ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

Podobne dokumenty
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

Wymagania edukacyjne klasa trzecia.

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

TEMAT 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

Wymagania edukacyjne klasa druga.

TEMAT 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

Wymagania edukacyjne klasa pierwsza.

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów

Przedmiotowe zasady oceniania matematyka

Wymagania edukacyjne na poszczególne oceny

MATEMATYKA KLASA III GIMNAZJUM

Egzamin gimnazjalny 2015 część matematyczna

Regulamin XVI Regionalnego Konkursu Matematycznego "Czas na szóstkę"

Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę

III etap edukacyjny MATEMATYKA

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

Lista działów i tematów

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014. Program merytoryczny konkursu z matematyki dla gimnazjum

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP

Wyniki procentowe poszczególnych uczniów

Przedmiotowy system oceniania matematyka

Przedmiotowe System Oceniania z matematyki na podstawie programu "Matematyka z plusem"

Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Rozkład wyników ogólnopolskich

Rozkład łatwości zadań

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Wymagania edukacyjne z matematyki - gimnazjum

Ułamki i działania 20 h

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

Wymagania edukacyjne szczegółowe w Gimnazjum

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

Karty diagnozy osiągnięć ucznia

wymagania programowe z matematyki kl. III gimnazjum

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3

REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012

REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Wymagania na poszczególne oceny szkolne Klasa 7

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

ZESPÓŁ SZKÓŁ W OBRZYCKU

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

rozszerzające (ocena dobra) podstawowe (ocena dostateczna)

klasa I Dział Główne wymagania edukacyjne Forma kontroli

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

Zakres tematyczny - PINGWIN. Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania:

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra)

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny)

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny)

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum. Część matematyczno-przyrodnicza. LUTY 2016 Analiza wyników

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania edukacyjne matematyka klasa VII

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Wymagania na poszczególne stopnie szkolne

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

Wymagania szczegółowe z matematyki klasa 7

P 2.3. Plan wynikowy z rozkładem materiału klasa 3

Szkoła podstawowa. podstawowe (ocena dostateczna) rozszerzające (ocena dobra) I PÓŁROCZE

KRYTERIA OCENIANIA Z MATEMATYKI DLA KL. III

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum

WYMAGANIA EDUKACYJNE

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Transkrypt:

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 4) zaokrągla rozwinięcia dziesiętne liczb; 5) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i dziesiętne; 6) szacuje wartości wyrażeń arytmetycznych; problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 3. Potęgi. Uczeń: 5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a 10 k, gdzie 1 a <10 oraz k jest liczbą całkowitą. 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3.000). UWAGI z klasy I działu Liczby i działania oraz z klasy II działu Potęgi

4. Liczby wymierne i niewymierne 7-9 3) zamienia ułamki zwykłe na ułamki dziesiętne (także okresowe), zamienia ułamki dziesiętne skończone na ułamki zwykłe; 4) zaokrągla rozwinięcia dziesiętne liczb. 2. Liczby wymierne (dodatnie i niedodatnie). Uczeń: 1) interpretuje liczby wymierne na osi liczbowej. 3. Potęgi. Uczeń: 1) oblicza potęgi liczb wymiernych o wykładnikach naturalnych; 3) porównuje potęgi o różnych wykładnikach naturalnych i takich samych podstawach oraz porównuje potęgi o takich samych wykładnikach naturalnych i różnych dodatnich podstawach; 4) zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych. 4. Pierwiastki. Uczeń: 1) oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych. z klasy I działu Liczby i działania oraz z klasy II działów Potęgi i Pierwiastki

5. Podstawowe działania na liczbach 10-11 2) dodaje, odejmuje, mnoży i dzieli liczby wymierne zapisane w postaci ułamków zwykłych lub rozwinięć dziesiętnych skończonych zgodnie z własną strategią obliczeń (także z wykorzystaniem kalkulatora); 3) zamienia ułamki zwykłe na ułamki dziesiętne (także okresowe), zamienia ułamki dziesiętne skończone na ułamki zwykłe; 5) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i dziesiętne; problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 2. Liczby wymierne (dodatnie i niedodatnie). Uczeń: 3) dodaje, odejmuje, mnoży i dzieli liczby wymierne; 4) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających liczby wymierne. 3. Potęgi. Uczeń: 1) oblicza potęgi liczb wymiernych o wykładnikach naturalnych; 4) zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych. 4. Pierwiastki. Uczeń: 1) oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych. z klasy I działu Liczby i działania oraz z klasy II działów Potęgi i Pierwiastki

6. Działania na potęgach i pierwiastkach 12-13 7. Obliczenia procentowe 14-15 8. Obliczenia procentowe (cd.) 16-17 3. Potęgi. Uczeń: 1) oblicza potęgi liczb wymiernych o wykładnikach naturalnych; 2) zapisuje w postaci jednej potęgi: iloczyny i ilorazy potęg o takich samych podstawach, iloczyny i ilorazy potęg o takich samych wykładnikach oraz potęgę potęgi (przy wykładnikach naturalnych); 4) zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych; 5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a 10 k, gdzie 1 a <10 oraz k jest liczbą całkowitą. 4. Pierwiastki. Uczeń: 1) oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych; 2) wyłącza czynnik przed znak pierwiastka oraz włącza czynnik pod znak pierwiastka; 3) mnoży i dzieli pierwiastki drugiego stopnia; 4) mnoży i dzieli pierwiastki trzeciego stopnia. 5. Procenty. Uczeń: 1) przedstawia część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie; 2) oblicza procent danej liczby; 3) oblicza liczbę na podstawie danego jej procentu; 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym. 5. Procenty. Uczeń: 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym, np. oblicza ceny po podwyżce lub obniżce o dany procent, wykonuje obliczenia związane z VAT, oblicza odsetki dla lokaty rocznej. z klasy II działów Potęgi i Pierwiastki z klasy I działu Procenty z klasy I działu Procenty

9. Przekształcenia algebraiczne 18-19 10. Równania i układy równań 20-24 11. Powtórzenie wiadomości 25 Praca klasowa i jej omówienie 26-27 6. Wyrażenia algebraiczne. Uczeń: 1) opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami; 2) oblicza wartości liczbowe wyrażeń algebraicznych; 3) redukuje wyrazy podobne w sumie algebraicznej; 4) dodaje i odejmuje sumy algebraiczne; 5) mnoży jednomiany, mnoży sumę algebraiczną przez jednomian oraz, w nietrudnych przykładach, mnoży sumy algebraiczne; 6) wyłącza wspólny czynnik z wyrazów sumy algebraicznej poza nawias. 6. Wyrażenia algebraiczne. Uczeń: 7) wyznacza wskazaną wielkość z podanych wzorów, w tym geometrycznych i fizycznych. 7. Równania. Uczeń: 1) zapisuje związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą, w tym związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi; 2) sprawdza, czy dana liczba spełnia równanie stopnia pierwszego z jedną niewiadomą; 3) rozwiązuje równania stopnia pierwszego z jedną niewiadomą; 4) zapisuje związki między nieznanymi wielkościami za pomocą układu dwóch równań pierwszego stopnia z dwiema niewiadomymi; 5) sprawdza, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi; 6) rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi; 7) za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym. z klasy I działu Wyrażenia algebraiczne oraz z klasy II działu: Wyrażenia algebraiczne z klasy I działu Równania i nierówności oraz z klasy II działu: Układy równań

2. FUNKCJE (15 h) 1. Odczytywanie wykresów 28-30 2. Pojęcie funkcji. Zależności funkcyjne 31-33 3. Wzory a wykresy 34-36 4. Zależności między wielkościami proporcjonalnymi 37-39 6. Powtórzenie wiadomości 40 Praca klasowa i jej omówienie 41-42 4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym). 3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero. 3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero. 4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym); 5) oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu. 3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero; 4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym); 5) oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu. 6. Wyrażenia algebraiczne. Uczeń: 1) opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami. Treści są rozszerzeniem wiadomości z klasy I działu Proporcjonalność

3. FIGURY NA PŁASZCZYŹNIE (17 h) 1. Trójkąty 43-45 2. Czworokąty 46-48 3. Koła i okręgi 49-50 4. Wzajemne położenie dwóch okręgów 51 1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych; 2) odczytuje współrzędne danych punktów. 7) stosuje twierdzenie Pitagorasa; 9) oblicza pola i obwody trójkątów. 1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych; 2) odczytuje współrzędne danych punktów. 7) stosuje twierdzenie Pitagorasa; 8) korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach; 9) oblicza pola i obwody czworokątów. 4) rozpoznaje kąty środkowe; 5) oblicza długość okręgu i łuku okręgu; 6) oblicza pole koła, pierścienia kołowego, wycinka kołowego; 7) stosuje twierdzenie Pitagorasa; 9) oblicza pola i obwody trójkątów i czworokątów. 1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych; 2) odczytuje współrzędne danych punktów. 9) oblicza obwody trójkątów. z klasy I działu: Figury geometryczne oraz z klasy II działu: Trójkąty prostokątne z klasy I działu: Figury geometryczne oraz z klasy II działu: Trójkąty prostokątne z klasy II działu: Długość okręgu, pole koła oraz Wielokąty i okręgi

5. Wielokąty i okręgi 52-53 6. Symetrie 54-56 7. Powtórzenie wiadomości 57 Praca klasowa i jej omówienie 58-59 2) rozpoznaje wzajemne położenie prostej i okręgu, rozpoznaje styczną do okręgu; 3) korzysta z faktu, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności; 4) rozpoznaje kąty środkowe; 5) oblicza długość okręgu i łuku okręgu; 6) oblicza pole koła, pierścienia kołowego, wycinka kołowego; 7) stosuje twierdzenie Pitagorasa; 8) korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach; 9) oblicza pola i obwody trójkątów i czworokątów; 18) rozpoznaje symetralną odcinka i dwusieczną kąta; 22) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności. 1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych. 16) rozpoznaje pary figur symetrycznych względem prostej i względem punktu. Rysuje pary figur symetrycznych; 17) rozpoznaje figury, które mają oś symetrii, i figury, które mają środek symetrii. Wskazuje oś symetrii i środek symetrii figury. z klasy II działu: Długość okręgu, pole koła oraz Wielokąty i okręgi z klasy I działu: Symetrie

4. FIGURY PODOBNE (11 h) 1. Podobieństwo figur 60-62 2. Pola figur podobnych 63-64 3. Prostokąty podobne. Trójkąty prostokątne podobne 65-66 4. Trójkąty prostokątne podobne (cd.) 67-68 Powtórzenie wiadomości 69 Sprawdzian 70 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 13) rozpoznaje wielokąty podobne. 9) oblicza pola i obwody czworokątów; 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 12) oblicza stosunek pól wielokątów podobnych; 13) rozpoznaje wielokąty podobne. 7) stosuje twierdzenie Pitagorasa; 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 13) rozpoznaje wielokąty podobne; 15) korzysta z własności trójkątów prostokątnych podobnych. 7) stosuje twierdzenie Pitagorasa; 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 12) oblicza stosunek pól wielokątów podobnych; 13) rozpoznaje wielokąty przystające i podobne; 15) korzysta z własności trójkątów prostokątnych podobnych.

5. BRYŁY (17 h) 1. Graniastosłupy 71-73 2. Ostrosłupy 74-76 3. Przykłady brył obrotowych 77-78 4. Walec 79-80 5. Stożek 81-82 6. Kula 83-84 7. Powtórzenie wiadomości 85 11. Bryły. Uczeń: 1) rozpoznaje graniastosłupy; 2) oblicza pole powierzchni i objętość graniastosłupa prostego (także w zadaniach osadzonych w kontekście praktycznym); 3) zamienia jednostki objętości. 11. Bryły. Uczeń: 1) rozpoznaje ostrosłupy prawidłowe; 2) oblicza pole powierzchni i objętość ostrosłupa (także w zadaniach osadzonych w kontekście praktycznym). 7) stosuje twierdzenie Pitagorasa; 9) oblicza pola i obwody trójkątów i czworokątów. 5) oblicza długość okręgu i łuku okręgu; 6) oblicza pole koła; 7) stosuje twierdzenie Pitagorasa. 11. Bryły. Uczeń: 2) oblicza pole powierzchni i objętość walca (także w zadaniach osadzonych w kontekście praktycznym). 3) zamienia jednostki objętości. 5) oblicza długość okręgu i łuku okręgu; 6) oblicza pole koła, wycinka kołowego; 7) stosuje twierdzenie Pitagorasa. 11. Bryły. Uczeń: 2) oblicza pole powierzchni i objętość stożka (także w zadaniach osadzonych w kontekście praktycznym). 6) oblicza pole koła; 7) stosuje twierdzenie Pitagorasa. 11. Bryły. Uczeń: 2) oblicza pole powierzchni i objętość kuli (także w zadaniach osadzonych w kontekście praktycznym). z klasy II działu Graniastosłupy z klasy II działu Ostrosłupy

Praca klasowa i jej omówienie 86-87 6. MATEMATYKA W ZASTOSOWANIACH, część 1 (10 h) 1. Zamiana jednostek 88-89 2. VAT i inne podatki 90-91 3. Lokaty bankowe 92-93 4. Zdarzenia losowe 94-95 5. Powtórzenie wiadomości 96 6. Sprawdzian 97 problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 3. Potęgi. Uczeń: 5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a 10 k, gdzie 1 a <10 oraz k jest liczbą całkowitą. 10) zamienia jednostki pola. 11. Bryły. Uczeń: 3) zamienia jednostki objętości. 5. Procenty. Uczeń: 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym np. oblicza ceny po podwyżce lub obniżce o dany procent, wykonuje obliczenia związane z VAT, oblicza odsetki dla lokaty rocznej. 5. Procenty. Uczeń: 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym np. oblicza ceny po podwyżce lub obniżce o dany procent, wykonuje obliczenia związane z VAT, oblicza odsetki dla lokaty rocznej. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 5) analizuje proste doświadczenia losowe (np. rzut kostką, rzut monetą, wyciąganie losu) i określa prawdopodobieństwa najprostszych zdarzeń w tych doświadczeniach (prawdopodobieństwo wypadnięcia orła w rzucie monetą, dwójki lub szóstki w rzucie kostką, itp.).

7. MATEMATYKA W ZASTOSOWANIACH, część 2 (12 h) 1. Czytanie informacji 98-99 2. Odczytywanie informacji z wykresów 100-101 3. Czytanie diagramów 102-103 4. Czytanie map 104-105 problemów w kontekście praktycznym. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel. problemów w kontekście praktycznym. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów. problemów w kontekście praktycznym. 5. Procenty. Uczeń: 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów. problemów w kontekście praktycznym, w tym do zamiany jednostek. 10) zamienia jednostki pola; 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 12) oblicza stosunek pól wielokątów podobnych.

5. Prędkość, droga, czas 106-107 8. Obliczenia w fizyce i chemii 108-109 problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 6. Wyrażenia algebraiczne. Uczeń: 7) wyznacza wskazaną wielkość z podanych wzorów, w tym geometrycznych i fizycznych. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel i wykresów. problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 3. Potęgi. Uczeń: 5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a 10k, gdzie 1 a <10 oraz k jest liczbą całkowitą. 5. Procenty. Uczeń: 1) przedstawia część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie. 6. Wyrażenia algebraiczne. Uczeń: 7) wyznacza wskazaną wielkość z podanych wzorów, w tym geometrycznych i fizycznych. 7. Równania. Uczeń: 1) zapisuje związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą, w tym związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów.

8. ROZRYWKI MATEMATYCZNE (3h) 1. Zagadki z monetami 110 2. Łamigłówki logiczne 111 3. Pytania Fermiego 112 4. Godziny do dyspozycji nauczyciela 113-115