsu zegarowego musi być krótszy od czasu propagacji z wejścia na wyjście zagrożenie pracy niestabilnej (J=K=1) aktywowanie wyjścia opadającym zboczem sygnału zegarowego rozwiązuje problem po impulsie zmiany na wejściach nie mają wpływu na wyjście czas trwania zbocza znacząco krótszy od czasu propagacji sygnału przez bramkę

35 Układ Master-Slave dwa przerzutniki synchronizowane odpowiednio prostym i zanegowanym sygnałem zegara dla CK=1 odcięte wejścia Slave dla CK-0 wyjścia Mastera przekazywane na Slave najczęściej stosowany dla JK, możliwy dla innych

36 Impulsowe różniczkowanie zboczy wykorzystanie opóźnień wnoszonych przez bramki sygnał z ~F może być podany na wejście zegarowe dowolnego przerzutnika impuls wyzwalający na narastającym zboczu CK człon dla potrzeb analizy, rzeczywiste opóźnienia wynikają z czasu propagacji przez bramki

37 Przerzutnik D wyzwalany narastającym zboczem zegara

38 Projektowanie synchronicznych układów sekwencyjnych Wejścia układu kombinacyjnego Stany następne Wyjścia układu kombinacyjnego X, S t S t+1 Z Y Tablica wzbudzeń układu synchronicznego

39 Przykład projektowy J y y 1 2 = = = x 1 x 1 x x, K 1 2 x = A x 2 x 1 A x, x, 2 2

40 Liczniki Układy sekwencyjne typu Moore a, zmieniające stan po każdym impulsie zegarowym

41 Przykład dekada licząca Licznik o 10 stanach wewnętrznych (0...9). Użyto przerzutników JK, litery wyjściowe utożsamiono ze stanami. Brak zewnętrznych zmiennych wejściowych. Ja = DBC, Jb = Kb = CD Ka = D Jc = ~(AD), Jd = Kd = 1 Kc = D

42 Dekada licząca c.d. Licznik o 10 stanach wewnętrznych (0...9). Użyto przerzutników JK, litery wyjściowe utożsamiono ze stanami. Brak zewnętrznych zmiennych wejściowych. A t B t C t D t A t+1 B t+1 C t+1 D t

43 Licznik podzielnik liczby impulsów zegarowych przez 8 (ripple carry counter) Niekonwencjonalne wykorzystanie wejść zegarowych Licznik asynchroniczny zmiany na wyjściach wynikają z propagacji sygnałów.

44 Licznik asynchroniczny mod 8 c.d.

45 Rejestry Zbiory przerzutników służące do przechowywania informacji. Długością rejestru jest liczba użytych przerzutników. Wprowadzanie informacji: równoległe szeregowe z przesuwaniem w prawo z przesuwaniem w lewo rejestry szeregowo-równoległe Kaskada prostych komórek pamięciowych z warunkowym sterowaniem wejść

46 Elementarna komórka pamięci Dy i = R I + R i L I + L i P x i R sygnał warunku przesuwania w prawo L sygnał warunku przesuwania w lewo P sygnał warunku wpisywania równoległego I Ri wejście szeregowego przesuwania w prawo I Li wejście szeregowego przesuwania w lewo x i wejście wpisywania równoległego

47 4-bitowy rejestr szeregowo-równoległy x P I L y R y x P y L y R y x P y L y R y x P y L I R y L t t t t t t t t t R t + + = + + = + + = + + = Wejścia sterujące L, R, P nie mogą jednocześnie przyjąć wartości 1. W praktyce wykorzystuje się dwa sygnały a, b: L=a ~b, R= ~a b, P= a b a=b=0 blokuje wejścia zegarowe rejestru.

48 4-bitowy rejestr jako licznik pierścieniowy

49 Liczniki pseudopierścieniowe 2 grafy 8-stanowe, brak stanów zabronionych 15 stanów wewnętrznych, niedozwolone 0000

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

Asynchroniczne statyczne układy sekwencyjne

Asynchroniczne statyczne układy sekwencyjne Asynchroniczne statyczne układy sekwencyjne Układem sekwencyjnym nazywany jest układ przełączający, posiadający przynajmniej jeden taki stan wejścia, któremu odpowiadają, zależnie od sygnałów wejściowych

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia. Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych

Bardziej szczegółowo

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Praca laboratoryjna 2 TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Cel pracy poznanie zasad funkcjonowania przerzutników różnych typów w oparciu o różne rozwiązania układowe. Poznanie sposobów

Bardziej szczegółowo

Projekt prostego układu sekwencyjnego Ćwiczenia Audytoryjne Podstawy Automatyki i Automatyzacji

Projekt prostego układu sekwencyjnego Ćwiczenia Audytoryjne Podstawy Automatyki i Automatyzacji WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Projekt prostego układu sekwencyjnego Ćwiczenia Audytoryjne Podstawy Automatyki i Automatyzacji mgr inż. Paulina Mazurek Warszawa 2013 1 Wstęp Układ

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych .Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek Architektura systemów komputerowych Poziom układów logicznych. Układy sekwencyjne Cezary Bolek Katedra Informatyki Plan wykładu Układy sekwencyjne Synchroniczność, asynchroniczność Zatrzaski Przerzutniki

Bardziej szczegółowo

Układy sekwencyjne przerzutniki 2/18. Przerzutnikiem nazywamy elementarny układ sekwencyjny, wyposaŝony w n wejść informacyjnych (x 1.

Układy sekwencyjne przerzutniki 2/18. Przerzutnikiem nazywamy elementarny układ sekwencyjny, wyposaŝony w n wejść informacyjnych (x 1. Przerzutniki Układy sekwencyjne przerzutniki 2/18 Pojęcie przerzutnika Przerzutnikiem nazywamy elementarny układ sekwencyjny, wyposaŝony w n wejść informacyjnych (x 1... x n ), 1-bitową pamięć oraz 1 wyjście

Bardziej szczegółowo

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja 0.1 29.10.2013 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące

Bardziej szczegółowo

Układy kombinacyjne - przypomnienie

Układy kombinacyjne - przypomnienie SWB - Układy sekwencyjne - wiadomości podstawowe - wykład 4 asz 1 Układy kombinacyjne - przypomnienie W układzie kombinacyjnym wyjście zależy tylko od wejść, SWB - Układy sekwencyjne - wiadomości podstawowe

Bardziej szczegółowo

Cyfrowe układy scalone c.d. funkcje

Cyfrowe układy scalone c.d. funkcje Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające Zapamiętywanie wartości wybranych zmiennych binarnych, jak również sekwencji tych wartości odbywa się w układach

Bardziej szczegółowo

Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów. Rafał Walkowiak Wersja /2015

Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów. Rafał Walkowiak Wersja /2015 Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów synchronicznych Rafał Walkowiak Wersja.2 24/25 UK Funkcje wzbudzeń UK Funkcje wzbudzeń Pamieć Pamieć UK Funkcje wyjściowe

Bardziej szczegółowo

SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1. Układy kombinacyjne i sekwencyjne - przypomnienie

SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1. Układy kombinacyjne i sekwencyjne - przypomnienie SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1 Układy kombinacyjne i sekwencyjne - przypomnienie SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 2 Stan

Bardziej szczegółowo

Proste układy sekwencyjne

Proste układy sekwencyjne Proste układy sekwencyjne Układy sekwencyjne to takie w których niektóre wejścia są sterowany przez wyjściaukładu( zawierają sprzężenie zwrotne ). Układy sekwencyjne muszą zawierać elementy pamiętające

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Układem sekwencyjnym nazywamy układ

Bardziej szczegółowo

Układy sekwencyjne - wiadomości podstawowe - wykład 4

Układy sekwencyjne - wiadomości podstawowe - wykład 4 SWB - Układy sekwencyjne - wiadomości podstawowe - wykład 4 asz 1 Układy sekwencyjne - wiadomości podstawowe - wykład 4 Adam Szmigielski aszmigie@pjwstk.edu.pl Laboratorium robotyki s09 SWB - Układy sekwencyjne

Bardziej szczegółowo

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych. Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.

Bardziej szczegółowo

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie

Bardziej szczegółowo

Podstawy Informatyki Elementarne podzespoły komputera

Podstawy Informatyki Elementarne podzespoły komputera Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Reprezentacja informacji Podstawowe bramki logiczne 2 Przerzutniki Przerzutnik SR Rejestry Liczniki 3 Magistrala Sygnały

Bardziej szczegółowo

Sławomir Kulesza. Projektowanie automatów asynchronicznych

Sławomir Kulesza. Projektowanie automatów asynchronicznych Sławomir Kulesza Technika cyfrowa Projektowanie automatów asynchronicznych Wykład dla studentów III roku Informatyki Wersja 3.0, 03/01/2013 Automaty skończone Automat skończony (Finite State Machine FSM)

Bardziej szczegółowo

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki.

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki. Literatura 1. D. Gajski, Principles of Digital Design, Prentice- Hall, 1997 2. C. Zieliński, Podstawy projektowania układów cyfrowych, PWN, Warszawa 2003 3. G. de Micheli, Synteza i optymalizacja układów

Bardziej szczegółowo

Statyczne badanie przerzutników - ćwiczenie 3

Statyczne badanie przerzutników - ćwiczenie 3 Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz

Bardziej szczegółowo

Układy asynchroniczne

Układy asynchroniczne Układy asynchroniczne Model układu asynchronicznego y x n UK y m układ kombinacyjny q k BP q k blok pamięci realizuje opóźnienia adeusz P x x t s tan stabilny s: δ(s,x) = s automacie asynchronicznym wszystkie

Bardziej szczegółowo

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu f wy f P Podzielnik częstotliwości: układ, który na każde p impulsów na wejściu daje

Bardziej szczegółowo

Podstawy Techniki Cyfrowej Liczniki scalone

Podstawy Techniki Cyfrowej Liczniki scalone Podstawy Techniki Cyfrowej Liczniki scalone Liczniki scalone są budowane zarówno jako asynchroniczne (szeregowe) lub jako synchroniczne (równoległe). W liczniku równoległym sygnał zegarowy jest doprowadzony

Bardziej szczegółowo

Automat Moore a. Teoria układów logicznych

Automat Moore a. Teoria układów logicznych Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę (Q,X,Y,δ, λ )gdzie Qjestskończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, Xjestskończonym zbiorem niepustym, nazwanym alfabetem

Bardziej szczegółowo

Podstawy elektroniki cz. 2 Wykład 2

Podstawy elektroniki cz. 2 Wykład 2 Podstawy elektroniki cz. 2 Wykład 2 Elementarne prawa Trzy elementarne prawa 2 Prawo Ohma Stosunek natężenia prądu płynącego przez przewodnik do napięcia pomiędzy jego końcami jest stały R U I 3 Prawo

Bardziej szczegółowo

2.1. Metoda minimalizacji Quine a-mccluskey a dla funkcji niezupełnych.

2.1. Metoda minimalizacji Quine a-mccluskey a dla funkcji niezupełnych. 2.1. Metoda minimalizacji Quine a-mccluskey a dla funkcji niezupełnych. W przypadku funkcji niezupełnej wektory spoza dziedziny funkcji wykorzystujemy w procesie sklejania, ale nie uwzględniamy ich w tablicy

Bardziej szczegółowo

Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0

Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 Synteza liczników synchronicznych Załóżmy, że chcemy zaprojektować licznik synchroniczny o następującej sekwencji: 0 1 2 3 6 5 4 [0 sekwencja jest powtarzana] Ponieważ licznik ma 7 stanów, więc do ich

Bardziej szczegółowo

Układy asynchroniczne

Układy asynchroniczne Układy asynchroniczne Model układu sekwencyjnego Model układu asynchronicznego (synchronicznego) y 1 x n UK y m układ kombinacyjny Z clock t 1 q 1 k B x s tan stabilny s: δ(s,x) = s x blok pamięci jest

Bardziej szczegółowo

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY Cel ćwiczenia Zapoznanie się z budową i zasadą działania rejestrów cyfrowych wykonanych w ramach TTL. Zestawienie przyrządów i połączenie rejestru by otrzymać

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne Evatronix KontrolerEthernet MAC (Media Access Control)

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW e-version: dr inż. Tomasz apłon INTYTUT YBENETYI TEHNIZNE PLITEHNII WŁAWIE ZAŁA ZTUZNE INTELIGENI I AUTMATÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 23 temat: UŁAY EWENYNE. EL ĆWIZENIA

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Ćw. 7: Układy sekwencyjne

Ćw. 7: Układy sekwencyjne Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy

Bardziej szczegółowo

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest

Bardziej szczegółowo

Spis treści. Przedmowa Wykaz oznaczeń Wstęp Układy kombinacyjne... 18

Spis treści. Przedmowa Wykaz oznaczeń Wstęp Układy kombinacyjne... 18 Spis treści Przedmowa... 11 Wykaz oznaczeń... 13 1. Wstęp... 15 1.1. Układycyfrowe... 15 1.2. Krótki esej o projektowaniu.... 15 2. Układy kombinacyjne... 18 2.1. Podstawyprojektowaniaukładówkombinacyjnych...

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne X Selektor ROM ROM AND Specjalizowane układy cyfrowe

Bardziej szczegółowo

Podstawy Techniki Cyfrowej Teoria automatów

Podstawy Techniki Cyfrowej Teoria automatów Podstawy Techniki Cyfrowej Teoria automatów Uwaga Niniejsza prezentacja stanowi uzupełnienie materiału wykładowego i zawiera jedynie wybrane wiadomości teoretyczne dotyczące metod syntezy układów asynchronicznych.

Bardziej szczegółowo

Podział układów cyfrowych. rkijanka

Podział układów cyfrowych. rkijanka Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych

Bardziej szczegółowo

Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp:

Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Licznik elektroniczny - układ cyfrowy, którego zadaniem jest zliczanie wystąpień sygnału zegarowego. Licznik złożony

Bardziej szczegółowo

LICZNIKI Liczniki scalone serii 749x

LICZNIKI Liczniki scalone serii 749x LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających

Bardziej szczegółowo

UKŁADY CYFROWE. Układ kombinacyjny

UKŁADY CYFROWE. Układ kombinacyjny UKŁADY CYFROWE Układ kombinacyjny Układów kombinacyjnych są bramki. Jedną z cech układów kombinacyjnych jest możliwość przedstawienia ich działania (opisu) w postaci tabeli prawdy. Tabela prawdy podaje

Bardziej szczegółowo

UKŁADY MIKROPROGRAMOWALNE

UKŁADY MIKROPROGRAMOWALNE UKŁAD MIKROPROGRAMOWALNE Układy sterujące mogą pracować samodzielnie, jednakże w przypadku bardziej złożonych układów (zwanych zespołami funkcjonalnymi) układ sterujący jest tylko jednym z układów drugim

Bardziej szczegółowo

Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym.

Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym. 3.4. GRF UTOMTU, TBELE PRZEJŚĆ / WYJŚĆ Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym. Proste przypadki: Opis słowny, np.:

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI. Jakub Kaźmierczak. 2.1 Sekwencyjne układy pamiętające

LABORATORIUM ELEKTRONIKI. Jakub Kaźmierczak. 2.1 Sekwencyjne układy pamiętające 2 Cyfrowe układy sekwencyjne Cel ćwiczenia LABORATORIUM ELEKTRONIKI Celem ćwiczenia jest zapoznanie się z cyfrowymi elementami pamiętającymi, budową i zasada działania podstawowych przerzutników oraz liczników

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

Sławomir Kulesza. Projektowanie automatów synchronicznych

Sławomir Kulesza. Projektowanie automatów synchronicznych Sławomir Kulesza Technika cyfrowa Projektowanie automatów synchronicznych Wykład dla studentów III roku Informatyki Wersja 2.0, 20/12/2012 Automaty skończone Automat Mealy'ego Funkcja wyjść: Yt = f(st,

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Teoria układów logicznych

Teoria układów logicznych Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę ( Q, X,,, ) gdzie Q jest skończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, X jest skończonym zbiorem niepustym, nazwanym alfabetem

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie LABORATORIUM Teoria Automatów. Grupa ćwiczeniowa: Poniedziałek 8.

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie LABORATORIUM Teoria Automatów. Grupa ćwiczeniowa: Poniedziałek 8. Akademia Górniczo-Hutnicza im. isława Staszica w Krakowie LABORATORIUM Teoria Automatów Temat ćwiczenia Przerzutniki L.p. Imię i nazwisko Grupa ćwiczeniowa: Poniedziałek 8.000 Ocena Podpis 1. 2. 3. 4.

Bardziej szczegółowo

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania.

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania. Badanie liczników asynchronicznych - Ćwiczenie 4 1. el ćwiczenia Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich

Bardziej szczegółowo

Podstawy techniki cyfrowej. Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014

Podstawy techniki cyfrowej. Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014 Podstawy techniki cyfrowej Układy asynchroniczne Opracował: R.Walkowiak Styczeń 2014 Charakterystyka układów asynchronicznych Brak wejścia: zegarowego, synchronizującego. Natychmiastowa (niesynchronizowana)

Bardziej szczegółowo

WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi.

WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi. 72 WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. ą najprostszymi układami pamięciowymi. PZEZUTNIK WY zapamietanie skasowanie Przerzutmik zapamiętuje zmianę

Bardziej szczegółowo

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia Opracował: mgr inż. Antoni terna ATEDA INFOMATYI TEHNIZNE Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 203 Temat: Układy sekwencyjne 1. el ćwiczenia elem ćwiczenia jest zapoznanie się z

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:

Bardziej szczegółowo

Minimalizacja automatów niezupełnych.

Minimalizacja automatów niezupełnych. Minimalizacja automatów niezupełnych. Automatem zredukowanym nazywamy automat, który jest zdolny do wykonywania tej samej pracy, którą może wykonać dany automat, przy czym ma on mniejszą liczbę stanów.

Bardziej szczegółowo

Ćwiczenie 6. Przerzutniki bistabilne (Flip-Flop) Cel

Ćwiczenie 6. Przerzutniki bistabilne (Flip-Flop) Cel Ćwiczenie 6 Przerzutniki bistabilne (Flip-Flop) Cel Poznanie zasady działania i charakterystycznych właściwości różnych typów przerzutników bistabilnych. Wstęp teoretyczny. Przerzutniki Flip-flop (FF),

Bardziej szczegółowo

Synteza strukturalna automatu Moore'a i Mealy

Synteza strukturalna automatu Moore'a i Mealy Synteza strukturalna automatu Moore'a i Mealy (wersja robocza - w razie zauważenia błędów proszę o uwagi na mail'a) Załóżmy, że mamy następujący graf automatu z 2 y 0 q 0 z 1 z 1 z 0 z 0 y 1 z 2 q 2 z

Bardziej szczegółowo

Przerzutniki RS i JK-MS lab. 04 Układy sekwencyjne cz. 1

Przerzutniki RS i JK-MS lab. 04 Układy sekwencyjne cz. 1 Przerzutniki RS i JK-MS lab. 04 Układy sekwencyjne cz. 1 PODSTAWY TECHNIKI MIKROPROCESOROWEJ 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA

Bardziej szczegółowo

Sekwencyjne bloki funkcjonalne

Sekwencyjne bloki funkcjonalne ekwencyjne bloki funkcjonalne Układy sekwencyjne bloki funkcjonalne 2/28 ejestry - układy do przechowywania informacji, charakteryzujące się róŝnymi metodami jej zapisu lub odczytu a) b) we wy we... we

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4.1. UKŁADY KONWERSJI KODÓW 4.1.1. Kody Kod - sposób reprezentacji sygnału cyfrowego za pomocą grupy sygnałów binarnych: Sygnał cyfrowy wektor bitowy Gdzie np.

Bardziej szczegółowo

UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania.

UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania. UKŁDAY CYFROWE Układy cyfrowe są w praktyce realizowane różnymi technikami. W prostych urządzeniach automatyki powszechnie stosowane są układy elektryczne, wykorzystujące przekaźniki jako podstawowe elementy

Bardziej szczegółowo

Asynchroniczne statyczne układy sekwencyjne

Asynchroniczne statyczne układy sekwencyjne Asynchroniczne statyczne układy sekwencyjne Układem sekwencyjnym nazywany jest układ przełączający, posiadający przynajmniej jeden taki stan wejścia, któremu odpowiadają, zależnie od sygnałów wejściowych

Bardziej szczegółowo

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci PAMIĘĆ RAM Pamięć służy do przechowania bitów. Do pamięci musi istnieć możliwość wpisania i odczytania danych. Bity, które są przechowywane pamięci pogrupowane są na komórki, z których każda przechowuje

Bardziej szczegółowo

Definicja 2. Twierdzenie 1. Definicja 3

Definicja 2. Twierdzenie 1. Definicja 3 INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 205 temat: ZASTOSOWANIE JĘZYKA WYRAŻEŃ

Bardziej szczegółowo

Podstawy Automatyki. Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych Instytut Automatyki i Robotyki Warszawa, 2016 Układy o programach liniowych - Przykład Zaprojektować procesowo-zależny układ sterowania

Bardziej szczegółowo

Podstawy Automatyki. Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 15 - Projektowanie układów asynchronicznych o programach liniowych Instytut Automatyki i Robotyki Warszawa, 2015 Układy o programach liniowych - Przykład Zaprojektować procesowo-zależny układ sterowania

Bardziej szczegółowo

Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych

Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów

Bardziej szczegółowo

Laboratorium przedmiotu Technika Cyfrowa

Laboratorium przedmiotu Technika Cyfrowa Laboratorium przedmiotu Technika Cyfrowa ćw.3 i 4: Asynchroniczne i synchroniczne automaty sekwencyjne 1. Implementacja asynchronicznych i synchronicznych maszyn stanu w języku VERILOG: Maszyny stanu w

Bardziej szczegółowo

Logiczne układy bistabilne przerzutniki.

Logiczne układy bistabilne przerzutniki. Przerzutniki spełniają rolę elementów pamięciowych: -przy pewnej kombinacji stanów na pewnych wejściach, niezależnie od stanów innych wejść, stany wyjściowe oraz nie ulegają zmianie; -przy innej określonej

Bardziej szczegółowo

Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne

Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne Ćwiczenie nr 4: Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Programowalne układy logiczne

Programowalne układy logiczne Programowalne układy logiczne Układy synchroniczne Szymon Acedański Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 26 października 2015 Co to jest układ sekwencyjny? W układzie sekwencyjnym,

Bardziej szczegółowo

Układy cyfrowe i operacje logiczne

Układy cyfrowe i operacje logiczne Temat: Układy cyfrowe i operacje logiczne Rozdziały wykładu: 1. Ogólna definicja układu cyfrowego 2. Funkcje logiczne i kombinacyjne układy cyfrowe 3. Proste kombinacyjne układy cyfrowe 4. Programowalne

Bardziej szczegółowo

6. SYNTEZA UKŁADÓW SEKWENCYJNYCH

6. SYNTEZA UKŁADÓW SEKWENCYJNYCH 6. SYNTEZA UKŁADÓW SEKWENCYJNYCH 6.1. CEL ĆWICZENIA Układy sekwencyjne są to układy cyfrowe, których stan jest funkcją nie tylko sygnałów wejściowych, ale również historii układu. Wynika z tego, że struktura

Bardziej szczegółowo

Synteza układów kombinacyjnych

Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 4.0, 23/10/2014 Bramki logiczne Bramki logiczne to podstawowe elementy logiczne realizujące

Bardziej szczegółowo

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu Temat: Sprawdzenie poprawności działania przerzutników. Wstęp: Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu cyfrowego, przeznaczonego do przechowywania i ewentualnego

Bardziej szczegółowo

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. Automaty stanów

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. Automaty stanów Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 6 (2h) Automaty stanów Instrukcja do zajęć laboratoryjnych z przedmiotu Synteza układów cyfrowych studia niestacjonarne,

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład 5 Legenda Procedura projektowania Podział układów VLSI 2 1 Procedura projektowania Specyfikacja Napisz, jeśli jeszcze nie istnieje, specyfikację układu. Opracowanie

Bardziej szczegółowo

Układy sekwencyjne. Wstęp doinformatyki. Zegary. Układy sekwencyjne. Automaty sekwencyjne. Element pamięciowy. Układy logiczne komputerów

Układy sekwencyjne. Wstęp doinformatyki. Zegary. Układy sekwencyjne. Automaty sekwencyjne. Element pamięciowy. Układy logiczne komputerów Wstęp doinformatyki Układy sekwencyjne Układy logiczne komputerów Układy sekwencyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 Wstęp do informatyki I. Pardyka Akademia Świętokrzyska Kielce,

Bardziej szczegółowo

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.

Bardziej szczegółowo

Laboratorium elektroniki. Ćwiczenie E55. Synchroniczne układy sekwencyjne. Wersja 1.0 (24 marca 2016)

Laboratorium elektroniki. Ćwiczenie E55. Synchroniczne układy sekwencyjne. Wersja 1.0 (24 marca 2016) Laboratorium elektroniki Ćwiczenie E55 Synchroniczne układy sekwencyjne Wersja 1.0 (24 marca 2016) Spis treści: 1. Cel ćwiczenia... 3 2. Zagrożenia... 3 3. Wprowadzenie teoretyczne... 4 3.1. Opis synchronicznego

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane

Bardziej szczegółowo

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki Politechnika Wrocławska, Wydział PP 1. Cel ćwiczenia Zapoznanie z wybranymi cyfrowymi układami sekwencyjnymi. Poznanie właściwości, zasad działania i sposobów realizacji przerzutników oraz liczników. 2.

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI PRZERZUTNIKI

LABORATORIUM PODSTAWY ELEKTRONIKI PRZERZUTNIKI LABORATORIUM PODSTAWY ELETRONII PRZERZUTNII el ćwiczenia Zapoznanie się z budową i zasada działania przerzutników synchronicznych jak i asynchronicznych. Poznanie przerzutników asynchronicznych odniesione

Bardziej szczegółowo

Elektronika i techniki mikroprocesorowe

Elektronika i techniki mikroprocesorowe Elektronika i techniki mikroprocesorowe Technika cyfrowa ZłoŜone one układy cyfrowe Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 2 PLAN WYKŁADU idea

Bardziej szczegółowo