Kilka słów od redakcji
|
|
- Laura Mucha
- 6 lat temu
- Przeglądów:
Transkrypt
1 LUTY 2010 Nr 2
2 Kilka słów od redakcji Witamy wszystkich Czytelników Matematycznego Bzika. Oddajemy w Wasze ręce drugi numer naszego miesięcznika. Mamy nadzieję, że kolejny numer będzie się cieszył tak samo dużą popularnością jak pierwszy. Życzymy miłej lektury. W numerze: 1. Liga zadaniowa Matematyka pisana wierszem Sklej sobie bryłkę Zadania przygotowujące do sprawdzianu piąto- i szóstoklasistów Sławni matematycy Krzyżówki i łamigłówki Trochę matematycznego humoru...17 Gazetkę opracował zespół w składzie: Katarzyna Kocur, Krzysztof Domino, Maria Trojnar, Aleksandra Kaplita, Bartosz Kopaczyński, Paulina Kaplita, Paulina Klimasz oraz opiekun koła matematycznego mgr Janusz Legęć Korekta mgr Adam Janiec 2
3 Tyczyn 2010 LIGA ZADANIOWA Przed nami kolejny miesiąc ligi zadaniowej. Czy wysłaliście już rozwiązania zadań z poprzedniego numeru? Jeśli tak, to dobrze, bo przed wami kolejne zmagania z zadaniami i łamigłówkami, które należy rozwiązać do końca lutego i przesłać na adres: michal.sliwinski@math.uni.wroc.pl. Zanim jednak przystąpicie do rozwiązywania bieżących zadań sprawdźcie czy zadania z poprzedniego numeru rozwiązaliście poprawnie. Rozwiązania zadań ze stycznia: Zad albo 36. Zad Zad Rozwiązania łamigłówek ze stycznia: Zad. 1. Łyżeczka mogła być z materiału, który roztapia się w gorącej herbacie. Zad. 2. Wieśniak może przesypać soczewicę ze swojego worka do worka kupca, po czym mogą się nimi zamienić. Zad. 3. Celina i Edek. 3
4 Zadania luty 2010 Zad. 1. Ile dzielników ma liczba 2010? Zad. 2. Ile sobót wypadnie do końca XXI wieku od zakończenia tegorocznych ferii zimowych we wszystkich województwach? Zad. 3. Opisz kształt bryły, którą utworzą punkty kwadratu obróconego o 180 wokół przekątnej. Łamigłówki luty 2010 Zad. 1. Wrocławski turysta chce odwiedzić kilka polskich miast i wybrał następującą strategię podróży: najpierw pojedzie do najbliższego z wybranych miast, następnie do tego, do którego będzie miał wówczas najbliżej, itd., za każdym razem wybierając jako następne miasto najbliższe z dotychczas nieodwiedzonych, po czym pod koniec ferii wróci do Wrocławia. Czy taka kolejność odwiedzin wybranych miast daje najmniejszą możliwą sumę odległości, które musi pokonać turysta? Uzasadnij! Zad. 2. Znajdź błąd w poniższym rozumowaniu. Okrążając kulę ziemską w kierunku wschodnim, tak jak zrobił to Phileas Fogg z powieści Juliusza Verne'a, po przekroczeniu linii zmiany daty podróżujący znajduje się w czasie o 24 godziny wcześniejszym, zatem człowiek okrążający Ziemię w czasie krótszym niż 24 h (co jest już technicznie możliwe) znajdzie się po takiej podróży w miejscu startu o czasie wcześniejszym niż ten, w którym wyruszył! 4
5 Zad. 3. Wielki Mag potrafi wykonać następującą magiczną sztukę z udziałem dowolnej osoby z publiczności: osoba ta siada na krześle dostarczonym bezpośrednio z firmy meblarskiej i mimo jej szczerych chęci, ilekolwiek prób by nie podejmowała, przez 15 minut nie może sama wstać. Ani ta osoba, ani krzesło, na którym siada, nie są w trakcie pokazu ani przed nim poddawane działaniu żadnych czynników zewnętrznych. Jak Mag może coś takiego przeprowadzić? Powodzenia w łamaniu głowy! 5
6 MATEMATYKA PISANA WIERSZEM W grudniu tego roku w Szkole Podstawowej w Matysówce został przeprowadzony gminny konkurs pt. Wiersz matematyczny. Uczniowie naszej szkoły bardzo chętnie wzięli w nim udział. W sumie na konkurs zostało wysłanych 21 wierszy. Dwa pierwsze miejsca zajęły wiersze X czy Y Radosława Kotuli z klasy 6a oraz O matematyce Katarzyny Kocór z klasy 6b. Zwycięzcom gratulujemy, a ich wiersze zamieszczamy poniżej. X czy Y Już od wielu lat panowie Wielki zamęt mieli w głowie. Problem mieli bowiem taki, Co znaczyć mogą te znaki. X to krzyżyk trochę skośny, Y - kulfon jakiś sprośny. Ale zawsze niewiadomy, Tajemniczy, nieznajomy. Proste zawsze jest równanie, Chyba, że się tam dostanie X lub Y, wtedy to Zamieszanie, że ho, ho! Rozpoczyna się myślenie. I mnożenie lub dzielenie, Dodawanie, przestawianie, Żeby wyszło nam równanie. Dużo trzeba się nagłowić, Żeby znaczek ów wyłowić Czy to Y, czy też X W głowie zawsze wielki mix. A gdy go już odnajdziemy, 6
7 To do końca też nie wiemy. Czy jest dobrze obliczony, Więc powinien być sprawdzony. Wtedy w miejsce X lub Y Podstawiamy pewną liczbę. Gdy równanie zgadza się, To już każdy dobrze wie. Znika tajemniczy znak, Odlatuje niczym ptak. Wszystko proste się wydaje, Lecz pytanie pozostaje. Co to za filozof taki, Wprowadził do liczb te znaki? By utrudnić ludziom życie. Chyba po to, jak myślicie? O MATEMATYCE Ona zawsze z nami była, Od najmłodszych lat. Nigdy się tym nie znudziła, Dalej dręczy cały świat. Geometria i algebra, Wciąż po nocach mi się śnią. Wciąż nie dają mi spokoju, Dręczą biedną głowę mą! 7 Radosław Kotula 6a Katarzyna Kocur 6b
8 ZRÓB SOBIE BRYŁKĘ W poprzednim numerze naszego miesięcznika prezentowaliśmy czworościan ścięty. Dziś chcielibyśmy, abyście razem z nami skleili sześcioośmiościan. Jak zawsze potrzebny będzie duży karton grubego papieru (najlepiej kolorowego), ołówek, nożyczki, klej i siatka zamieszczona w środku gazetki. Na kartonie odrysuj lub przyklej siatkę, następnie wytnij i pozaginaj wzdłuż linii. Skrzydełka posmaruj klejem, złóż i bryła gotowa. Gotową, podpisaną bryłę możesz przynieść do sali 59, gdzie będzie zrobiona wystawa. Pierwsze bryły z poprzedniego numeru już można podziwiać w sali 59. Uwaga! Jeśli chcesz mieć większą bryłę, to po prostu powiększ siatkę na ksero. 8
9 2
10 ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANU PIĄTO- I SZÓSTOKLASISTÓW Obliczenia zwiazane z czasem 1. Kasia wróciła ze szkoły o godzinie 13:45. Do godziny 14:25 oglądała w telewizji program o morskich rybach, a następnie przez pół godziny odrabiała pracę domową z matematyki. Po zjedzeniu obiadu i ubraniu się w strój harcerski, wyszła na zbiórkę (razem z dojściem do harcówki zajęło jej to 25 minut). Ile czasu zajęły Kasi wszystkie czynności, od momentu przyjścia ze szkoły do czasu dojścia do harcówki? Czy Kasia zdążyła na zbiórkę na godzinę 15:15? 2. Zaczęło padać za piętnaście dziewiąta wieczorem i padało do wpół do ósmej rano następnego dnia. Ile czasu padał deszcz? 3. Kasia ogląda telewizję przeciętnie 40 minut dziennie. Obliczyła, że to 9 2 jej czasu wolnego. Ile czasu wolnego dziennie ma Kasia? 4. Ile lat minęło od 2600 roku p.n.e. do roku 2010? 5. Jeżeli lekcje Kasi trwały 18 kwadransów (nie wliczając przerw), to ile ich miała? 9
11 6. Szymon w 0,4 godziny spakował swój plecak. Ile minut zajęła mu ta czynność? 7. W regulaminie konkursu na komputerową prezentację szkoły określono, że nie powinna być krótsza niż 720 sekund i dłuższa niż 840 sekund. Michał przygotował prezentację, która trwa 11 minut 20 sekund. Czy jest ona zgodna z regulaminem? 10
12 SŁAWNI MATEMATYCY Dziś przybliżymy wam postać Talesa z Miletu Narodowość: grecka Data i miejsce urodzenia: ok p.n.e. Milet Data i miejsce śmierci: ok p.n.e. Milet Pochodzenie: O życiu i pochodzeniu Talesa niewiele wiadomo. Według starożytnych przekazów Tales był kupcem (handlował m.in. słynnymi tkaninami miletańskimi), technikiem, astronomem, meteorologiem, matematykiem, politykiem, teologiem i filozofem. Uważany jest za jednego z siedmiu mędrców antycznych i ojca nauki greckiej. Już w starożytności nazywany był pierwszym filozofem, matematykiem, fizykiem i astronomem. Podczas licznych podróży handlowych zapoznał się z osiągnięciami matematyki i astronomii Egiptu, Fenicji i Babilonii. Zdobytą wiedzę wykorzystywał do odkrywania i dowodzenia różnych zależności w geometrii oraz do zastosowań praktycznych. Na podstawie podobieństwa trójkątów zmierzył wysokość piramid egipskich, wykorzystując cień, który rzucały. Był założycielem jońskiej szkoły filozofów przyrody. Za prapierwiastek rzeczywistości uważał wodę. Matematyka: Zasługi Talesa polegają głownie na położeniu fundamentów matematyki 11
13 (a zwłaszcza geometrii) jako nauki dedukcyjnej. Według jej reguł każdy obiekt powinien posiadać precyzyjną definicję, a każda jego własność powinna być uzasadniona na gruncie wyjściowych założeń (postulatów i aksjomatów) i na drodze logicznego rozumowania. Przed Talesem matematyków egipskich, babilońskich i greckich interesował wynik, odpowiedź na pytanie ile i jak, Tales jako pierwszy zadał pytanie dlaczego? Wprowadził do matematyki pojęcie dowodu twierdzenia i formalnie udowodnił wiele geometrycznych faktów uznawanych wcześniej za oczywiste. Fizyka: Tales przeprowadzał eksperymenty z bursztynami, które po potarciu suknem przyciągały skrawki papieru. Były to pierwsze w historii badania z zakresu elektryczności statycznej. Astronomia: W zapiskach Herodota jest wzmianka o przepowiedzianym przez Talesa z dokładnością do roku zaćmieniu Słońca, które rozsławiło jego imię. A przecież nie można zrobić tego precyzyjnie bez dokładnej wiedzy o budowie kosmosu. Tales nie miał wiedzy potrzebnej do przewidywań astronomicznych, np. nie wiedział, że Ziemia jest kulista. Mógł natomiast oprzeć się na obliczeniach wynikających z obserwacji powtarzających się zaćmień Słońca i Księżyca prowadzonych przez wiele stuleci przez Egipcjan i Babilończyków. Prawdopodobnie Tales przebywał w Egipcie w roku 603 p.n.e. i był tam świadkiem zaćmienia Słońca. Tam też zapoznał 12
14 się ze sposobami przepowiadania zjawisk astronomicznych i na tej podstawie przewidział zaćmienie w ciągu roku 585 p.n.e. Twierdzenia i odkrycia: Twierdzenie Talesa: Jeśli ramiona kąta płaskiego przetniemy dwiema prostymi równoległymi, to odcinki wyznaczone przez te proste na jednym z ramion kąta są proporcjonalne do odpowiednich odcinków na drugim ramieniu kąta. Średnica dzieli koło na połowy. Kąty przy podstawie trójkąta równoramiennego są równe. Kąty wierzchołkowe są równe Ciekawostki i anegdoty: Zmierzył wysokość piramid egipskich, wykorzystując taki moment dnia, gdy cień obiektu był równy jego wysokości. Wykorzystując własności trójkątów podobnych obliczał odległości od brzegu okrętów znajdujących się na pełnym morzu. Przewidział niemal całkowite zaćmienie Słońca 28 maja 585 r. p.n.e., które zmusiło do rozejmu walczących od 6 lat w wojnie Medów i Lidyjczyków, a Talesowi zjednało sławę wielkiego uczonego. Według Platona Tales, obserwując gwiazdy, wpadł w ciemności do studni. Wtedy piękna niewolnica rzekła żartem, że chciał zobaczyć, co się dzieje na niebie, a nie dostrzegł tego, co znajduje się pod jego nogami. Tales (jak każdy ówczesny Grek?) był miłośnikiem sportu. W młodości niejeden raz zdobywał olimpijskie laury. Podobno umarł na stadionie 13
15 w Milecie na skutek udaru słonecznego, oklaskując walczących o zwycięstwo olimpijczyków. Cytaty: Najsilniejszą rzeczą jest konieczność, wszystkim bowiem rządzi. Nie bogać się w nieuczciwy sposób, żebyś nie ściągnął na siebie złej sławy tych, którzy ci zaufali. Noc jest przedsionkiem dnia. 14
16 KRZYŻÓWKI I ŁAMIGŁÓWKI 1. Wynik dodawania. 2. Wynik odejmowania. 3. a h/2 jest to wzór na pole 4. a h jest to wzór na pole 5. Łączy środek okręgu z punktem na okręgu. 6. Przekątne w rombie przecinają się w połowie i są Wielokąt, który ma trzy kąty. 8. Wynik mnożenia. 9. Wielokąt, który ma 4 boki, 4 wierzchołki i 4 kąty. 10. Przyrząd, który służy do wykonywania obliczeń
17 Sudoku Uzupełnij puste pola cyframi od 1 do 9 w taki sposób, aby w każdym wierszu, w każdej kolumnie i w każdym wydzielonym kwadracie cyfry nie powtarzały się Uzupełnij krzyżówkę, wpisując brakujące znaki i liczby = * 5 - = = = = = = = 16
18 TROCHĘ MATEMATYCZNEGO HUMORU N: Jasiu, jeśli twoja mama jest o 34 lata starsza niż twoja siostra, a ty jesteś o 5 lat młodszy od siostry i masz teraz 10 lat, to ile lat ma twoja mama? U: Proszę Pani! Kobiet nie pyta się o wiek! N: Ile razy można odjąć 7 od 83 i ile zostanie? U: Można odejmować 7 tyle razy, ile się chce i za każdym razem zostanie 76. N: Ile to jest 7 razy 6? U: 42. N: Bardzo dobrze. A ile to jest 6 razy 7? U: 24. N: Tyle razy wam mówiłam, że połowy są równe. Nie ma większej i mniejszej połowy. Ale i tak większa połowa z was tego nigdy nie zrozumie! 17
19 N: Uczenie się matematyki, to ogromna przyjemność! U: Proszę Pani, ja nie mam czasu na przyjemności! N: Jasiu, czy ojciec pomaga ci w odrabianiu lekcji? U: Nie, ta ostatnia dwója z matematyki zupełnie go załamała. 18
Kilka słów od redakcji
STYCZEŃ 2010 Nr 1 Kilka słów od redakcji Witamy wszystkich Czytelników Matematycznego Bzika, a zwłaszcza Miłośników matematyki. Oddajemy w Wasze ręce pierwszy numer naszego miesięcznika, w którym będziemy
Kilka słów od redakcji
MARZEC 2010 Nr 3 Kilka słów od redakcji Witamy wszystkich Czytelników Matematycznego Bzika. Spotykamy się z Wami już po raz trzeci. Mamy nadzieję, że kolejny numer będzie się cieszył tak samo dużą popularnością
Kilka słów od redakcji
MAJ 2010 Nr 5 Kilka słów od redakcji Witamy wszystkich Czytelników Matematycznego Bzika. Oddajemy w Wasze ręce ostatni w roku szkolnym 2009/2010 numer naszego miesięcznika. Mamy nadzieję, że spotkamy się
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Kilka słów od redakcji
KWIECIEŃ 2010 Nr 4 Kilka słów od redakcji Witamy wszystkich Czytelników Matematycznego Bzika. Mamy nadzieję, że w kwietniowym numerze każdy znajdzie coś dla siebie. Życzymy miłej lektury. W numerze: 1.
WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE
WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE I. Szkolne zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy.
STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf
STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf STRONA DO WSTAWIENIA: STR_RED\MEPGI1_002red.pdf Spis treści Od autorek (s. 7) 1. Statystyka (s. 9) 1.1. Wędrówki po krajach Unii Europejskiej. Wyszukiwanie
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017
NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym.
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym. Po uruchomieniu Geogebry (wersja 5.0) Pasek narzędzi Cofnij/przywróć Problem 1: Sprawdź co się stanie, jeśli połączysz
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
Wymagania edukacyjne z matematyki w klasie piątej
Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:
Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne w klasie V
Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
1. Biorąc pod uwagę długość ciała, uporządkuj malejąco mieszkańców mórz i oceanów. Uzupełnij tabelę i narysuj diagram słupkowy.
Tekst do zadań 1. Płetwal błękitny to największe znane ziemskie zwierzę. (...) W morzach i oceanach Żyje wiele dużych zwierząt, np: płetwal błękitny (30 m), marlin (5 m), kaszalot (20 m), rekin (16 m),
Wymagania na poszczególne oceny szkolne. Matematyka
Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny
Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie
WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie 2. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE DLA KLASY IV TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne w dziesiątkowym
ROZKŁAD MATERIAŁU DLA KLASY VI SZKOŁY PODSTAWOWEJ
ROZKŁAD MATERIAŁU DLA KLASY VI SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 3 grudnia 008 r., obowiązującą w klasie IV od roku szkolnego 0/03 oraz stanowi
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Wymagania na poszczególne oceny szkolne KLASA V
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Gazetka matematyczna Szkoły Podstawowej Nr 4 im. Jana Twardowskiego. To już drugi numer naszej gazetki matematycznej przeznaczonej
Gazetka matematyczna Szkoły Podstawowej Nr 4 im. Jana Twardowskiego Nr 2/2016 grudzień Witajcie! To już drugi numer naszej gazetki matematycznej przeznaczonej dla każdego z Was! Dzięki niej możecie dowiedzieć
rozszerzające (ocena dobra)
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 8 ROK SZKOLNY 2018/2019 OPARTE NA PROGRAMIE NAUCZANIA MATEMATYKI W SZKOLE PODSTAWOWEJ MATEMATYKA Z PLUSEM Wymagania na poszczególne oceny konieczne (ocena dopuszczająca)
Wymagania edukacyjne z matematyki- klasa 4
Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające
Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.
1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i
Wymagania edukacyjne z matematyki w klasie 5
Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4
Egzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Osiągnięcia ponadprzedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo
Własności walca, stożka i kuli.
Własności walca, stożka i kuli. 1. Cele lekcji a) Wiadomości Uczeń: - zna pojęcie bryły obrotowej, - zna definicje: walca, stożka, kuli, - zna budowę brył obrotowych, - zna pojęcia związane z symetrią
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny konieczne (ocena dopuszczająca) 1.
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Cud grecki. Cud grecki. Wrocław, 2 marca 2016
Wrocław, 2 marca 2016 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Wykształcenie podstawowe
MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,
II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R.
II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. I ETAP KOD. PIRAMIDA ( 4 pkt ) Dodaj sąsiednie liczby w każdym wierszu i wejdź na szczyt piramidy.
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.
Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
II. Działania na liczbach naturalnych. Uczeń:
TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające
SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Powtórzenie i utrwalenie wiadomości dotyczących geometrii figur płaskich.
Katarzyna Gawinkowska Hanna Małecka VI L.O im J. Korczaka w ZSO nr 2 w Sosnowcu SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM Temat: Powtórzenie i utrwalenie wiadomości dotyczących geometrii
Troszkę Geometrii. Kinga Kolczyńska - Przybycień
Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Kilka słów o mierzeniu Otóż jak sama nazwa Geometria (z gr geo-ziemia, metria-miara) ma ona coś wspólnego
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Scenariusz lekcji matematyki w kl. V.
Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości o czworokątach. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie wiadomości o figurach geometrycznych
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
WYMAGANIA EGZAMINACYJNE DLA KLASY V
TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Program zajęć rozwijających zainteresowania.,, I ty możesz zostać Pitagorasem. Opracowany przez Monikę Chodacz
Program zajęć rozwijających zainteresowania,, I ty możesz zostać Pitagorasem Opracowany przez Monikę Chodacz 2 WSTĘP Program koła matematycznego,, I ty możesz zostać Pitagorasem jest przeznaczony dla uczniów
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i
Mini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej
XVI MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2010 ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej Opracowanie: mgr Władysława Paczesna 1 Zapraszamy Cię do wzięcia udziału w Międzyszkolnej
PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013
PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria
Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria efinicja 1. Mówimy, że odcinki i są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli ramiona
Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe KONIECZNE( 2) PODSTAWOWE (3) ROZSZERZAJĄCE (4) DOPEŁNIAJACE
Program nauczania: Katarzyna Makowska, Łatwa matematyka. Program nauczania matematyki w klasach IV VI szkoły podstawowej.
ROZKŁAD MATERIAŁU DLA KLASY V SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 23 grudnia 2008 r., obowiązującą w klasie IV od roku szkolnego 202/203 oraz stanowi
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania Wymagania ponad Dział 1. Liczby. Uczeń: 1. Zbieranie i prezentowanie danych gromadzi dane; odczytuje dane przedstawione w tekstach, tabelach,
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu matematycznym