a. Architektura Von Neumanna (pojedyncza pamięć) SZYNA ADRESOWA JEDNOSTKA CENTRALNA CPU SZYNA DANCH SZYNA ADR. JEDNOSTKA CENTRALNA PROGRAMU CPU

Wielkość: px
Rozpocząć pokaz od strony:

Download "a. Architektura Von Neumanna (pojedyncza pamięć) SZYNA ADRESOWA JEDNOSTKA CENTRALNA CPU SZYNA DANCH SZYNA ADR. JEDNOSTKA CENTRALNA PROGRAMU CPU"

Transkrypt

1 Mikroprocesorowe przetworniki A/C i C/A a. Architektura Von Neumanna (pojedyncza pamięć) PAMIĘĆ PROGRAMU i PAMIĘĆ DANYCH SZYNA ADRESOWA SZYNA DANCH JEDNOSTKA CENTRALNA CPU b. Architektura Harvardzka (podwójna pamięć) PAMIĘĆ PROGRAMU SZYNA ADR. PROGRAMU SZYNA KODU PROGRAMU JEDNOSTKA CENTRALNA CPU SZYNA ADR. DANYCH SZYNA DANCH PAMIĘĆ DANYCH c. Architektura super- Harvardzka (podwójna pamięć, pamięć podręczna instrukcji, kontroler WE/WY) PAMIĘĆ PROGRAMU SZYNA ADR. PROGR. CPU SZYNA ADR. DANYCH PAMIĘĆ DANYCH SZYNA PROGR. instrukcje pam. podręcznej SZYNA DANYCH instrukcje i drugorzędne dane Kontroler I/O DANE i STEROWANIE DANE Urządzenie I/O np. przetwornik A/C Wejścia analogowe

2 Architektura procesorów Intel 80C51 Przerwania zewnętrzne IRQ4 IRQ3 0023H 001BH Kontr. Przerwań 4k ROM 128 RAM Timer 0 Timer 1 We0 We1 IRQ2 IRQ1 0013H 000BH CPU Reset IRQ0 0003H 0000H Osc Kontr. Magistral Porty WE/WY SIO 80C51 P1 P0 EPROM TxD RxD Organizacja pamięci P0 P2 Adresy/Dane P1 P3 P3 ALE P2 Latch OE ADDR 1. System przerwań (wektor przerwań) 2. Dołączenie zewnętrznej pamięci programu.

3 Organizacja pamięci programu: Przestrzeń pamięci programu ROM Organizacja pamięci programu ROM FLASH/EE (big memory) 0FFFFh Zewn. EPROM obszar kodu programu ładującego producenta obszar kodu programu ładującego użytkownika 2 kb 6 kb 0FFFFh 0F800h 0F7FFh 0E000h 0DFFFh EA=1 Wewn. x kb FLASH/EE 01FFFh EA=0 Zewn. x kb 62kB kodu użytkownika obszar kodu programu użytkownika 56 kb 0000h 0000h PSEN

4 Organizacja pamięci danych 0FFFFFFh 0FFFFFFh Obszar zewnętrznej pamięci danych (24-bit adres) Obszar zewnętrznej pamięci danych (24-bit adres) h h 2 kb wewn. pamięci danych CFG8xx.0=0 CFG8xx.0=1 Model programowy mikrosystemu 62kB reprogr. nieulotnej pamięci programu FLASH/EE Rdzeń 8051/ bajty RAM obszar 128- bajtów rejestrów specjalnych SFR 4 kb reprogr. nieulotnej pamięci danych FLASH/EE 8-kanałowy 12-bitowy przetwornik A/C inne urządzenia peryferyjne: czujnik temp. 2 x 12-bit C/A WDT PSM TIC

5 Architektura procesorów ARM ARM to skrót od: Advanced RISC Machine (RISC -Reduced Instruction Set Computers)

6 SPECJALIZOWANE MODUŁY ZEGARÓW/LICZNIKÓW CT0I Int CT1I Int CT2I Int CT2I Int CTI0 CTI1 CTI2 CTI3 CT0 CT1 CT2 CT3 off f osc T2 1/12 Prescaler T2 Licznik przerwanie od 8-bitowego przepełnienia przerwanie od 16-bitowego przepełnienia RT2 T2ER zezwolenie zewn. zerowania magistrala 16-bitowa S S S S S S TG TG STE R R R R R R T T RTE P4.0 P4.1 P4.2 P4.3 P4.4 P4.5 P4.6 P4.7 Port P4 I/O Port 4 COMP Int COMP Int COMP Int CM0 (S) CM1 (R) CM2 (T) S = set R = reset T = toglle TG = toglle status T2 SFR address: TML2 = lower 8 bits TMH2 = higher 8 bits Schemat blokowy układu zegara/licznika 2 mikrokontrolera 80C552 Philips

7 Programowane moduły zliczające w pomiarach interwału czasu, okresu i częstotliwości badany sygnał jednobitowy wskaźnik wpisu do rejestru CT0 licznika L2 rejestr CT0 licznika L2 CTI0 CTL0 INT f x CTH0 wewnętrzna 16 bit. magistrala danych f osc =11,0592MHz 1/12 rejestr licznika L2 Dzielnik wstępny 1/2/4/8 T2H T2L PRZERWANIE (INT): 16 bitowe przepełnienie licznika L2 moduł licznika L2 Schemat blokowy struktury układu do pomiaru okresu i częstotliwości przy wykorzystaniu struktury układu licznikowego L2. Bieżący stan licznika L INT14 Przepełnienie licznika L2 Przerwania INT14 Przepełnienie licznika L Sygnał f x Sygnał f osc t Stan licznika L2 rejestrowany N 1 N 2 w rejestrze CT0 (CTH0, CTL0) t

8 długość słowa licznika L2: N (16) 2 Pojemność licznika L2: (65536) Liczba przepełnień licznika L2 (zgłoszonych przerwań od L2): N Nirq Okres sygnału fx (interwał czasu τx): Częstotliwość fx: x osc T T N N N f x 1 T x irq N

9 Mikrokonwerter ADuC812 Rys. Schemat blokowy mikrokowertera ADuC812

10 OGÓLNA CHARAKTERYSTYKA: Analogowe WE/WY: 8-kanałow, Wysoka dokładnośc przetwarzania 12-Bit C/A Źródło napięcie refencyjnego wewnątrz chpiu, 100 ppm/_c Wysoka prędkośc przetwarzania A/C 200 kprb/s Kontroler DMA wykorzystywany w procesie przetwarzania A/C do zapamiętywania wyników w pamięci RAM 2 x 12-Bit ptrzetworniki C/A z wyjściem napięciowym Wbudowany czujnik temeratury (On-Chip) Pamięć: Pamięć programu: 8K Bytes (On-Chip) Flash/EE Pamięć danych: 640 Bytes (On-Chip) Flash/EE Pamieć danych RAM: 256 Bytes (On-Chip) Pamięć danych zewnętrzna: do 16MB Pamięć programu zewnętrzna: do 64KB Rdzeń systemu kompatybilny 8051 Zegar systemowy: 12 MHz (nominalnie) 16 MHz Max 3 moduły 16-Bit zegar/licznik Port 3 o zwiększonej obciążalności 9 wektorów przerwań, 2 poziomy priorytetów Zasilanie: 3 V lub 5 V Tryby pracy: Normal, Idle, and Power-Down Urządzenia peryferyjne( On-Chip): moduł transmisji szeregowych: UART and SPI Serial I/O 2-Wire (400 khz I2C Compatible) Serial I/O Watchdog Timer Monitor napięcia zasilania

11 Architektura pamięci mikrokonwerterów: Rys. Pamięć programu. Rys. Pamięć danych Rys. Model programowy mikrokonwertera

12 Rys. Funkcja przetwarzania (statyczna) Rys. Format rezultatu przetwarzania A/C V in D N 2 AV AV AV REF REF REF D kod wyjściowy przetwornika A/C AVREF napiecie referencyjne (odniesienia przetwornika) AVREF+ -AVREF- - zakres weściowy przetwornika N szerokość słowa wyjściowego przetwornika AV REF 0 [ V jeżeli: ] D V in AV 2 N REF

13 Wyzwalanie pomiaru przetwornika A/C wyzwalanie programowe wyzwalanie sprzętowe o tryb pracy ciągły o wyzwalanie zewnętrznym źródłem pobudzającym (generator zewn.) o wyzwalanie wewnętrznym źródłem pobudzającym (generator modułu L2) tryby mieszany Systemowa obsługa przetwornika A/C o o o obsługa programowa metodą podglądania stanu rejestrów kontrolnych przetwornika (ang. pooling) obsługa programowa z wykorzystaniem systemu przerwań obsługa programowo-sprzętowa z bezpośrednim przekazywaniem danych do pamięci danych systemu (tryb pracy DMA) Tryb DMA pracy przetwornika o prekonfigurowanie zewnętrznej pamięci RAM mikrokonwertera (wstępne inicjowanie zawartości pamięci RAM docelowego transferu danych) Rys. Pamięć przed konwersją A/C Rys. Pamięć po wykonaniu cyklu przetwarzania DMA

14 FUNKCJE Analog input/output ADuC7060 Dual (24-bit) ADCs Single-ended and differential inputs Programmable ADC output rate (4 Hz to 8 khz) Programmable digital filters Built-in system calibration Low power operation mode Primary (24-bit) ADC channel 2 differential pairs or 4 single-ended channels PGA (1 to 512) input stage Selectable input range: }2.34 mv to }1.2 V 30 nv rms noise Auxiliary (24-bit) ADC: 4 differential pairs or 7 singleended channels On-chip precision reference (}10 ppm/ C) Programmable sensor excitation current sources 200 μa to 2 ma current source range Single 14-bit voltage output DAC Microcontroller ARM7TDMI core, 16-/32-bit RISC architecture JTAG port supports code download and debug Multiple clocking options Memory 32 kb (16 kb 16) Flash/EE memory, including 2 kb kernel 4 kb (1 kb 32) SRAM Tools In-circuit download, JTAG based debug Low cost, QuickStart development system Communications interfaces SPI interface (5 Mbps) 4-byte receive and transmit FIFOs UART serial I/O and I2C (master/slave) On-chip peripherals 4 general-purpose (capture) timers including Wake-up timer Watchdog timer Vectored interrupt controller for FIQ and IRQ 8 priority levels for each interrupt type Interrupt on edge or level external pin inputs 16-bit, 6-channel PWM General-purpose inputs/outputs Up to 14 GPIO pins that are fully 3.3 V compliant Power AVDD/DVDD specified for 2.5 V (}5%) Active mode: 2.74 ma (@ 640 khz, ADC0 active) 10 ma (@ MHz, both ADCs active)

15 Packages and temperature range Fully specified for 40 C to +125 C operation 32-lead LFCSP (5 mm 5 mm) 48-lead LFCSP and LQFP Derivatives 32-lead LFCSP (ADuC7061) 48-lead LQFP and 48-lead LFCSP (ADuC7060) APPLICATIONS Industrial automation and process control Intelligent, precision sensing systems, 4 ma to 20 ma loop-based smart sensors

16 Rys. Schemat obwodów analogowych mikrokontrolera ADuC7060/61

17 Typowe aplikacje układowe kontrolera analogowego ADuC7060/61

18 MIKROKONWERTERY Przetworniki inteligentne smart transducer W ciągu ostatnich 20 lat obserwuje się postęp w dziedzinie czujników inteligentnych. IEEE oraz NIST opracowały normę, która obejmuje funkcje i zasady transmisji sygnału. Przetworniki wykonane zgodnie z normą 1451 są przetwornikami nowej generacji, przystosowanymi do pracy w sieci, o możliwościach niespotykanych w dotychczasowych rozwiązaniach. Są niezależne od rozwiązań konstrukcyjnych sprzętu i sieci. Sygnał cyfrowy zawiera informacje o wartości mierzonej wielkości, jej jednostce SI i symbolu przetwornika, może być także sygnałem sterującym. IEEE Institute of Electrical and Electronics Engineers NIST National Intitute of Standards and Technology (dawne National Bureau of Standards - NBS) Termin: czujniki inteligentne?... czy układy pomiarowe zdolne są do podejmowania decyzji? Od czujnika wymaga się znacznie mniej. W j. angielskim takie czujniki nazywane są smart sensors lub intelligent sensors. W roku 1992 prof. Ryszard Jachowicz znając poglądy środowisk metrologów zarówno polskich jak i zachodnich zaproponował na konferencji COE 92 następującą definicję czujnika inteligentnego: Czujnik inteligentny jest elementem pomiarowym przekazującym informację o mierzonej wielkości w postaci cyfrowej, który komunikuje się z zewnętrznym cyfrowym systemem pomiarowym (komputerem) w oparciu o standardowy protokół komunikacji i z użyciem standardowego interfejsu W opracowanej normie IEEE 1451 obejmującej sprzęgi przetworników (Smart Transducer Interface Standard For Sensors And Actuators) przyjęta jest inna definicja, obejmująca wszystkie przetworniki, zarówno czujniki jak i organy wykonawcze lub wzbudzające. Wspólne traktowanie czujników i organów wykonawczych wprowadza nowe podejście do sygnału pomiarowego zgodne z treścią tej normy. Sygnały pomiarowe maja taki sam charakter, co sygnały sterujące, są przesyłane po tych samych magistralach i mogą być użyte do sterowania. POSTĘP W DZIEDZINIE CZUJNIKÓW INTELIGENTNYCH

19 Jednym z pierwszych układów jest produkowany seryjnie czujnik inteligentny Eμ358A. Ma on czujnik pierwotny wykonany w technologii IS-FET zintegrowany ze wzmacniaczem. Różne typy czujników inteligentnych nowszej generacji zawierają obecnie cztery podstawowe układy toru przetwarzania sygnałów: wzmacniacz dopasowujący (kondycjonujący) przetwornik analogowo-cyfrowy mikroprocesor 4-bitowy (8-bitowy) nadajnik transmisji szeregowej Wszystkie części toru pomiarowego można wykonać w jednej strukturze scalonej? Typowy dla początku lat dziewięćdziesiątych czujnik inteligentny zawierał trzy układy scalone: część analogową wraz z przetwornikiem A/C mikroprocesor część cyfrową. Rs485 Mikrokomputer Zasilacz Czujnik 1 Czujnik 2 inne czujniki CZUJNIK INTELIGENTNY WEDŁUG NOWEJ NORMY Rys. Łączenie zespołu czujników inteligentnych z wykorzystaniem łącza RS 485 i dodatkowych przewodów zasilających

20 Network Network capable Application procesor (NCAP) Function block Transducer block Adres logic Smart transducer interface module (STIM) Transducer electronic data sheet (TEDS) A/D converter D/A converter Discrete I/O? Transducer Transducer Transducer Transducer Signal isolator Signal isolator Buffered analog output Buffered analog output Smart sensor per IEEE P 1451 definition (15 july 1996) output Rys. Czujnik inteligentny według IEEE NCAP- sprzęg między czujnikiem a siecią. Moduł sprzęgu czujnika inteligentnego - STIM może zawierać wiele różnych czujników i musi posiadać pamięć nieulotną TEDS zawierającą szczegółowy zapis struktury STIM. NAJWAŻNIEJSZE USTALENIA NORMY Norma obejmuje następujące zagadnienia: P normalizacja programów potrzebnych dla pracy NCAP, między innymi: - współpracy ze STIM - dostępu do TEDS - adresowania - sterowania przesyłaniem informacji - komunikacji między przetwornikami a siecią P normalizacja zarówno sprzętu jak i programów związanych z pracą STIM. Norma rozróżnia następujące typy przetworników w zależności od charakteru ich sygnałów: - czujniki - organy wykonawcze - czujniki kolejności zdarzeń - przetworniki próbkujące (wysyłające serie danych) - inne

21 Realizowane funkcje: - adresowanie - przesyłanie danych - przechowywanie informacji o wszystkich przetwornikach i dostępie do nich - identyfikacja - status - sterowanie całym STIM oraz poszczególnymi torami pomiarowymi - przełączanie - przerwania Inne funkcje (dodatkowe): kalibracja, autokalibracja itp. Oddzielny rozdział jest poświęcony jest pamięci TEDS, która zawiera poza danymi układu także funkcje matematyczne przydatne przy korekcji sygnału. Znormalizowane jest również zasilanie (4,5 5,5 V) (3V), pobór prądu przez STIM (nie więcej niż 75 ma ) oraz złącze między NCAP a STIM (dziewięciostykowe). P komunikację dla systemów rozproszonych P komunikację o charakterze mieszanym, np. przesyłanie niektórych cyfrowych danych dotyczących czujników analogowych. Z rys.3 wynika, że każdy czujnik inteligentny (mogący zawierać w sobie kilka czujników pierwotnych), ma własny, bardzo rozbudowany układ cyfrowy. Jest to oczywiście rozwiązanie nadmiarowe, ale umożliwiające uproszczenie zarówno układów sterujących systemem, jak i szybsze ich działanie. PRZETWARZANIE SYGNAŁÓW W CZUJNIKACH WEDŁUG NOWEJ NORMY Dla wytworzenia sygnału dostosowanego do przesyłania w sieci oraz do wykorzystania przez współpracujące urządzenia niezbędne jest wielokrotne przetwarzanie sygnału. Norma nie stawia warunków na przetwarzanie analogowe, więc na schematach funkcjonalnych nie jest ono wyodrębnione. Kalibracja i korekcja sygnału odbywa się przy użyciu informacji zapisanych w TEDS, a więc korygowany jest sygnał cyfrowy. Przy korekcji sygnału może być wykorzystany sygnał z innego przetwornika. Wyjściowy sygnał pomiarowy zawiera (w/g normy) trzy składniki: wartość wielkości mierzonej jednostkę symbol lub numer porządkowy przetwornika

22 Transducer Electronic Data Sheet (TEDS) Arkusz danych przetworników elektronicznych Elektroniczna karta katalogowa przetwornika Przetwornik Transducer Electronic Data Sheet (TEDS) Tryb mieszany interfejsu (analogowocyfrowy)

23

24 (Rysunki zaczerpnięto z pracy: Roman Wyżgolik; Politechnika Śląska, Instytut automatyki, Zakład systemów pomiarowych; Tytuł: IEEE 1451 interfejs przetwornika inteligentnego) a) Sieć Czujnik Przetwornik A/C TEDS Układ adresujący NCAP b) Wzmacniacz separujący Sieć NCAP Układ adresujący Przetwornik C/A Organ wykonawczy Wielkość wyjściowa (np. prąd, siła, moment obrotowy) Wzmacniacz separujący Rys. Przetwarzanie sygnału w czujnikach inteligentnych a) tor sygnału pomiarowego, b) tor sygnału sterującego

25 Liczba użytych jednocześnie czujników może być bardzo wielka. W przykładzie przedstawionym na rys. zastosowano 16 magistral, przy czym do każdej z nich można przyłączyć 255 czujników. Networked snsor Networked snsor Networked snsor Networked snsor Host procesor Network HUB Networked snsor Networked snsor Networked snsor Bus 1 Bus 2 Bus 3 Host controller Bus16 Networked snsor Networked snsor Networked snsor Rys. System czujników inteligentnych badany w Boeing Commertial Airplan Co.

26 Szablony TEDS (Rysunki zaczerpnięto z pracy: Roman Wyżgolik; Politechnika Śląska, Instytut automatyki, Zakład systemów pomiarowych; Tytuł: IEEE 1451 interfejs przetwornika inteligentnego)

27 KORZYŚCI Z WPROWADZENIA NORMY Najważniejsze zalety normalizacji w dziedzinie czujników inteligentnych to zwiększenie możliwości ich stosowania, a mianowicie: wykorzystywanie znacznie większej niż dotąd liczby czujników w jednym systemie pomiarowym współpracy między systemami zawierającymi różne czujniki, nawet produkowanych przez różne firmy transmisji na odległość niezależnej od rodzaju sieci stosowania w systemach rozproszonych wykorzystania tych samych sygnałów do sterowania brak zależności pracy systemów od rozwiązań sprzętowych. PODSUMOWANIE Ze względu na stosowane technologie i związaną z tym miniaturyzację czujniki inteligentne, mimo niespotykanych dotąd możliwości, będą miały małe wymiary i względnie niewielką cenę. Sygnały pomiarowe tych czujników będą dostarczały więcej niż dotychczas informacji, ponieważ będą zawierały także jednostkę oraz symbol identyfikacyjny czujnika. Będą mogły być skorygowane ze względu na wielkości wpływowe, możliwa jest również kalibracja. Przydatne są bezpośrednio w układów sterujących. Transmisja danych będzie szybka i niezależna od sieci. Mimo zastosowania techniki cyfrowej, dla użytkowników są dostępne również sygnały analogowe.

28

SZYNA ADRESOWA JEDNOSTKA CENTRALNA CPU SZYNA DANCH SZYNA ADR. JEDNOSTKA CENTRALNA PROGRAMU CPU SZYNA KODU PROGRAMU

SZYNA ADRESOWA JEDNOSTKA CENTRALNA CPU SZYNA DANCH SZYNA ADR. JEDNOSTKA CENTRALNA PROGRAMU CPU SZYNA KODU PROGRAMU Mikroprocesorowe przetworniki A/C i C/A PAMIĘĆ PROGRAMU i PAMIĘĆ DANYCH SZYNA ADRESOWA SZYNA DANCH JEDNOSTKA CENTRALNA CPU b. Architektura Harvardzka (podwójna pamięć) PAMIĘĆ PROGRAMU SZYNA ADR. PROGRAMU

Bardziej szczegółowo

Mikrokontrolery analogowe i aplikacje pomiarowe. Katedra Metrologii i Systemów Diagnostycznych

Mikrokontrolery analogowe i aplikacje pomiarowe. Katedra Metrologii i Systemów Diagnostycznych Mikrokontrolery analogowe i aplikacje pomiarowe Katedra Metrologii i Systemów Diagnostycznych MicroConverter --- Precision Analog Microcontroller Mikrokontroler analogowy AGENDA Wprowadzenie ADuC8xx and

Bardziej szczegółowo

Mikrokontrolery analogowe. Zakład Metrologii i Systemów Diagnostycznych

Mikrokontrolery analogowe. Zakład Metrologii i Systemów Diagnostycznych Mikrokontrolery analogowe Zakład Metrologii i Systemów Diagnostycznych MicroConverter --- Precision Analog Microcontroller Mikrokontroler analogowy AGENDA Wprowadzenie ADuC8xx and ADuC7xxx Przegląd ADuC706x

Bardziej szczegółowo

Wykład 4. Przegląd mikrokontrolerów 16-bit: - PIC24 - dspic - MSP430

Wykład 4. Przegląd mikrokontrolerów 16-bit: - PIC24 - dspic - MSP430 Wykład 4 Przegląd mikrokontrolerów 16-bit: - PIC24 - dspic - MSP430 Mikrokontrolery PIC Mikrokontrolery PIC24 Mikrokontrolery PIC24 Rodzina 16-bitowych kontrolerów RISC Podział na dwie podrodziny: PIC24F

Bardziej szczegółowo

Wykład 2. Mikrokontrolery z rdzeniami ARM

Wykład 2. Mikrokontrolery z rdzeniami ARM Wykład 2 Źródło problemu 2 Wstęp Architektura ARM (Advanced RISC Machine, pierwotnie Acorn RISC Machine) jest 32-bitową architekturą (modelem programowym) procesorów typu RISC. Różne wersje procesorów

Bardziej szczegółowo

MIKROKONTROLERY I MIKROPROCESORY

MIKROKONTROLERY I MIKROPROCESORY PLAN... work in progress 1. Mikrokontrolery i mikroprocesory - architektura systemów mikroprocesorów ( 8051, AVR, ARM) - pamięci - rejestry - tryby adresowania - repertuar instrukcji - urządzenia we/wy

Bardziej szczegółowo

Technika Mikroprocesorowa

Technika Mikroprocesorowa Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa

Bardziej szczegółowo

Wykład 2. Przegląd mikrokontrolerów 8-bit: -AVR -PIC

Wykład 2. Przegląd mikrokontrolerów 8-bit: -AVR -PIC Wykład 2 Przegląd mikrokontrolerów 8-bit: -AVR -PIC Mikrokontrolery AVR Mikrokontrolery AVR ATTiny Główne cechy Procesory RISC mało instrukcji, duża częstotliwość zegara Procesory 8-bitowe o uproszczonej

Bardziej szczegółowo

Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie:

Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie: Zaliczenie Termin zaliczenia: 14.06.2007 Sala IE 415 Termin poprawkowy: >18.06.2007 (informacja na stronie: http://neo.dmcs.p.lodz.pl/tm/index.html) 1 Współpraca procesora z urządzeniami peryferyjnymi

Bardziej szczegółowo

WPROWADZENIE Mikrosterownik mikrokontrolery

WPROWADZENIE Mikrosterownik mikrokontrolery WPROWADZENIE Mikrosterownik (cyfrowy) jest to moduł elektroniczny zawierający wszystkie środki niezbędne do realizacji wymaganych procedur sterowania przy pomocy metod komputerowych. Platformy budowy mikrosterowników:

Bardziej szczegółowo

System mikroprocesorowy i peryferia. Dariusz Chaberski

System mikroprocesorowy i peryferia. Dariusz Chaberski System mikroprocesorowy i peryferia Dariusz Chaberski System mikroprocesorowy mikroprocesor pamięć kontroler przerwań układy wejścia wyjścia kontroler DMA 2 Pamięć rodzaje (podział ze względu na sposób

Bardziej szczegółowo

Mikroprocesory i Mikrosterowniki

Mikroprocesory i Mikrosterowniki Mikroprocesory i Mikrosterowniki Wykład 1 Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Konsultacje Pn,

Bardziej szczegółowo

Wykład 3. Przegląd mikrokontrolerów 8-bit: STM8

Wykład 3. Przegląd mikrokontrolerów 8-bit: STM8 Wykład 3 Przegląd mikrokontrolerów 8-bit: - 8051 - STM8 Mikrokontrolery 8051 Rodzina 8051 wzięła się od mikrokontrolera Intel 8051 stworzonego w 1980 roku Mikrokontrolery 8051 były przez długi czas najpopularniejszymi

Bardziej szczegółowo

Wstęp...9. 1. Architektura... 13

Wstęp...9. 1. Architektura... 13 Spis treści 3 Wstęp...9 1. Architektura... 13 1.1. Schemat blokowy...14 1.2. Pamięć programu...15 1.3. Cykl maszynowy...16 1.4. Licznik rozkazów...17 1.5. Stos...18 1.6. Modyfikowanie i odtwarzanie zawartości

Bardziej szczegółowo

E-TRONIX Sterownik Uniwersalny SU 1.2

E-TRONIX Sterownik Uniwersalny SU 1.2 Obudowa. Obudowa umożliwia montaż sterownika na szynie DIN. Na panelu sterownika znajduje się wyświetlacz LCD 16x2, sygnalizacja LED stanu wejść cyfrowych (LED IN) i wyjść logicznych (LED OUT) oraz klawiatura

Bardziej szczegółowo

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

Technika mikroprocesorowa

Technika mikroprocesorowa Technika mikroprocesorowa zajmuje się przetwarzaniem danych w oparciu o cyfrowe programowalne układy scalone. Systemy przetwarzające dane w oparciu o takie układy nazywane są systemami mikroprocesorowymi

Bardziej szczegółowo

Moduł mikrokontrolera PROTON (v1.1)

Moduł mikrokontrolera PROTON (v1.1) Moduł mikrokontrolera OPIS Moduł mikrokontrolera PROTON (Rys. 1) przeznaczony jest do stosowania w prototypowych systemach uruchomieniowych. Podstawowym elementem modułu jest układ scalony mikrokontrolera

Bardziej szczegółowo

Architektura mikrokontrolera MCS51

Architektura mikrokontrolera MCS51 Architektura mikrokontrolera MCS51 Ryszard J. Barczyński, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Architektura mikrokontrolera

Bardziej szczegółowo

Mikroprocesory i Mikrosterowniki

Mikroprocesory i Mikrosterowniki Mikroprocesory i Mikrosterowniki Wykład 1 Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Konsultacje Pn,

Bardziej szczegółowo

Systemy wbudowane Mikrokontrolery

Systemy wbudowane Mikrokontrolery Systemy wbudowane Mikrokontrolery Budowa i cechy mikrokontrolerów Architektura mikrokontrolerów rodziny AVR 1 Czym jest mikrokontroler? Mikrokontroler jest systemem komputerowym implementowanym w pojedynczym

Bardziej szczegółowo

Wyjścia analogowe w sterownikach, regulatorach

Wyjścia analogowe w sterownikach, regulatorach Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)

Bardziej szczegółowo

Architektura mikrokontrolera MCS51

Architektura mikrokontrolera MCS51 Architektura mikrokontrolera MCS51 Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Architektura mikrokontrolera

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

projekt przetwornika inteligentnego do pomiaru wysokości i prędkości pionowej BSP podczas fazy lądowania;

projekt przetwornika inteligentnego do pomiaru wysokości i prędkości pionowej BSP podczas fazy lądowania; PRZYGOTOWAŁ: KIEROWNIK PRACY: MICHAŁ ŁABOWSKI dr inż. ZDZISŁAW ROCHALA projekt przetwornika inteligentnego do pomiaru wysokości i prędkości pionowej BSP podczas fazy lądowania; dokładny pomiar wysokości

Bardziej szczegółowo

2. Architektura mikrokontrolerów PIC16F8x... 13

2. Architektura mikrokontrolerów PIC16F8x... 13 Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator

Bardziej szczegółowo

Układy czasowo-licznikowe w systemach mikroprocesorowych

Układy czasowo-licznikowe w systemach mikroprocesorowych Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość

Bardziej szczegółowo

Spis treúci. Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1. Przedmowa... 9. Wstęp... 11

Spis treúci. Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1. Przedmowa... 9. Wstęp... 11 Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1 Spis treúci Przedmowa... 9 Wstęp... 11 1. Komputer PC od zewnątrz... 13 1.1. Elementy zestawu komputerowego... 13 1.2.

Bardziej szczegółowo

2. Budowa układów procesorowych rodziny TMS320C

2. Budowa układów procesorowych rodziny TMS320C 3 Wstęp...8 1. Procesory sygnałowe DSC (Digital Signal Controllers)...11 1.1. Przegląd układów procesorowych czasu rzeczywistego...13 1.2. Procesory rodziny TMS320C2000 firmy Texas Instruments...15 2.

Bardziej szczegółowo

APPLICATION OF ADUC MICROCONTROLLER MANUFACTURED BY ANALOG DEVICES FOR PRECISION TENSOMETER MEASUREMENT

APPLICATION OF ADUC MICROCONTROLLER MANUFACTURED BY ANALOG DEVICES FOR PRECISION TENSOMETER MEASUREMENT Sławomir Marczak - IV rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński - opiekun naukowy APPLICATION OF ADUC MICROCONTROLLER MANUFACTURED BY ANALOG DEVICES FOR PRECISION TENSOMETER MEASUREMENT

Bardziej szczegółowo

Opis funkcjonalny i architektura. Modu³ sterownika mikroprocesorowego KM535

Opis funkcjonalny i architektura. Modu³ sterownika mikroprocesorowego KM535 Opis funkcjonalny i architektura Modu³ sterownika mikroprocesorowego KM535 Modu³ KM535 jest uniwersalnym systemem mikroprocesorowym do pracy we wszelkiego rodzaju systemach steruj¹cych. Zastosowanie modu³u

Bardziej szczegółowo

System czasu rzeczywistego

System czasu rzeczywistego System czasu rzeczywistego Definicje System czasu rzeczywistego (real-time system) jest to system komputerowy, w którym obliczenia prowadzone równolegle z przebiegiem zewnętrznego procesu mają na celu

Bardziej szczegółowo

XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej. XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej

XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej. XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej Zestaw pytań finałowych numer : 1 1. Wzmacniacz prądu stałego: własności, podstawowe rozwiązania układowe 2. Cyfrowy układ sekwencyjny - schemat blokowy, sygnały wejściowe i wyjściowe, zasady syntezy 3.

Bardziej szczegółowo

Systemy na Chipie. Robert Czerwiński

Systemy na Chipie. Robert Czerwiński Systemy na Chipie Robert Czerwiński Cel kursu Celem kursu jest zapoznanie słuchaczy ze współczesnymi metodami projektowania cyfrowych układów specjalizowanych, ze szczególnym uwzględnieniem układów logiki

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Sprawozdanie z projektu MARM. Część druga Specyfikacja końcowa. Prowadzący: dr. Mariusz Suchenek. Autor: Dawid Kołcz. Data: r.

Sprawozdanie z projektu MARM. Część druga Specyfikacja końcowa. Prowadzący: dr. Mariusz Suchenek. Autor: Dawid Kołcz. Data: r. Sprawozdanie z projektu MARM Część druga Specyfikacja końcowa Prowadzący: dr. Mariusz Suchenek Autor: Dawid Kołcz Data: 01.02.16r. 1. Temat pracy: Układ diagnozujący układ tworzony jako praca magisterska.

Bardziej szczegółowo

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Wejścia analogowe w sterownikach, regulatorach, układach automatyki Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia

Bardziej szczegółowo

ADuCino 360. Zestaw uruchomieniowy dla mikrokontrolerów ADuCM360/361

ADuCino 360. Zestaw uruchomieniowy dla mikrokontrolerów ADuCM360/361 Zestaw uruchomieniowy dla mikrokontrolerów ADuCM360/361 ADuCino 360 Zestaw ADuCino jest tanim zestawem uruchomieniowym dla mikrokontrolerów ADuCM360 i ADuCM361 firmy Analog Devices mechanicznie kompatybilnym

Bardziej szczegółowo

Wykład Mikroprocesory i kontrolery

Wykład Mikroprocesory i kontrolery Wykład Mikroprocesory i kontrolery Cele wykładu: Poznanie podstaw budowy, zasad działania mikroprocesorów i układów z nimi współpracujących. Podstawowa wiedza potrzebna do dalszego kształcenia się w technice

Bardziej szczegółowo

Układy zegarowe w systemie mikroprocesorowym

Układy zegarowe w systemie mikroprocesorowym Układy zegarowe w systemie mikroprocesorowym 1 Sygnał zegarowy, sygnał taktujący W każdym systemie mikroprocesorowym jest wymagane źródło sygnałów zegarowych. Wszystkie operacje wewnątrz jednostki centralnej

Bardziej szczegółowo

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl Systemy wbudowane Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, zastosowania, projektowanie systemów wbudowanych Mikrokontrolery AVR Programowanie mikrokontrolerów

Bardziej szczegółowo

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08 Mikrokontrolery 16-bitowe Oferowane obecnie na rynku mikrokontrolery 16-bitowe opracowane zostały pomiędzy połowa lat 80-tych a początkiem lat 90-tych. Ich powstanie było naturalną konsekwencją ograniczeń

Bardziej szczegółowo

OPBOX ver USB 2.0 Miniaturowy Ultradźwiękowy system akwizycji danych ze

OPBOX ver USB 2.0 Miniaturowy Ultradźwiękowy system akwizycji danych ze OPBOX ver 2.0 - USB 2.0 Miniaturowy Ultradźwiękowy system akwizycji danych ze OPBOX ver 2.0 - USB 2.0 Miniaturowy Ultradźwiękowy system akwizycji danych Charakterystyka OPBOX 2.0 wraz z dostarczanym oprogramowaniem

Bardziej szczegółowo

Wykład 6. Mikrokontrolery z rdzeniem ARM

Wykład 6. Mikrokontrolery z rdzeniem ARM Wykład 6 Mikrokontrolery z rdzeniem ARM Plan wykładu Cortex-A9 c.d. Mikrokontrolery firmy ST Mikrokontrolery firmy NXP Mikrokontrolery firmy AnalogDevices Mikrokontrolery firmy Freescale Mikrokontrolery

Bardziej szczegółowo

DTR PICIO v1.0. 1. Przeznaczenie. 2. Gabaryty. 3. Układ złącz

DTR PICIO v1.0. 1. Przeznaczenie. 2. Gabaryty. 3. Układ złącz DTR PICIO v1.0 1. Przeznaczenie Moduł PICIO jest uniwersalnym modułem 8 wejść cyfrowych, 8 wyjść cyfrowych i 8 wejść analogowych. Głównym elementem modułu jest procesor PIC18F4680. Izolowane galwanicznie

Bardziej szczegółowo

Szkolenia specjalistyczne

Szkolenia specjalistyczne Szkolenia specjalistyczne AGENDA Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin info@gryftec.com

Bardziej szczegółowo

Architektura Systemów Komputerowych. Bezpośredni dostęp do pamięci Realizacja zależności czasowych

Architektura Systemów Komputerowych. Bezpośredni dostęp do pamięci Realizacja zależności czasowych Architektura Systemów Komputerowych Bezpośredni dostęp do pamięci Realizacja zależności czasowych 1 Bezpośredni dostęp do pamięci Bezpośredni dostęp do pamięci (ang: direct memory access - DMA) to transfer

Bardziej szczegółowo

Sygnały DRQ i DACK jednego kanału zostały użyte do połączenia kaskadowego obydwu sterowników.

Sygnały DRQ i DACK jednego kanału zostały użyte do połączenia kaskadowego obydwu sterowników. Płyty główne Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz Układ DMA Układ DMA zawiera dwa sterowniki przerwań 8237A połączone kaskadowo. Każdy sterownik 8237A

Bardziej szczegółowo

Komunikacja w mikrokontrolerach. Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface

Komunikacja w mikrokontrolerach. Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface Komunikacja w mikrokontrolerach Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie

Bardziej szczegółowo

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...

Bardziej szczegółowo

IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO

IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO IC200UDR002 8 wejść dyskretnych 24 VDC, logika dodatnia/ujemna. Licznik impulsów wysokiej częstotliwości. 6 wyjść przekaźnikowych 2.0 A. Port: RS232. Zasilanie: 24 VDC. Sterownik VersaMax Micro UDR002

Bardziej szczegółowo

SML3 październik

SML3 październik SML3 październik 2005 16 06x_EIA232_4 Opis ogólny Moduł zawiera transceiver EIA232 typu MAX242, MAX232 lub podobny, umożliwiający użycie linii RxD, TxD, RTS i CTS interfejsu EIA232 poprzez złącze typu

Bardziej szczegółowo

prowadzący: mgr inż. Piotr Prystupiuk

prowadzący: mgr inż. Piotr Prystupiuk prowadzący: mgr inż. Piotr Prystupiuk Instytut Tele- i Radiotechniczny WARSZAWA Zaawansowane technologie teleinformatyczne i systemy informatyczne do budowy zintegrowanych platform obsługi inteligentnych

Bardziej szczegółowo

PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM PROJEKTOWANIA ZINTEGROWANEGO

PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM PROJEKTOWANIA ZINTEGROWANEGO II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM

Bardziej szczegółowo

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08 Pamięci Układy pamięci kontaktują się z otoczeniem poprzez szynę danych, szynę owa i szynę sterującą. Szerokość szyny danych określa liczbę bitów zapamiętywanych do pamięci lub czytanych z pamięci w trakcie

Bardziej szczegółowo

MIKROPROCESORY architektura i programowanie

MIKROPROCESORY architektura i programowanie Struktura portów (CISC) Port to grupa (zwykle 8) linii wejścia/wyjścia mikrokontrolera o podobnych cechach i funkcjach Większość linii we/wy może pełnić dwie lub trzy rozmaite funkcje. Struktura portu

Bardziej szczegółowo

Mikroprocesory i Mikrosterowniki Analog-Digital Converter Konwerter Analogowo-Cyfrowy

Mikroprocesory i Mikrosterowniki Analog-Digital Converter Konwerter Analogowo-Cyfrowy Mikroprocesory i Mikrosterowniki Analog-Digital Converter Konwerter Analogowo-Cyfrowy Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji

Bardziej szczegółowo

Charakterystyka mikrokontrolerów

Charakterystyka mikrokontrolerów Charakterystyka mikrokontrolerów 1. Historia powstania Pierwszym mikrokontrolerem (a nie mikroprocesorem) był wyprodukowany pod koniec roku 1972 przez Texas Instruments procesor TMS1000. Łączył on w sobie

Bardziej szczegółowo

LEKCJA TEMAT: Zasada działania komputera.

LEKCJA TEMAT: Zasada działania komputera. LEKCJA TEMAT: Zasada działania komputera. 1. Ogólna budowa komputera Rys. Ogólna budowa komputera. 2. Komputer składa się z czterech głównych składników: procesor (jednostka centralna, CPU) steruje działaniem

Bardziej szczegółowo

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski Układ wykonawczy, instrukcje i adresowanie Dariusz Chaberski System mikroprocesorowy mikroprocesor C A D A D pamięć programu C BIOS dekoder adresów A C 1 C 2 C 3 A D pamięć danych C pamięć operacyjna karta

Bardziej szczegółowo

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach Semestr zimowy 2012/2013, E-3, WIEiK-PK 1 Porty wejścia-wyjścia Input/Output ports Podstawowy układ peryferyjny port wejścia-wyjścia

Bardziej szczegółowo

Układy wejścia/wyjścia

Układy wejścia/wyjścia Układy wejścia/wyjścia Schemat blokowy systemu mikroprocesorowego Mikroprocesor połączony jest z pamięcią oraz układami wejścia/wyjścia za pomocą magistrali systemowej zespołu linii przenoszącymi sygnały

Bardziej szczegółowo

Wstęp. Opis ATMEGA128 MINI MODUŁ VE-APS-1406

Wstęp. Opis ATMEGA128 MINI MODUŁ VE-APS-1406 ATMEGA128 MINI MODUŁ VE-APS-1406 Wstęp Instrukcja użytkownika Opis Instrukcja prezentuje mini moduł z mikrokontrolerem rodziny AVR (firmy ATMEL) Atmega128 w obudowie TQFP 64. Procesor ATmega128 wyposażony

Bardziej szczegółowo

Przetwornik analogowo-cyfrowy

Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy A/C (ang. A/D analog to digital; lub angielski akronim ADC - od słów: Analog to Digital Converter), to układ służący do zamiany sygnału analogowego

Bardziej szczegółowo

Charakterystyka mikrokontrolerów. Przygotowali: Łukasz Glapiński, Mateusz Kocur, Adam Kokot,

Charakterystyka mikrokontrolerów. Przygotowali: Łukasz Glapiński, Mateusz Kocur, Adam Kokot, Charakterystyka mikrokontrolerów Przygotowali: Łukasz Glapiński, 171021 Mateusz Kocur, 171044 Adam Kokot, 171075 Plan prezentacji Co to jest mikrokontroler? Historia Budowa mikrokontrolera Wykorzystywane

Bardziej szczegółowo

Laboratorium Asemblerów, WZEW, AGH WFiIS Tester NMOS ów

Laboratorium Asemblerów, WZEW, AGH WFiIS Tester NMOS ów Pomiar charakterystyk prądowonapięciowych tranzystora NMOS Napisz program w asemblerze kontrolera picoblaze wykorzystujący możliwości płyty testowej ze Spartanem 3AN do zbudowania prostego układu pomiarowego

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 12 Jan Kazimirski 1 Magistrale systemowe 2 Magistrale Magistrala medium łączące dwa lub więcej urządzeń Sygnał przesyłany magistralą może być odbierany przez wiele urządzeń

Bardziej szczegółowo

Kurs Elektroniki. Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26

Kurs Elektroniki. Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26 Kurs Elektroniki Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26 Mikrokontroler - autonomiczny i użyteczny system mikroprocesorowy, który do swego działania wymaga minimalnej liczby elementów dodatkowych.

Bardziej szczegółowo

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08 Mikrokontrolery 8-bitowe Mikrokontrolery 8-bitowe stanowią wciąż najliczniejszą grupę mikrokontrolerów. Istniejące w chwili obecnej na rynku rodziny mikrokontrolerów opracowane zostały w latach 80-tych.

Bardziej szczegółowo

Hardware mikrokontrolera X51

Hardware mikrokontrolera X51 Hardware mikrokontrolera X51 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Hardware mikrokontrolera X51 (zegar)

Bardziej szczegółowo

MAXimator. Zestaw startowy z układem FPGA z rodziny MAX10 (Altera) Partnerzy technologiczni projektu:

MAXimator. Zestaw startowy z układem FPGA z rodziny MAX10 (Altera) Partnerzy technologiczni projektu: Zestaw startowy z układem FPGA z rodziny MAX10 (Altera) MAXimator Zestaw startowy z nowoczesnym układem FPGA z rodziny Altera MAX10, wyposażony w złącze zgodne z Arduino Uno Rev 3, interfejsy wideo HDMI+CEC+DCC

Bardziej szczegółowo

Zastosowania mikrokontrolerów w przemyśle

Zastosowania mikrokontrolerów w przemyśle Zastosowania mikrokontrolerów w przemyśle Cezary MAJ Katedra Mikroelektroniki i Technik Informatycznych Współpraca z pamięciami zewnętrznymi Interfejs równoległy (szyna adresowa i danych) Multipleksowanie

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Instytut Informatyki Politechnika Poznańska 12 bitowy przetwornik ADC Metoda SAR (ang. successive approximation) Konfigurowalna rozdzielczość: 12b, 10b, 8b,6b Do 19 kanałów analogowych pomiary z 16 źródeł

Bardziej szczegółowo

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych ZP/UR/46/203 Zał. nr a do siwz Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych Przedmiot zamówienia obejmuje następujące elementy: L.p. Nazwa Ilość. Zestawienie komputera

Bardziej szczegółowo

Systemy mikroprocesorowe. Literatura podręcznikowa. Przedmioty związane. Przykłady systemów wbudowanych. Pojęcie systemu wbudowanego embedded system

Systemy mikroprocesorowe. Literatura podręcznikowa. Przedmioty związane. Przykłady systemów wbudowanych. Pojęcie systemu wbudowanego embedded system Systemy mikroprocesorowe dr inŝ. Stefan Brock pok. 627, hala 22B/3 (PP) Stefan.Brock@put.poznan.pl Stefan.Brock@gmail.com rozliczenie dwa kolokwia w trakcie wykładu dr inŝ. Stefan Brock 2008/2009 1 Literatura

Bardziej szczegółowo

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08 Geneza powstania mikrokontrolerów 32-bitowych jest zupełnie inna niż mikrokontrolerów 8- i 16-bitowych. Już w latach 90-tych stało się jasne, że rozwój oprogramowania nie nadąża za rozwojem mikroprocesorów.

Bardziej szczegółowo

Wejścia logiczne w regulatorach, sterownikach przemysłowych

Wejścia logiczne w regulatorach, sterownikach przemysłowych Wejścia logiczne w regulatorach, sterownikach przemysłowych Semestr zimowy 2013/2014, WIEiK PK 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika

Bardziej szczegółowo

Kod produktu: MP-1W-2480

Kod produktu: MP-1W-2480 Kod produktu: MODUŁ INTERFEJSU -WIRE, CHIPSET DS480B zbudowane jest na bazie kontrolera DS480B firmy Dallas-Maxim (konwerter RS3 - Wire). posiada układ zawierający unikalny numer seryjny (DS40), wykorzystywany

Bardziej szczegółowo

1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33

1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33 Spis treści 3 1. Wprowadzenie...11 1.1. Wstęp...12 1.2. Mikrokontrolery rodziny ARM...13 1.3. Architektura rdzenia ARM Cortex-M3...15 1.3.1. Najważniejsze cechy architektury Cortex-M3... 15 1.3.2. Rejestry

Bardziej szczegółowo

3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8

3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 Układ PCF 8583 jest pobierającą małą moc, 2048 bitową statyczną pamięcią CMOS RAM o organizacji 256 x 8 bitów. Adresy i dane są przesyłane szeregowo

Bardziej szczegółowo

Technika mikroprocesorowa. Linia rozwojowa procesorów firmy Intel w latach

Technika mikroprocesorowa. Linia rozwojowa procesorów firmy Intel w latach mikrokontrolery mikroprocesory Technika mikroprocesorowa Linia rozwojowa procesorów firmy Intel w latach 1970-2000 W krótkim pionierskim okresie firma Intel produkowała tylko mikroprocesory. W okresie

Bardziej szczegółowo

Podstawowa struktura systemu mikroprocesorowego

Podstawowa struktura systemu mikroprocesorowego Podstawowa struktura systemu mikroprocesorowego 1 Generator zegarowy fx Podstawowa struktura systemu mikroprocesorowego fcpu Jednostka centralna CPU Reset Napięcie zasilania Vcc Szyna sterująca: o Read

Bardziej szczegółowo

Tab. 1. Zestawienie najważniejszych parametrów wybranych mikrokontrolerów z rodziny LPC2100, które można zastosować w zestawie ZL3ARM.

Tab. 1. Zestawienie najważniejszych parametrów wybranych mikrokontrolerów z rodziny LPC2100, które można zastosować w zestawie ZL3ARM. ZL3ARM płytka bazowa dla modułu diparm_2106 (ZL4ARM) ZL3ARM Płytka bazowa dla modułu diparm_2106 Płytkę bazową ZL3ARM opracowano z myślą o elektronikach chcących szybko poznać mozliwości mikrokontrolerów

Bardziej szczegółowo

Wykład 7. Architektura mikroprocesorów powtórka

Wykład 7. Architektura mikroprocesorów powtórka Wykład 7 Architektura mikroprocesorów powtórka Architektura mikroprocesorów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit:

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych skrótów Wprowadzenie Rdzeń Cortex-M Rodzina mikrokontrolerów XMC

Spis treści. Wykaz ważniejszych skrótów Wprowadzenie Rdzeń Cortex-M Rodzina mikrokontrolerów XMC Wykaz ważniejszych skrótów... 8 1. Wprowadzenie... 9 1.1. Wstęp... 10 1.2. Opis zawartości książki... 12 1.3. Korzyści płynące dla Czytelnika... 13 1.4. Profil Czytelnika... 13 2. Rdzeń Cortex-M0...15

Bardziej szczegółowo

Programowanie mikrokontrolerów 2.0

Programowanie mikrokontrolerów 2.0 4.1 Programowanie mikrokontrolerów 2.0 Taktowanie Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 22 listopada 2016 4.2 Drzewo taktowania w STM32F411 Źródło: RM0383 Reference

Bardziej szczegółowo

Kod produktu: MP01105T

Kod produktu: MP01105T MODUŁ INTERFEJSU DO POMIARU TEMPERATURY W STANDARDZIE Właściwości: Urządzenie stanowi bardzo łatwy do zastosowania gotowy interfejs do podłączenia max. 50 czujników temperatury typu DS18B20 (np. gotowe

Bardziej szczegółowo

Mikrokontroler AVR ATmega32 - wykład 9

Mikrokontroler AVR ATmega32 - wykład 9 SWB - Mikrokontroler AVR ATmega32 - wykład 9 asz 1 Mikrokontroler AVR ATmega32 - wykład 9 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Mikrokontroler AVR ATmega32 - wykład 9 asz 2 CechyµC ATmega32 1.

Bardziej szczegółowo

Wykład Mikrokontrolery i mikrosystemy Cele wykładu:

Wykład Mikrokontrolery i mikrosystemy Cele wykładu: Wykład Mikrokontrolery i mikrosystemy Cele wykładu: Poznanie podstaw budowy, zasad działania i sterowania mikrokontrolerów i ich urządzeń peryferyjnych. Niezbędna wiedza do dalszego samokształcenia się

Bardziej szczegółowo

Kod produktu: MP01105

Kod produktu: MP01105 MODUŁ INTERFEJSU KONTROLNO-POMIAROWEGO DLA MODUŁÓW Urządzenie stanowi bardzo łatwy do zastosowania gotowy interfejs kontrolno-pomiarowy do podłączenia modułów takich jak czujniki temperatury, moduły przekaźnikowe,

Bardziej szczegółowo

ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S)

ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) ZL2ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) 1 Zestaw ZL2ARM opracowano z myślą

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Współpraca z układami peryferyjnymi i urządzeniami zewnętrznymi Testowanie programowe (odpytywanie, przeglądanie) System przerwań Testowanie programowe

Bardziej szczegółowo

Pętla prądowa 4 20 ma

Pętla prądowa 4 20 ma LABORATORIM: SIECI SENSOROWE Ćwiczenie nr Pętla prądowa 0 ma Opracowanie Dr hab. inż. Jerzy Wtorek Katedra Inżynierii Biomedycznej Gdańsk 009 Część pierwsza. Cel i program ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Układy czasowo-licznikowe w systemach mikroprocesorowych

Układy czasowo-licznikowe w systemach mikroprocesorowych Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość

Bardziej szczegółowo

PUNKTOWE STEROWNIKI VERSAMAX MICRO

PUNKTOWE STEROWNIKI VERSAMAX MICRO 1.7 64-PUNKTOWE STEROWNIKI VERSAMAX MICRO IC200UDD064 40 wejść dyskretnych 24 VDC, 24 wyjścia tranzystorowe 24 VDC (zabezpieczenie przed zwarciem i przeciąŝeniem), wbudowany port RS232, drugi port dostępny

Bardziej szczegółowo

Zastosowania wzmacniaczy operacyjnych cz. 2 wzmacniacze pomiarowe (instrumentacyjne)

Zastosowania wzmacniaczy operacyjnych cz. 2 wzmacniacze pomiarowe (instrumentacyjne) Zastosowania wzmacniaczy operacyjnych cz. 2 wzmacniacze pomiarowe (instrumentacyjne) Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne

Bardziej szczegółowo

ARCHITEKTURA PROCESORA,

ARCHITEKTURA PROCESORA, ARCHITEKTURA PROCESORA, poza blokami funkcjonalnymi, to przede wszystkim: a. formaty rozkazów, b. lista rozkazów, c. rejestry dostępne programowo, d. sposoby adresowania pamięci, e. sposoby współpracy

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 4

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 4 Politechnika Białostocka WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Układy DMA, przetwornik cyfrowo-analogowy, transmisja

Bardziej szczegółowo

1. Charakterystyka układu napędowego

1. Charakterystyka układu napędowego 1. Charakterystyka układu napędowego PLC DSP IGBT HF...C Współczesny układ napędowy zawiera wiele sprzężeń zwrotnych jest zatem układem regulowanym 1 Prosty UKŁAD NAPĘDOWY informatyka przemysłowa zewn.

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak 2 Centralny falownik (ang. central inverter system) Zygmunt Kubiak 3 Micro-Inverter Mikro-przetwornice działają podobnie do systemów

Bardziej szczegółowo