Instrukcja do zajęć laboratoryjnych z przedmiotu Elektroniczna Aparatura Medyczna



Podobne dokumenty
Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K

OCENA CZYSTOŚCI WODY NA PODSTAWIE POMIARÓW PRZEWODNICTWA. OZNACZANIE STĘŻENIA WODOROTLENKU SODU METODĄ MIARECZKOWANIA KONDUKTOMETRYCZNEGO

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph

PRZEWODNOŚĆ ROZTWORÓW ELEKTROLITÓW

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

Opracowała: mgr inż. Ewelina Nowak

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od:

Celem dwiczenia są ilościowe oznaczenia metodą miareczkowania konduktometrycznego.

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

ĆWICZENIE 2 KONDUKTOMETRIA

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

Repetytorium z wybranych zagadnień z chemii

A4.05 Instrukcja wykonania ćwiczenia

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru

PRACOWNIA FIZYKI MORZA

Metody Badań Składu Chemicznego

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

- w nawiasach kwadratowych stężenia molowe.

Sporządzanie roztworów buforowych i badanie ich właściwości

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

Chemia - B udownictwo WS TiP

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI

Kryteria oceniania z chemii kl VII

Wymagania programowe: Gimnazjum chemia kl. II

ZALEŻNOŚĆ PRZEWODNICTWA ELEKTRYCZNEGO ELEKTROLITÓW OD TEMPERATURY; SPRAWDZANIE REGUŁY WALDENA

WYMAGANIA EDUKACYJNE

Równowagi w roztworach elektrolitów

6. ph i ELEKTROLITY. 6. ph i elektrolity

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

Roztwory elekreolitów

Kwas HA i odpowiadająca mu zasada A stanowią sprzężoną parę (podobnie zasada B i kwas BH + ):

WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORGANICZNEGO

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie przewodnictwa granicznego mocnego elektrolitu

Ćwiczenie nr 43: HALOTRON

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych

Laboratorium z chemii fizycznej

POLITECHNIKA BIAŁOSTOCKA

Przewodnictwo jonów. Elektrolit-elektroda. Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV. Pole elektryczne.

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M)

LABORATORIUM Z PODSTAW BIOFIZYKI ĆWICZENIE NR 4 1. CEL ĆWICZENIA

Inżynieria Środowiska

Przewodnictwo elektryczne roztworów wodnych. - elektrolity i nieelektrolity.

K1. KONDUKTOMETRYCZNE MIARECZKOWANIE STRĄCENIOWE I KOMPLEKSOMETRYCZNE

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW

ĆWICZENIE 3 REZONANS AKUSTYCZNY

Natężenie prądu elektrycznego

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy

Szczegółowy opis treści programowych obowiązujących na etapie szkolnym konkursu przedmiotowego z chemii 2018/2019

K02 Instrukcja wykonania ćwiczenia

Labindex mgr inż. Marcin Grzelka

1. PRZYGOTOWANIE ROZTWORÓW KOMPLEKSUJĄCYCH

Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej

Laboratorium Podstaw Biofizyki Pomiar potencjału dyfuzyjnego i błonowego 4

Równowagi jonowe - ph roztworu

Chemia - laboratorium

K05 Instrukcja wykonania ćwiczenia

Chemia Nowej Ery Wymagania programowe na poszczególne oceny dla klasy II

Mol, masa molowa, objętość molowa gazu

HYDROLIZA SOLI. ROZTWORY BUFOROWE

Chemia I Semestr I (1 )

KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI

podstawami stechiometrii, czyli działu chemii zajmującymi są obliczeniami jest prawo zachowania masy oraz prawo stałości składu

Badanie transformatora

Opracował: dr inż. Tadeusz Lemek

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY. PRACOWNIA MATERIAŁOZNAWSTWA ELEKTROTECHNICZNEGO KWNiAE

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

Spis treści. Wstęp. Roztwory elektrolitów

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

Ć W I C Z E N I E N R E-16

Walidacja metod analitycznych Raport z walidacji

ELEKTROLITY, KWASY, ZASADY I SOLE. HCl H + + Cl - (1).

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

Badanie transformatora

wykład 6 elektorochemia

POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU METODĄ KONDUKTOMETRYCZNĄ I POTENCJOMETRYCZNĄ

Umiejętności ponadpodstawowe Ocena bardzo dobra. Substancje chemiczne i ich przemiany

MAŁOPOLSKI KONKURS CHEMICZNY

STAłA I STOPIEŃ DYSOCJACJI; ph MIX ZADAŃ Czytaj uważnie polecenia. Powodzenia!

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany

ĆWICZENIE 3 CIEPŁO ROZPUSZCZANIA I NEUTRALIZACJI

Wymagania programowe na poszczególne oceny. III. Woda i roztwory wodne. Ocena dopuszczająca [1] Uczeń: Ocena dostateczna [1 + 2]

Roztwory mocnych elektrolitów ćwiczenia 1

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WYZNACZANIE ROZMIARÓW

Opracowała: mgr inż. Ewelina Nowak

WYMAGANIA EDUKACYJNE Z CHEMII 2013/2014

RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH

Szczegółowe wymagania edukacyjne z przedmiotu chemia dla klasy II gimnazjum, rok szkolny 2015/2016

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

dobra (2+3+4) Substancje chemiczne i ich przemiany chemicznej. - sporządza mieszaniny -dobiera metodę rozdzielania mieszanin

ROBOCZA I CAŁKOWITA ZDOLNOŚD WYMIENNA JONITU

Chemia. Wymagania programowe na poszczególne oceny dla uczniów klas II gimnazjum

Transkrypt:

POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY Katedra Telekomunikacji i Aparatury Elektronicznej Studia stacjonarne Kierunek: Inżynieria Biomedyczna Instrukcja do zajęć laboratoryjnych z przedmiotu Elektroniczna Aparatura Medyczna Ćwiczenie 3. Zastosowania czujników konduktometrycznych w elektronicznej aparaturze laboratoryjnej v. 03 Andrzej Holiczer Witold Holiczer Norbert Litwińczuk Grażyna Gilewska Białystok wrzesień 2014

A. Wprowadzenie 1. Pojęcia podstawowe Atom: najmniejszy, niepodzielny metodami chemicznymi składnik materii, który może wchodzić w połączenie z innymi pierwiastkami. Cząsteczka: (inaczej molekuła) obojętne elektrycznie indywiduum chemiczne, złożone z więcej niż jednego atomu, które są z sobą trwale połączone wiązaniami chemicznymi. Jest to najmniejsza część chemicznie jednorodnej substancji, która posiada wszystkie właściwości tej substancji i może istnieć samodzielnie w stanie wolnym we wszystkich stanach skupienia. Masa atomowa pierwiastka: liczba określająca ile razy masa jednego reprezentatywnego atomu danego pierwiastka chemicznego jest większa od masy 1/12 izotopu węgla 12 C. Masa cząsteczkowa związku chemicznego: suma mas atomowych pierwiastków wchodzących w jego skład. Mol: jednostka liczności materii (jednostka podstawowa w układzie SI) oznaczana symbolem mol. Jeden mol jest to liczność materii układu zawierającego liczbę cząstek (np. atomów, cząsteczek, jonów, elektronów itp.) równą liczbie atomów w masie 12 gramów izotopu węgla 12 C. W jednym molu znajduje się 6,02214179±0,00000030 10 23 cząstek. Liczba ta jest nazywana stałą Avogadra; liczba gramów danego atomu lub związku chemicznego równa liczbowo masie atomowej lub cząsteczkowej: m n = V (1) n liczba moli substancji, m masa substancji, M masa atomowa lub cząsteczkowa substancji. Wartościowość: to cecha pierwiastków chemicznych i grup funkcyjnych w chemii określająca iloma wiązaniami chemicznymi może się dany pierwiastek łączyć z innymi. Rodzaje stężeń substancji w roztworach wodnych. Stężenie wagowe: m c = V (2) m - masa substancji, V - objętość roztworu. Molowe stężenie substancji: n c m = (3) V c m - stężenie molowe (mol/l), n - liczba moli substancji, V - objętość roztworu. Molarne stężenie substancji: n c RV = (4) V R c RV - stężenie molarne (mol/l), n - liczba moli substancji, V R - objętość rozpuszczalnika. Molalne stężenie substancji: n c Rm = (5) mr c Rm - stężenie molalne (mol/kg), n - liczba moli substancji, m R - masa rozpuszczalnika. Stężenie molowe (molarne, molalne) jest wielkością w pełni charakteryzującą zdolności połączeń i wzajemnych oddziaływań substancji niedysocjujących, czyli nierozpadających się na jony. W przypadku roztworów elektrolitów wielkością charakteryzującą powstałe przy rozproszeniu jony, czyli atomy lub cząsteczki obdarzone ładunkiem elektrycznym jest również ich wartościowość. 2

Dysocjacja elektrolityczna elektrolity. Substancja, która w roztworze lub w stanie stopionym występuje przynajmniej częściowo w postaci naładowanych cząstek - jonów - nazywa się elektrolitem. Rozpad elektroobojętnych cząstek na naładowane jony nosi nazwę dysocjacji elektrolitycznej. W naszych rozważaniach ograniczymy się do wodnych roztworów elektrolitów. Rola rozpuszczalnika polega również na osłabieniu oddziaływań elektrostatycznych, co jest związane z efektem dielektrycznym. Elektrostatyczna siła przyciągania między jonami o liczbie ładunków elementarnych z + i z - określona jest przez prawo Coulomb a: 2 + - e z z F(r) = (6) 2 ε r e - elementarny ładunek elektryczny, ε - stała dielektryczna środowiska, r - odległość między jonami. Duża stała dielektryczna wody decyduje o wyjątkowych jej właściwościach jako środowiska elektrolitów. Staje się to szczególnie wyraźne, gdy porówna się jej stałą dielektryczną ze stałymi dielektrycznymi wszystkich pozostałych rozpuszczalników. Jony niosące ładunek dodatni nazywa się kationami, jony z ładunkiem ujemnym - anionami. Załóżmy, że mamy do czynienia z mocnym elektrolitem typu K ν+ A ν-. Elektrolit ten rozpuszczony w wodzie rozpada się na kationy i aniony według schematu (rys.1). Rys.1. Rozpad elektrolitu na jony: przewodnictwo elektryczne. H 2O z+ z- Kν+ Aν- ν+ K +ν-a (7) ν + liczba kationów, ν - liczba anionów, z+ wartościowość kationów, z- wartościowość anionów. Elektrolity występujące w roztworze wyłącznie w postaci jonów nazywa się elektrolitami mocnymi. Elektrolity, które przy skończonym rozcieńczeniu występują częściowo jako jony, częściowo jako cząstki noszą nazwę elektrolitów słabych. Teoria dysocjacji elektrolitów słabych została po raz pierwszy podana w roku 1887 przez S. Arrhenius a. Dopiero jednak w 1923 r. P.Debey i E. Huecl wykazali, że w rozcieńczonych roztworach mocnych elektrolitów występują tylko jony, brak jest natomiast cząsteczek niezdysocjowanych. Obecnie wiadomo także, że stężone roztwory elektrolitów mocnych zawierają jedynie jony. 3

W związku z tym, że nie wszystkie cząsteczki elektrolitów słabych są zdysocjowane definiuje się pojęcia stopnia dysocjacji α : n (8) α(c,t) = N n - liczba cząsteczek zdysocjowanych, N - liczba cząsteczek substancji rozpuszczonej w roztworze. Stopień dysocjacji elektrolitu jest zależny od rodzaju rozpuszczalnika, elektrolitu, jego stężenia oraz temperatury i ciśnienia. 2. Zastosowania konduktometrii w pomiarach stężeń substancji w roztworach Materiał przewodnika prądu elektrycznego możemy charakteryzować podając jego rezystancję ρ lub przewodność właściwą ; związek między tymi wielkościami jest następujący: 1 = ρ (9) Dla przewodników pierwszego rodzaju, w których przewodnictwo ma charakter elektronowy (np. metali) można w prosty sposób określić relacje między jego rozmiarami i rezystancją właściwą, a rezystancją R: R =ρ l (10) s l długość przewodnika, s pole przekroju poprzecznego. W przypadku roztworów elektrolitów przewodnictwo właściwe (jonowe, przewodniki drugiego rodzaju) zależy także od stężenia i nie jest stałą charakterystyczną dla materiału. W związku z tym wprowadzono iloraz: Λ = c (11) Λ przewodnictwo molowe, c stężenie molowe elektrolitu w roztworze. Według Kohlrausch a przewodność molowa mocnych elektrolitów w roztworach rozcieńczonych jest następującą funkcją stężenia: Λ =Λ - a c (12) Λ przewodność molowa przy rozcieńczeniu nieskończenie wielkim, a stała doświadczalna. Z (11) i (12) otrzymamy następujący związek między przewodnością właściwą roztworu elektrolitu, a stężeniem składnika: ( ) = Λ - a c c (13) W rzeczywistości zależność (13) ma charakter bardziej złożony, dla większych stężeń trudny do teoretycznego wyprowadzenia. Na rys. 2 i 3 przedstawiono doświadczalnie uzyskane zależności między stężeniem a przewodnością właściwą: na rys. 2 dla rozcieńczonych roztworów elektrolitów, na rys. 3 dla roztworów o dużych stężeniach. 4

Rys.2. Przewodność właściwa rozcieńczonych roztworów elektrolitów: 1 H 2 CO 3, 2 Na 2 SO 4, 3 NaCl, 4 MgCl 2, 5 KOH, 6 NaOH, 7 NH 4 OH. Rys.3. Przewodność właściwa wodnych roztworów elektrolitów: 1 KCl, 2 NaOH, 3 H 2 SO 4, 4 HCl. Z przedstawionych rysunków można wysnuć następujące wnioski: dla bardzo rozcieńczonych elektrolitów w szczególności dla mocnych roztworów elektrolitów jednowartościowych przewodność właściwa jest liniową funkcją stężenia (rys. 2), ze wzrostem stężenia zależność ta staje się nieliniowa, a w większości przypadków nawet niemonotoniczna; roztwory stężone mają małą właściwą przewodność elektryczną (rys. 3), szczególnie dużą wartość przewodności mają elektrolity zawierające jony H + lub OH, a więc kwasy i zasady. W praktyce dla jednowartościowych mocnych elektrolitów można posługiwać się następującymi przybliżeniami: = Λ c dla c 10 mmol / l =0 +Λ0 c dla 10< c 100 mmol / l (13a) ( ) = Λ - a c c dla 100 < c 1000 mmol / l Λ, 0, Λ 0, a stałe współczynniki równań Korzystając z funkcji odwrotnych do (13a), na podstawie pomiaru przewodności właściwej, można wyznaczać wartość stężenia substancji w roztworze jednoskładnikowym. Zasada konduktometryczna jest jednak nieselektywna i nie można przy jej pomocy wyznaczać stężeń poszczególnych substancji w roztworach wieloskładnikowych, jednak ze względu na prostotę, szeroki zakres stosowalności od stężeń śladowych do bardzo dużych jest w wielu sytuacjach użyteczna i rozpowszechniona. Najczęściej zasada ta jest stosowana w następujących pomiarach: przewodności wody, w tym destylowanej i dejonizowanej (parametr jakościowy), stężenia substancji w roztworach jednoskładnikowych, jako technologiczny wskaźnik jakościowy w roztworach wieloskładnikowych, w pomiarach koncentracji cząstek w zawiesinach. 2.3. Zasada działania i budowa czujników konduktometrycznych W pomiarach przewodności roztworów elektrolitów z powodu zachodzących zjawisk nieodwracalnych, głównie elektrolizy, nie stosuje się prądów i napięć stałych. Powyższa uwaga nie dotyczy jedynie zastosowań konduktometrii w pomiarach koncentracji cząstek w zawiesinach. 5

Rozwinęły się trzy techniki pomiaru przewodności właściwej metodami przemiennoprądowymi dla celów analitycznych: pomiar w celkach o dwóch elektrodach, najbardziej wskazany dla śladowych i małych stężeń (rys. 4b), pomiar czteroelektrodowy o dwóch elektrodach zasilanych z zewnętrznego źródła, a dwóch do pomiaru potencjału między elektrodami zasilanymi (rys. 4c), pomiar bezelektrodowy (rys. 4d). Wykres zmian potencjału między elektrodami z napięciem zewnętrznym Uz, zanurzonymi w roztworze elektrolitu przedstawia rys. 4a. Polaryzacja oraz powstawanie ładunków przyelektrodowych powodują zakrzywienie linii potencjału w pobliżu elektrod, a tylko w części środkowej gradient potencjału du/dl jest stały (liniowy spadek napięcia). Przyelektrodowe zakłócenia gradientu mają niewielkie znaczenie przy małej przewodności roztworów elektrolitów, ale znaczne przy większych przewodnościach, stąd też dwuelektrodowe przetworniki pomiarowe są z powodzeniem stosowane w zakresie 0,1 do około 1000 µs/cm. W przedstawionym na rys. 4b systemie dwuelektrodowym równanie przetwarzania ma postać: U I = z (14) K c Rys. 4. Zasady pomiaru przewodności elektrolitów: a) przebieg potencjału między elektrodami; b) celka dwuelektrodowa; c) celka czteroelektrodowa; d) celka bezelektrodowa. Pomiar czteroelektrodowy (rys. 4c) eliminuje zakłócenia polaryzacyjne. Istotne znaczenie takiego rozwiązania polega także na niezależności wyników pomiaru od zanieczyszczeń elektrolitu. Także zanieczyszczenia organiczne (np. oleje i inne substancje nierozpuszczalne w wodzie) zmieniające rezystancję obwodu prądowego nawet w stosunku 1:10, nie powodują błędów pomiaru w przeciwieństwie do układów dwuelektrodowych i bezelektrodowych. Warunkiem poprawności pomiaru jest bezprądowy pomiar napięcia U 34, tj. układem o bardzo wysokiej impedancji. Przy wymuszeniu między elektrodami 1 i 2 przepływu prądu I z o takiej wartości, aby różnica potencjałów między elektrodami 3 i 4 była niezmienna (U 34 = const.), wymuszony prąd zasilający I z jest bezpośrednią miarą przewodności elektrolitu: U I 34 z = (15) K c 6

Przy odpowiednim rozwiązaniu przetwornika czteroelektrodowego, zakresy mierzalnych przewodności leżą w granicach od 0,1 µs/cm 1 S/cm. Na rys. 5 przedstawiono budowę laboratoryjnego, czteroelektrodowego czujnika pomiarowego. W systemie bezelektrodowym (rys. 4d) są całkowicie wyeliminowane zakłócenia spowodowane polaryzacją. Jednak z powodu małej czułości i wysokiego poziomu szumów, taki typ pomiaru nadaje się tylko do roztworów elektrolitów o dużych wartościach przewodności, tj. o dużych stężeniach. Równanie przetwarzania w tym systemie można zapisać następująco: 1 n U 2 2 = U1 (16) Kc n1 U1 napięcie zasilania uzwojenia pierwotnego, Kc stała celki, U2 napięcie indukowane w uzwojeniu wtórnym, n1, n2 liczba zwojów nawiniętych na rdzeniach. Wielkością, którą się bezpośrednio mierzy przy wszystkich trzech opisanych zasadach, jest rezystancja celki pomiarowej, którą określa wzór: 1 R = Kc (17) gdzie K c oznacza stałą celki, którą można przedstawić jako całkę wzdłuż linii pola elektrycznego: l 1 K c = dl (18) S(l) 0 l długość linii między elektrodami, S przypadający na nie przekrój. Rys. 5. Czteroelektrodowy czujnik konduktometryczny. 7

Tylko dla prostych geometrycznie figur można obliczyć wartość Kc. Zwykle celki mają tak skomplikowany kształt, że muszą być wzorcowane przy pomocy elektrolitu o dokładnie znanej przewodności wz w myśl wzoru: K c =wz R (19) Elektrolitem stosowanym najczęściej do wzorcowania jest wodny roztwór KC1, którego przewodność elektryczna oraz jej zależność od temperatury są dokładnie znane i powtarzalne. Istotną przyczyną błędów pomiaru przewodności właściwej metodami elektrodowymi jest polaryzacja elektrod. W celu jej eliminacji należy odpowiednio dobierać stałą celki K c oraz częstotliwość prądu (napięcia) zasilającego. Techniczne zalecenia dotyczące tego zagadnienia przedstawiono w tabeli 1. Tabela 1 Przewodność właściwa roztworu elektrolitu (S/cm) Stała celki (1/cm) Częstotliwość napięcia zasilającego (Hz) < 10-5 0,5 do 0,2 50 10-5 do 10-3 1 1000 > 10-3 2 do 10 10000 Czynnikiem wpływającym na wynik pomiaru przewodności właściwej jest temperatura. Wpływ temperatury przejawia się w oddziaływaniu na ruchliwość jonów oraz stopień dysocjacji. Obydwa czynniki działają zgodnie w kierunku wzrostu przewodności ze wzrostem temperatury. Wpływ temperatury można wyrazić wzorem: =0 1+α( t - t 0 ) (20) Wartości współczynników temperaturowych α dla t 0 = 20 C są najwyższe dla zasad, najniższe dla soli, średnie dla kwasów; leżą one w granicach od około 1,5 % do 4,0 % / C. Wartości te są w wysokim stopniu zależne od stężenia. Wyeliminowanie błędów od wpływu temperatury jest jednym z poważnych problemów mierniczych przy stosowaniu metod konduktometrycznych. Współczesne konduktometry są wyposażane w czujniki temperatury, zarówno zewnętrzne (konduktometry laboratoryjne, jak i wbudowane (konduktometry przemysłowe); można w nich także ustawić znaną dla danego roztworu elektrolitów wartość współczynnika α, uzyskując w ten sposób możliwość automatycznej kompensacji zmian temperatury. 8

B. Realizacja ćwiczenia 1. Cel ćwiczenia laboratoryjnego Celem ćwiczenia jest zapoznanie się z zastosowaniami metod konduktometrycznych w pomiarach stężeń elektrolitów w roztworach wodnych oraz czystości wody. 2. Aparatura, narzędzia pomocnicze i odczynniki stosowane w ćwiczeniu W ćwiczeniu są stosowane następujące urządzenia pomiarowe, pomocnicze oraz wzorce: konduktometr (typ CDM210) z czujnikiem czteroelektrodowym, mieszadło magnetyczne z układem regulacji temperatury (typ MS 11 HS), roztwory wzorcowe: 10; 40; 100 mmol KCl / l. 3. Przebieg realizacji eksperymentu Zapoznać się z obsługą i budową urządzeń stosowanych w ćwiczeniu. 3.1. Oszacowanie błędu przeniesienia (tabela 1). Czynności pomiarowe: napełnić naczyńko pomiarowe 100 milmolowym roztworem KCl. używając konduktometru CC 317 z czujnikiem temperatury zmierzyć przewodność właściwą 100 roztworu, opróżnić naczyńko (nie płukać naczyńka i czujnika pomiarowego), napełnić naczyńko wodą destylowaną i zmierzyć jej przewodność 1, wypłukać naczyńko pomiarowe wodą destylowaną (dwukrotnie). napełnić naczyńko wodą destylowaną i zmierzyć jej przewodność 2. 3.2. Pomiary przewodności wody (tabela 2). Czynności pomiarowe: używając konduktometru CDM210 zmierzyć przewodność właściwą oraz temperaturę: wody dejonizowanej, wody destylowanej, zanieczyszczonej wody dejonizowanej, zimnej i ciepłej wody wodociągowej, pomiary wykonujemy przy wyłączonej opcji korekty temperaturowej. 3.3. Badania zależności przewodności właściwej od stężenia (tabela 3). Czynności pomiarowe: używając konduktometru CDM210 zmierzyć przewodność właściwą: 100 milimolowego roztworu KCl, 40 milimolowego roztworu KCl, 10 milimolowego roztworu KCl. Uwaga: Przed kolejnymi pomiarami należy jednokrotnie przepłukać naczynie i elektrodę badanym roztworem. 3.4. Badania powtarzalności pomiarów (tabela 4). Czynności pomiarowe: używając konduktometru CDM210 zmierzyć 10-krotnie przewodność właściwą oraz temperaturę zimnej wody wodociągowej, pomiary wykonujemy przy wyłączonej opcji korekty temperaturowej, woda nie może zawierać pęcherzyków powietrza. 3.5. Wyznaczenie i sprawdzenie temperaturowego współczynnika zmiany przewodności 10. milimolowego roztworu KCl (tabela 5). Czynności pomiarowe: korzystając z mieszadła magnetycznego z układem regulacji temperatury (MS 11 HS) zmierzyć przewodność właściwą 10 milimolowego roztworu KCl przy pomocy konduktometru CDM210, dla temperatur t 0 ; t 0 +2,0 o C, 9

pomiary wykonujemy przy wyłączonej opcji korekty temperaturowej, obliczyć temperaturowy współczynnik zmian przewodności z zależności: t -0 100 0 % α = ; [α] = t - t o 0 C wpisać obliczony współczynnik temperaturowy do pamięci konduktometru CDM210 (temperatura odniesienia t REF = 25 o C), wymienić 10 milimolowy roztwór KCl, ponownie zmierzyć przewodność właściwą 10 milimolowego roztworu KCl przy pomocy konduktometru CDM210, dla temperatur t 0 ; t 0 +2,0 o C. 3.6. Wyznaczenie i sprawdzenie temperaturowego współczynnika zmiany przewodności wody destylowanej (tabela 6). Czynności pomiarowe: analogicznie jak w pkt. 3.5. 10

C. Opracowanie wyników pomiarów 1. Wyniki pomiarów Tabela 1 100 (ms/cm) 1 2 Tabela 2 Woda dejonizowana t ( o C) Woda destylowana t ( o C) Woda dejonizowana zanieczyszczona t ( o C) Woda wodociągowa zimna t ( o C) Woda wodociągowa ciepła t ( o C) Tabela 3 c =10 mmol/l c = 40 mmol / l c = 100 mmol/l (ms/cm) W (ms/cm) t ( o C) δ w (%) W wartości z załącznika 1; W43 wartość obliczona Tabela 4 1 2 3 4 5 6 7 8 9 10 µs/cm Tabela 5a Tabela 5b 10 mmol/l KCl Wyznaczanie α t 0 t 0 + 2 Sprawdzanie α 100 mmol/l KCl Wyznaczanie α Sprawdzanie α t 0 t 0 + 2 t 0 t 0 + 2 t ( o C) t ( o C) (ms/cm) (ms/cm) α (% / o C) α (% / o C) Tabela 6 Woda destylowana Wyznaczanie α t 0 t 0 + 2 t ( o C) (ms/cm) α (% / o C) 11

2. Procedura opracowania wyników pomiarów Ad. 3.1: obliczyć błąd względny δ P zwany błędem przeniesienia lub błędem kontaminacji: 1 - δ 2 P = 100 2 wyjaśnić przyczynę powstawania tego błędu. Ad. 3.2: Jaka jest przewodność wody chemicznie czystej? Dlaczego woda dejonizowana ma przewodność wielokrotnie większą niż woda chemicznie czysta? Dlaczego przewodność wody destylowanej jest większa niż wody dejonizowanej? Podać główną przyczynę wzrostu przewodności wody dejonizowanej zanieczyszczonej. Czy zimna woda wodociągowa spełnia normę przewodności? Dlaczego przewodność wody ciepłej jest większa niż zimnej? Ad. 3.3: z tabeli 3 nanieść punkty c i na wykres = f(c), metodą najmniejszych kwadratów obliczyć parametry 0 i Λ 0 prostej regresji = 0 + Λ0 c, nanieść prostą regresji na wykres = f(c), z załącznika 1 nanieść punkty c = 10 mmol/l i c = 100 mmol/l oraz odpowiadające im wartości W na wykres = f(c), zakładając liniową zależność między stężeniem KCl, a jego przewodnością właściwą podaną w załączniku 1, obliczyć teoretyczną wartość przewodności właściwej W43 dla roztworu o stężeniu c = 40 mmol/l; nanieść punkt 40; W40 na wykres = f(c), traktując wartości W jako poprawne, obliczyć błędy względne: - δ W w = 100 W dla stężeń c = 10, 40 oraz 100 mmol/l; podać główne przyczyny wystąpienia błędów. Ad. 3.4: obliczyć wartość średnią (m), odchylenie standardowe (sd) oraz współczynnik zmienności (cv), przyjmując podaną przez producenta niedokładność pomiaru ±0,2 % wartości odczytu ± 3 ostatnie cyfry obliczyć względną niepewność standardową δ u pomiaru przewodności, porównać cv i δ u ; skomentować różnicę. Ad. 3.5: na podstawie danych zawartych w załączniku 1 obliczyć wartość temperaturowego współczynnika zmiany przewodności 10 milimolowego roztworu KCl (t REF = 25 o C), porównać obliczoną wyżej wartość z wartością tegoż współczynnika z tabeli 5. Ad. 3.6: porównać otrzymaną wartość z wartością tegoż współczynnika dla 10. milimolowego roztworu KCl (tabela 5). 2

Załącznik 1. Przewodność właściwa wodnych roztworów chlorku potasowego (KCl) Stężenie 1 mol / l 0,1 mol / l 0,02 mol / l 0,01 mol / l Temperatura ( o C) Przewodność właściwa (ms / cm) 15 92,52 10,48 2,243 1,147 16 94,41 10,72 2,294 1,173 17 96,31 10,95 2,345 1,199 18 98,22 11,19 2,397 1,225 19 100,14 11,43 2,449 1,251 20 102,07 11,67 2,501 1,278 21 104,00 11,97 2,553 1,305 22 105,94 12,15 2,606 1,332 23 107,89 12,39 2,659 1,359 24 109,84 12,64 2,712 1,386 25 111,80 12,88 2,765 1,413 26 113,77 13,13 2,819 1,441 27 115,74 13,37 2,873 1,468 28 13,62 2,927 1,496 29 13,87 2,981 1,524 30 14,12 3,036 1,552 3