WPŁYW SZEROKOŚCI OTWARCIA ŻŁOBKÓW NA STATYCZNE I DYNAMICZNE CHARAKTERYSTYKI SILNIKA INDUKCYJNEGO MAŁEJ MOCY

Podobne dokumenty
TECHNOLOGICZNE I EKSPLOATACYJNE SKUTKI ZMIAN KSZTAŁTU PRĘTA KLATKI SILNIKA INDUKCYJNEGO DUŻEJ MOCY

OBLICZANIE SPRAWNOŚCI SILNIKA INDUKCYJNEGO METODĄ OBWODOWO-POLOWĄ

OBLICZENIOWE BADANIE ZJAWISK WYWOŁANYCH USZKODZENIEM KLATKI WIRNIKA

CHARAKTERYSTYKI EKSPLOATACYJNE SILNIKA INDUKCYJNEGO Z USZKODZONĄ KLATKĄ WIRNIKA

CHARAKTERYSTYKI EKSPLOATACYJNE SILNIKA INDUKCYJNEGO DUŻEJ MOCY Z USZKODZONĄ KLATKĄ WIRNIKA

POLOWO OBWODOWY MODEL DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO WERYFIKACJA POMIAROWA

ZJAWISKA W OBWODACH TŁUMIĄCYCH PODCZAS ZAKŁÓCEŃ PRACY TURBOGENERATORA

ROZRUCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI

BADANIA EKSPERYMENTALNE SILNIKA INDUKCYJNEGO Z USZKODZONĄ KLATKĄ WIRNIKA

MOMENT ORAZ SIŁY POCHODZENIA ELEKTROMAGNETYCZNEGO W DWUBIEGOWYM SILNIKU SYNCHRONICZNYM

WPŁYW KSZTAŁTU SZCZELINY POWIETRZNEJ NA WŁAŚCIWOŚCI SILNIKA SYNCHRONICZNEGO WZBUDZANEGO MAGNESAMI TRWAŁYMI

PORÓWNANIE SILNIKA INDUKCYJNEGO ORAZ SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI I ROZRUCHEM BEZPOŚREDNIM - BADANIA EKSPERYMENTALNE

WPŁYW ROZMIESZCZENIA MAGNESÓW NA WŁAŚCIWOŚCI EKSPOATACYJNE SILNIKA TYPU LSPMSM

PORÓWNANIE SILNIKA INDUKCYJNEGO Z SILNIKIEM SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI I ROZRUCHEM BEZPOŚREDNIM

POLOWO - OBWODOWY MODEL BEZSZCZOTKOWEJ WZBUDNICY GENERATORA SYNCHRONICZNEGO

POLOWO-OBWODOWY MODEL DWUBIEGOWEGO SILNIKA INDUKCYJNEGO

GĘSTOŚĆ PRĄDU W PRĘTACH USZKODZONEJ KLATKI WIRNIKA SILNIKA INDUKCYJNEGO

WPŁYW KLINÓW MAGNETYCZNYCH NA WŁAŚCIWOŚCI ROZRUCHOWE SILNIKA INDUKCYJNEGO

ZWARCIE POMIAROWE JAKO METODA WYKRYWANIA USZKODZEŃ KLATKI WIRNIKA SILNIKA INDUKCYJNEGO

WPŁYW EKSCENTRYCZNOŚCI STATYCZNEJ WIRNIKA I NIEJEDNAKOWEGO NAMAGNESOWANIA MAGNESÓW NA POSTAĆ DEFORMACJI STOJANA W SILNIKU BLDC

WPŁYW OSADZENIA MAGNESU NA PARAMETRY SILNIKA MAGNETOELEKTRYCZNEGO O ROZRUCHU BEZPOŚREDNIM

ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

ROZRUCH SILNIKÓW SYNCHRONICZNYCH DUŻEJ MOCY PRZY CZĘŚCIOWYM ZASILANIU UZWOJENIA STOJANA

ZASTOSOWANIE SKOSU STOJANA W JEDNOFAZOWYM SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI

WPŁYW PARAMETRÓW UKŁADU NAPĘDOWEGO NA SKUTECZNOŚĆ SYNCHRONIZACJI SILNIKA DWUBIEGOWEGO

DRGANIA ORAZ SIŁY POCHODZENIA ELEKTROMAGNETYCZNEGO W DWUBIEGOWYCH SILNIKACH SYNCHRONICZNYCH DUŻEJ MOCY

ŁAGODNA SYNCHRONIZACJA SILNIKA SYNCHRONICZNEGO DUŻEJ MOCY Z PRĘDKOŚCI NADSYNCHRONICZNEJ

DWUKIERUNKOWY JEDNOFAZOWY SILNIK SYNCHRONICZNY Z MAGNESAMI TRWAŁYMI

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

PORÓWNANIE JEDNOFAZOWEGO SILNIKA INDUKCYJNEGO I JEDNOFAZOWEGO SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI. BADANIA EKSPERYMENTALNE

WPŁYW SZEROKOŚCI OTWARCIA ŻŁOBKÓW NA PARAMETRY EKSPLOATACYJNE SILNIKA INDUKCYJNEGO MAŁEJ MOCY

SILNIK RELUKTANCYJNY PRZEŁĄCZALNY PRZEZNACZONY DO NAPĘDU MAŁEGO MOBILNEGO POJAZDU ELEKTRYCZNEGO

Zeszyty Problemowe Maszyny Elektryczne Nr 80/

BADANIA SYMULACYJNE SILNIKÓW RELUKTANCYJNYCH PRZEŁĄCZALNYCH PRZEZNACZONYCH DO NAPĘDU WYSOKOOBROTOWEGO

MAGNETOELEKTRYCZNY SILNIK MAŁEJ MOCY Z KOMPAKTOWYM WIRNIKIEM HYBRYDOWYM I Z ROZRUCHEM SYNCHRONICZNYM

KSZTAŁTOWANIE POLA MAGNETYCZNEGO W DWUBIEGOWYCH SILNIKACH SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI

POLOWO OBWODOWY MODEL DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO

WERYFIKACJA METOD OBLICZENIOWYCH SILNIKÓW TARCZOWYCH Z MAGNESAMI TRWAŁYMI

SILNIK SYNCHRONICZNY ŚREDNIEJ MOCY Z MAGNESAMI TRWAŁYMI ZASILANY Z FALOWNIKA

WYZNACZANIE STRAT MOCY W RDZENIU MAGNETYCZNYM MIKROSILNIKÓW INDUKCYJNYCH

WERYFIKACJA EKSPERYMENTALNA OBWODOWO POLOWEGO MODELU SILNIKA INDUKCYJNEGO

ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH DO WYZNACZANIA PARAMETRÓW ELEKTROMAGNETYCZNYCH SILNIKA PMSM

ANALIZA WPŁYWU NIESYMETRII OBWODU MAGNETYCZNEGO WIRNIKA NA PARAMETRY ROZRUCHOWE 6-BIEGUNOWEGO SILNIKA MAGNETOELEKTRYCZNEGO SYNCHRONICZNEGO

Zeszyty Problemowe Maszyny Elektryczne Nr 75/

PULSACJE MOMENTU W SILNIKU INDUKCYJNYM ZE SKOSEM ŻŁOBKÓW WIRNIKA

BADANIE WPŁYWU GRUBOŚCI SZCZELINY POWIETRZNEJ NA WŁAŚCIWOŚCI SILNIKÓW RELUKTANCYJNYCH PRZEŁĄCZALNYCH W OPARCIU O OBLICZENIA POLOWE

WYKORZYSTANIE EFEKTU WYPIERANIA PRĄDU W ROZRUCHU BEZPOŚREDNIM MASZYN WZBUDZANYCH MAGNESAMI TRWAŁYMI

PULSACJE MOMENTU ELEKTROMAGNETYCZNEGO W SILNIKACH SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI I ROZRUCHEM BEZPOŚREDNIM

WŁAŚCIWOŚCI EKSPLOATACYJNE SILNIKÓW RELUKTANCYJNYCH Z ROZRUCHEM ASYNCHRONICZNYM PRZY STEROWANIU CZĘSTOTLIWOŚCIOWYM

JEDNOFAZOWY SILNIK SYNCHRONICZNY Z MAGNESAMI TRWAŁYMI. KONSTRUKCJA I PARAMETRY

TRÓJWYMIAROWA ANALIZA POLA MAGNETYCZNEGO W KOMUTATOROWYM SILNIKU PRĄDU STAŁEGO

SAMOCZYNNA SYNCHRONIZACJA SILNIKÓW LSPMSM

NOWA SERIA WYSOKOSPRAWNYCH DWUBIEGUNOWYCH GENERATORÓW SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI

ANALIZA PORÓWNAWCZA WYBRANYCH MODELI SILNIKÓW TARCZOWYCH Z MAGNESAMI TRWAŁYMI

Zeszyty Problemowe Maszyny Elektryczne Nr 75/

WSPÓŁCZYNNIK MOCY I SPRAWNOŚĆ INDUKCYJNYCH SILNIKÓW JEDNOFAZOWYCH W WARUNKACH PRACY OPTYMALNEJ

BADANIE STABILNOŚCI TURBOGENERATORA PRZY ZMIANACH OBCIĄśENIA

MODELOWANIE SAMOWZBUDNYCH PRĄDNIC INDUKCYJNYCH

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

ZWARCIA ZWOJOWE W UZWOJENIU STOJANA KLATKOWEGO SILNIKA INDUKCYJNEGO

WPŁYW UKŁADU STEROWANIA PRĄDEM WZBUDZENIA NA PROCES SYNCHRONIZACJI SILNIKA SYNCHRONICZNEGO

ANALIZA PORÓWNAWCZA SILNIKÓW LSPMSM TYPU U ORAZ W.

Energooszczędne silniki elektryczne prądu przemiennego

MODELOWANIE SILNIKÓW INDUKCYJNYCH Z ELEMENTAMI NIESYMETRII

DWUBIEGOWY SILNIK SYNCHRONICZNY SYNCHRONIZOWANY NAPIĘCIEM ZMIENNYM

WPŁYW USZKODZENIA TRANZYSTORA IGBT PRZEKSZTAŁTNIKA CZĘSTOTLIWOŚCI NA PRACĘ NAPĘDU INDUKCYJNEGO

WYSOKOSPRAWNY JEDNOFAZOWY SILNIK LSPMSM O LICZBIE BIEGUNÓW 2p = 4 BADANIA EKSPERYMENTALNE

STEROWANIE CZĘSTOTLIWOŚCIOWE SILNIKÓW INDUKCYJNYCH SYNCHRONIZOWANYCH

BADANIA PORÓWNAWCZE SILNIKA INDUKCYJNEGO KLATKOWEGO PODCZAS RÓŻNYCH SPOSOBÓW ROZRUCHU 1. WSTĘP

BADANIA SKUTKÓW CIEPLNYCH ZWARĆ ZWOJOWYCH W UZWOJENIACH STOJANA SILNIKA INDUKCYJNEGO

PARAMETRY ROZRUCHOWE SILNIKA ASYNCHRONICZNEGO Z KOMPOZYTOWYMI WIRNIKAMI INFILTROWANYMI

ANALIZA STRUKTUR MAGNETOELEKTRYCZNYCH SILNIKÓW SYNCHRONICZNYCH O ROZRUCHU CZĘSTOTLIWOŚCIOWYM. OBLICZENIA

MODELOWANIE KONSTRUKCJI MIKROSILNIKA ZE ZWOJEM ZWARTYM NA PODSTAWIE ANALIZY POLOWEJ

Modelowanie samowzbudnych prądnic indukcyjnych

SYNCHRONIZACJA SILNIKÓW SYNCHRONICZNYCH. WYBÓR CHWILI ZAŁĄCZENIA PRĄDU WZBUDZENIA

SYNCHRONIZACJA SILNIKÓW SYNCHRONICZNYCH PRZEZ STEROWANIE PRĄDEM WZBUDZENIA

MODELOWANIE POLOWE SILNIKÓW JEDNOFAZOWYCH Z KONDENSATOREM ROBOCZYM O PRZEŁĄCZALNYCH UZWOJENIACH

ANALIZA WPŁYWU SPOSOBU NAMAGNESOWANIA MAGNESÓW NA PARAMETRY SILNIKA KOMUTATOROWEGO O MAGNESACH TRWAŁYCH

SILNIK BEZSZCZOTKOWY O WIRNIKU KUBKOWYM

SILNIK TARCZOWY Z WIRNIKIEM WEWNĘTRZNYM - OBLICZENIA OBWODU ELEKTROMAGNETYCZNEGO

WYZNACZANIE DRGAŃ WŁASNYCH KONSTRUKCJI DWUBIEGOWYCH SILNIKÓW SYNCHRONICZNYCH

ZNACZENIE ZJAWISK TERMICZNYCH W NIEUSTALONYCH STANACH ELEKTROMECHANICZNYCH SILNIKÓW DWUKLATKOWYCH

WPŁYW OBWODU MAGNETYCZNEGO I KONSTRUKCJI WIRNIKA NA PARAMETRY SILNIKA INDUKCYJNEGO PRACUJĄCEGO W NISKICH TEMPERATURACH

BADANIA SYMULACYJNE PROCESU SYNCHRONIZACJI SILNIKÓW INDUKCYJNYCH PIERŚCIENIOWYCH

WIELOFAZOWE UZWOJENIA SILNIKÓW INDUKCYJNYCH

Prace Naukowe Instytutu Maszyn i Napędów Elektrycznych Nr 44 Politechniki Wrocławskiej Nr 44

Właściwości silnika bezszczotkowego prądu stałego z magnesami trwałymi o różnych rozpiętościach uzwojeń stojana

Diagnostyka silników indukcyjnch dwuklatkowych z uszkodzonymi prętami

WYKORZYSTANIE OPROGRAMOWANIA MAXWELL DO OPTYMALIZACJI KONSTRUKCJI OBWODU ELEKTROMAGNETYCZNEGO SILNIKÓW TARCZOWYCH

AWARYJNE STANY PRACY SILNIKÓW INDUKCYJNYCH PIERŚCIENIOWYCH

COMPARED ANALYSIS OF LSPMSM AND SQUIRREL-CAGE MOTOR EXPLOITATION WITH VARIABLE ROTATIONAL SPEED

Diagnostyka silnika indukcyjnego z wykorzystaniem dostępnych napięć stojana

ZJAWISKA CIEPLNE W MODELU MASZYNY SYNCHRONICZNEJ Z MAGNESAMI TRWAŁYMI

BADANIA EKSPERYMENTALNE ROZRUCHU SILNIKA SYNCHRONICZNEGO WZBUDZANEGO MAGNESAMI TRWAŁYMI

OBLICZENIA I POMIARY PRZEBIEGÓW PRĄDÓW I NAPIĘĆ W ALTERNATORZE KŁOWYM W STANIE OBCIĄśENIA

SKŁADOWA PRZECIWNA PRĄDU STOJANA TURBOGENERATORA

SILNIK SYNCHRONICZNY WZBUDZANY MAGNESAMI TRWAŁYMI W NAPĘDZIE MŁYNA KULOWEGO

MODELOWANIE SILNIKA KOMUTATOROWEGO O MAGNESACH TRWAŁYCH ZASILANEGO Z PRZEKSZTAŁTNIKA IMPULSOWEGO

BADANIA SYMULACYJNE SILNIKA ASYNCHRONICZNEGO SYNCHRONIZOWANEGO MOMENTEM RELUKTANCYJNYM

POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ UKŁADU NAPĘDOWEGO Z SILNIKIEM INDUKCYJNYM ŚREDNIEGO NAPIĘCIA POPRZEZ JEGO ZASILANIE Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Transkrypt:

Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 8 Politechniki Wrocławskiej Nr 8 Studia i Materiały Nr 2 2 Ludwik ANTAL *, Maciej ANTAL * *, Jan ZAWILAKF Silnik indukcyjny, klatkowy model polowo-obwodowy, projektowanie charakterystyki statyczne, dynamiczne WPŁYW SZEROKOŚCI OTWARCIA ŻŁOBKÓW NA STATYCZNE I DYNAMICZNE CHARAKTERYSTYKI SILNIKA INDUKCYJNEGO MAŁEJ MOCY W pracy przeprowadzono analizę wpływu otwarcia żłobków stojana i wirnika indukcyjnego silnika klatkowego małej mocy na jego charakterystyki statyczne i dynamiczne. Obliczenia charakterystyk statycznych momentu i prądu stojana wykonano znajdując rozkład magnetycznego pola harmonicznego w polowo-obwodowym modelu silnika indukcyjnego. Wykonując obliczenia dla różnych szerokości otwarcia żłobków wirnika i stojana oraz różnych wartości u zbadano wpływ tych parametrów na przebiegi momentu i prądu. Z analizy pola nieustalonego w dwuwymiarowym modelu polowo-obwodowym uzyskano czasowe charakterystyki rozruchowe i charakterystyki ustalonego stanu obciążenia. Dla tych charakterystyk wykonano obliczenia dla różnych wartości szerokości otwarcia żłobków stojana. 1. WSTĘP Obecna sytuacja na rynku silników indukcyjnych wygląda tak, że produkowane są silniki różnych klas sprawności: zarówno energooszczędne o wysokiej sprawności, stosowane zwłaszcza wtedy, kiedy silnik musi pracować przez dużą liczbę godzin w roku, jak i materiałooszczędne o niskiej cenie, których stosowanie jest uzasadnione ich krótkotrwałą pracą [14, 1]. W tej sytuacji celem wartym wysiłku jest zbliżenie do siebie tych przeciwstawnych klas silników, poprzez jednoczesne zwiększanie sprawności i zmniejszanie zużycia materiałów. Silnik indukcyjny jest konstrukcją stosunkowo prostą i dobrze poznaną. Znane są sposoby podnoszenia ich sprawności i konsekwencje tych sposobów [4, 14]. Znane i stosowane są metody optymalizacji ich * Politechnika Wrocławska, Instytut Maszyn, Napędów i Pomiarów Elektrycznych, -372 Wrocław ul. Smoluchowskiego 19, HUludwik.antal@pwr.wroc.plUH, HUmaciej.antal@pwr.wroc.plUH, HUjan.zawilak@pwr.wroc.plUH

konstrukcji [9, 1, 11, 13]. Jednakże postępy inżynierii materiałowej i technik obliczeniowych stwarzają nadzieję na wykorzystanie rezerw tkwiących we własnościach materiałowych, kształtach i wymiarach. Z tego powodu prowadzone są intensywne badania nad lepszym odwzorowaniem zjawisk elektromagnetycznych i cieplnych zachodzących w silniku indukcyjnym. Pojawiły się zarówno prace dotyczące obliczania strat mocy (również w laminowanych rdzeniach stalowych) metodą elementów skończonych [6, 7, 8, 16] jak i prace włączające tę metodę do obliczeń elektromagnetycznych i cieplnych w procesie projektowania maszyny [, 9, 12]. Ze względu na długi czas obliczeń modele trójwymiarowe przydatne są do analizy zjawisk, lecz nie mają jeszcze znaczenia praktycznego w zastosowaniu do projektowania maszyn. W projektowaniu mogą jednak być wykorzystywane polowo-obwodowe modele dwuwymiarowe. Taki prosty model zbudowany przy użyciu komercyjnego programu Flx2D [3] posłużył do zbadania wpływu szerokości otwarcia żłobków stojana i wirnika na podstawowe parametry i charakterystyki eksploatacyjne standardowego silnika indukcyjnego małej mocy. W pracy [2] przedstawiono wyniki analizy harmonicznej pola w szczelinie silnika klatkowego i wpływ zmian szerokości otwarcia żłobków na sprawność i współczynnik mocy. Wskazano tam również na możliwość wykorzystania dwuwymiarowego modelu polowo-obwodowego do optymalizacji konstrukcji zarówno silników energooszczędnych jak i silników materiałooszczędnych. W niniejszej pracy, kontynuującej te badania, przedstawiono wpływ szerokości otwarcia żłobków na statyczne i dynamiczne charakterystyki momentu i prądu. 2. POLE MAGNETYCZNE W SZCZELINIE SILNIKA KLATKOWEGO Użyty do obliczeń model polowo obwodowy został zweryfikowany pomiarowo [1]. Wobec dobrej zgodności wyników obliczeń i pomiarów wykorzystano opracowany model do analizy wpływu szerokości otwarcia żłobków stojana i wirnika na kształt pola magnetycznego w szczelinie. Badany, 4-biegunowy silnik posiada 36 żłobków stojana i 26 żłobków wirnika. Kształt żłobków i ich podstawowe wymiary pokazano na rysunku 1. Rys. 1. Żłobki stojana i wirnika Fig. 1. Stator and rotor slots

Obwodowy rozkład składowej normalnej indukcji w szczelinie, dla wybranych, przykładowych wartości szerokości otwarcia żłobków, przedstawiony na rysunku 2, wskazuje na zależność kształtu pola od rozpatrywanych wymiarów. 2, 1, ; br1 = 2, mm ; br1 =,2 mm ; br1 = 1, mm bs1 =, mm; br1 =,2 mm bs1 =, mm; br1 = 2, mm amplituda indukcji [T] 1,,, -, -1, -1, -2, 9 18 27 36 kąt [deg] Rys. 2. Rozkład składowej normalnej indukcji w szczelinie silnika Fig. 2. Distribution of the normal flux density component in the air-gap of the motor Analiza harmoniczna tych przebiegów (rys. 3) dowodzi, że zależność różnych rodzajów harmonicznych (strefowe n = νp, żłobkowe stojana n = kż 1 ± p, żłobkowe wirnika n = kż 2 ± p) od wymiarów otwarcia żłobków jest różna. Zależności te szczegółowo omówiono w [2]. Obliczenia magnetycznego pola harmonicznego dla prędkości znamionowej (s =,6) wykonano zmieniając co,2 mm szerokość otwarcia żłobka stojana b s1 w zakresie, 2, mm, i szerokość otwarcia żłobka wirnika b r1 w przedziale,2 2, mm, co dało 9 kombinacji otwarcia żłobków. Analiza harmoniczna pola w szczelinie dla wszystkich rozpatrzonych przypadków pozwoliła ustalić zależność poszczególnych rodzajów harmonicznych od wielkości otwarcia żłobków. Harmoniczna podstawowa n = νp = 2 jak i harmoniczne ν = i ν = 7 w niewielkim stopniu zależą od szerokości rozwarć żłobków. Harmoniczne żłobkowe wirnika (n = 24; 28; ; 4, kż 2 ± p) rosną ze wzrostem otwarcia żłobków wirnika, natomiast nieznacznie zmieniają się na skutek zmian otwarcia żłobków stojana. W identyczny sposób zmieniają się wszystkie harmoniczne żłobkowe wirnika. Harmoniczne żłobkowe stojana (n = 34; 38; 7; 74, kż 1 ± p) rosną ze wzrostem otwarcia żłobków stojana, natomiast w niewielkim stopniu zmieniają się pod wpływem zmian otwarcia żłobków wirnika. Podobnie zmieniają się wszystkie harmoniczne żłobkowe stojana.

2 amplituda indukcji [T],9,8,7,6,,4,3,2,1, 1 14 24 28 34 38 bs1 : 2, br1 : 2, bs1 : 2, br1 : 1 bs1 : 2, br1 :,2 bs1 :, br1 : 2, bs1 :, br1 :,2 4 7 74 1 9 13 17 21 2 29 33 37 41 4 49 3 7 61 nr harmonicznej (νp) 6 69 73 77 81 8 Rys. 3. Amplitudy harmonicznych składowej normalnej indukcji w szczelinie silnika Fig. 3. Amplitudes of harmonics of the normal flux density component in air-gap 3. CHARAKTERYSTYKI STATYCZNE Obliczenia magnetycznego pola harmonicznego dla różnych wartości u (s =,1 1,) i różnych wartości szerokości otwarcia żłobków stojana i wirnika pozwoliły wyznaczyć charakterystyki momentu i prądu stojana przedstawione na rysunkach 4, i 6. Na rysunkach tych kolejność krzywych odpowiada kolejności opisów legendy. 3 2 moment [Nm] 3 2 2 1 1 br1 = 1, mm; br1 = 1, mm; br1 =, mm; prąd fazowy stojana [A] 1 1 br1 = 1, mm; br1 = 1, mm; br1 =, mm; 1,,8,6,4,2, 1,,8,6,4,2, Rys. 4. Charakterystyki momentu i prądu stojana (b s1 = 2, mm) Fig. 4. Torque and stator current characteristics (b s1 = 2, mm)

3 2 moment [Nm] 2 2 1 1 1, br1 = 1, mm; bs1 = 2, mm br1 = 1, mm; bs1 = 2, mm br1 =, mm; bs1 = 2, mm,8,6,4,2, prąd fazowy stojana [A] 1 1 1, br1 = 1, mm; bs1 = 2, mm br1 = 1, mm; bs1 = 2, mm br1 =, mm; bs1 = 2, mm,8,6,4,2, Rys.. Charakterystyki momentu i prądu stojana (b s1 = 2, mm) Fig.. Torque and stator current characteristics (b s1 = 2, mm) 3 2 moment [Nm] 2 2 1 1 1, br1 = 1, mm; br1 = 1, mm; br1 =, mm;,8,6,4,2, prąd fazowy stojana [A] 1 1 1, br1 = 1, mm; br1 = 1, mm; br1 =, mm;,8,6,4,2, Rys. 6. Charakterystyki momentu i prądu stojana (b s1 = 1, mm) Fig. 6. Torque and stator current characteristics (b s1 = 1, mm) Moment i prąd fazowy stojana słabo zależą od szerokości otwarcia żłobków wirnika. Ze wzrostem tej szerokości rośnie zarówno moment jak i prąd, jednakże zmiany te są widoczne dopiero dla dużych wartości u. Wzrost szerokości otwarcia żłobka wirnika prowadzi więc do zwiększenia momentu maksymalnego oraz momentu i prądu rozruchowego. Większy wpływ na analizowane wielkości ma zmiana szerokości otwarcia żłobków stojana. Na rysunku 7 przedstawiono zmiany charakterystyk momentu i prądu towarzyszące zmianom szerokości otwarcia żłobka stojana b s1. Pokazane na wykresach charakterystyki zostały wyznaczone dla szerokości otwarcia żłobka wirnika b r1 = 1, mm. Zmiana szerokości otwarcia żłobka stojana z 2, mm na 1, mm zmniejsza moment rozruchowy o 7% i prąd rozruchowy o 3%. Charakter zmian jest taki sam jak dla żłobka wirnika tzn. moment i prąd rosną ze zwiększaniem szerokości otwarcia.

3 2 moment [Nm] 2 2 1 1 1,,8 bs1 = 2, mm bs1 = 1, mm,6,4,2, prąd fazowy stojana [A] 1 1 1, bs1 = 2, mm bs1 = 1, mm,8,6,4,2, Rys. 7. Charakterystyki momentu i prądu stojana (b r1 = 1, mm) Fig. 7. Torque and stator current characteristics (b r1 = 1, mm) 3. CHARAKTERYSTYKI DYNAMICZNE Z analizy pola nieustalonego w dwuwymiarowym modelu polowo-obwodowym uzyskano czasowe charakterystyki rozruchowe i charakterystyki ustalonego stanu obciążenia. Pierwsze z nich wyznaczono dla kroku czasowego,1 ms, a drugie dla kroku,2 ms. Zwiększenie dokładności było konieczne dla zbadania pulsacji prędkości obrotowej i momentu. Na rysunkach 8, 9 i 1 przedstawiono rozruch silnika obciążonego stałym, znamionowym momentem, z różnymi szerokościami otwarcia żłobka stojana i stałą szerokością otwarcia żłobka wirnika (b r1 = 1, mm). prędkość obrotowa [obr/min] 16 14 12 1 8 6 bs1 = 1, mm 4 2-2,,1,2,3,4,,6 Rys. 8. Prędkość obrotowa podczas rozruchu silnika (b r1 = 1, mm) Fig. 8. Start-up rotational speed (b r1 = 1, mm)

moment [Nm] 4 3 2 1 bs1 = 1, mm -1,,1,2,3,4,,6 Rys. 9. Moment podczas rozruchu silnika (b r1 = 1, mm) Fig. 9. Start-up torque (b r1 = 1, mm) prąd [A] 2 2 1 1 bs1 = 1, mm - -1-1 -2-2,,1,2,3,4,,6 Rys. 1. Prąd stojana podczas rozruchu silnika (b r1 = 1, mm) Fig. 1. Start-up stator current (b r1 = 1, mm) Dla największej i najmniejszej z rozpatrywanych szerokości otwarcia żłobka stojana (b s1 = 1, mm i 2, mm) przebiegi rozruchowe niemal się pokrywają. Dla b s1 = 1, mm rozruch jest łagodniejszy i trwa krócej. Chociaż moment obciążający ma identyczną wartość, w końcowej fazie rozruchu prędkości ustalone różnią się wartością (rys. 11). Moment elektromagnetyczny ma tą samą wartość średnią ale jego pulsacje są różne (rys. 12). Prądy stojana minimalnie różnią się wartością, fazą i kształtem (rys. 13).

prędkość obrotowa [obr/min] 141 1414 1413 1412 1411 141 149 148 147 146 bs1 = 1, mm 14,,2,4,6,8,6 Rys. 11. Prędkość obrotowa w końcowej fazie rozruchu silnika (b r1 = 1, mm) Fig. 11. Rotational speed during a last part of motor start-up (b r1 = 1, mm) 11, bs1 = 1, mm 11, moment [Nm] 1, 1, 9, 9,,,2,4,6,8,6 Rys. 12. Moment w końcowej fazie rozruchu silnika (b r1 = 1, mm) Fig. 12. Torque during a last part of motor start-up (b r1 = 1, mm)

, 4,8 bs1 = 1, mm prąd [A] 4,6 4,4 4,2 4,,89,9,91,92,93,94,9 Rys. 13. Prąd stojana w końcowej fazie rozruchu silnika (b r1 = 1, mm) Fig. 13. Stator current during a last part of motor start-up (b r1 = 1, mm) Po ustaleniu się przebiegów rozruchowych (t > 1 s) różnica prędkości ustalonych dla b s1 = 1, i 2, mm jest nieco większa od 1 obr/min. Pulsacje prędkości są większe (rys. 14), a pulsacje momentu mniejsze (rys. 1) dla większej szerokości otwarcia żłobka. Dla szerszego otwarcia żłobka wartości amplitudy i fazy prądu stojana są większe (rys. 16), a prąd wirnika ustala się później (rys. 17). 1412, prędkość obrotowa [obr/min] 1412, 1411, 1411, 141, 141, 1,1 1,12 1,14 1,16 1,18 1,2 Rys. 14. Prędkość obrotowa po zakończeniu rozruchu silnika (b r1 = 1, mm) Fig. 14. Rotational speed after the motor start-up (b r1 = 1, mm)

moment [Nm] 11, 11, 1, 1, 9, 9, 1,18 1,19 1,19 1,2 1,2 Rys. 1. Moment po zakończeniu rozruchu silnika (b r1 = 1, mm) Fig. 1. Torque after the motor start-up (b r1 = 1, mm) prąd fazowy stojana [A], 4, 4, 1,189 1,19 1,191 1,192 1,193 1,194 1,19 Rys. 16. Prąd stojana po zakończeniu rozruchu silnika (b r1 = 1, mm) Fig. 16. Stator current after the motor start-up (b r1 = 1, mm) 4 prąd pręta wirnika [A] 2-2 -4 1, 1, 1,1 1,1 1,2 Rys. 17. Prąd wirnika po zakończeniu rozruchu silnika (b r1 = 1, mm) Fig. 17. Rotor current after the motor start-up (b r1 = 1, mm)

. PODSUMOWANIE Dobór szerokości otwarcia żłobków stojana i wirnika w celu zoptymalizowania konstrukcji silnika energooszczędnego lub materiałooszczędnego, może nieco poprawić lub pogorszyć parametry rozruchowe silnika klatkowego. Pewne kombinacje wymiarowe otwarcia żłobków stojana i wirnika mogą złagodzić rozruch, skrócić jego czas i zmniejszyć pulsacje prędkości lub momentu. LITERATURA [1] Antal L., Antal M., Weryfikacja eksperymentalna obwodowo polowego modelu silnika indukcyjnego, Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej, Nr 4, Studia i Materiały Nr 23, Wrocław, 23, s. 39-48 [2] Antal L., Antal M., Zawilak J., Wpływ szerokości otwarcia żłobków na charakterystyki eksploatacyjne silnika indukcyjnego małej mocy, Maszyny Elektryczne, Zeszyty Problemowe BOBRME Komel, nr 73, Katowice, 2, s. 12-13 [3] CEDRAT, FLUX 9.1 2D application. User s guide, volume 4, Solving and results postprocessing, March 2 [4] Chmelik K., Możliwości zwiększenia sprawności silników indukcyjnych, Maszyny Elektryczne, Zeszyty Problemowe BOBRME Komel, nr, Katowice, 1998, s.6-62 [] Cistelecan M., Demeter E., Ciumbulea G., High efficiency general purpose small power in-duction motors: design and development, 1th International Conference on Electrical Machines (ICEM), Brugge, Belgium, August 2-28, 22 [6] Dupre L.R., Van Keerb R., Melkebeek J.A.A., A computational model for the iron losses in rotating electrical machines, International Journal of Engineering Science 36, 1998, pp.699-79 [7] Enokizono M., Morikawa M., Fujiyama S., Distribution of Local Magnetic Properties in Three- Phase Inducion Motor Model Core, IEEE Transactions on Magnetics, vol.3, Nr, September 1999, pp.3937-3939 [8] Gyselinck L.L.C., Duprè L.R., Vandevelde L., Melkebeek A.A., Calculation of No-load Induction Motor Core Losses Using the Rate-dependent Preisach Model, IEEE Transactions on Magnetics, vol. 34, Nr 6, November 1998, pp. 3876-3881 [9] Jornet A., Orille A., Pérez A., Pérez D., Optimal design of high frequency induction motors with aid of finite elements, 1th International Conference on Electrical Machines (ICEM), Brugge, Belgium, August 2-28, 22 [1] Jażdżyński W., Wpływ założeń projektowych na optymalne rozwiązania projektowe energooszczędnych silników indukcyjnych, Maszyny Elektryczne, Zeszyty Problemowe BOBRME Komel, nr, Katowice, 1998, s. 63-68 [11] Jażdżyński W., Some economic aspects of designing optimal energy-efficient and high-efficiency induction motors, 1th International conference on electrical machines (ICEM), Brugge, Belgium, August 2-28, 22 [12] Podoleanu I., Schneider J., Müller G., Hameyer K., Simulation system for asynchronous machines, EPNC 22, Leuven, Belgium, 1-3 July, 22; pp. 123-12

[13] Hameyer K., Belmans R., Dular P., Efficient simulation of electromagnetic fields using magnetic equivalent circuits for numerical optimization, 3rd International Workshop on Electric & Magnetic Fields, Liege, Belgium, May 6-9, 1996; pp. 27-212 [14] Śliwiński T., Wpływ parametrów rozruchowych silników indukcyjnych na ich koszt produkcji i eksploatacji, Zeszyty Naukowe Politechniki Śląskiej, Seria: Elektryka z. 176, 21, s.81-86 [1] Śliwiński T., Straty mocy w silnikach indukcyjnych. Nowe aspekty i dylematy, 39th International Symposium on Electrical Machines SME 23, 9 11 June 23, Gdańsk Jurata, Poland [16] Yamazaki K., Stray load loss analysis of induction motors due to harmonic electromagnetic fields of stator and rotor, 1th International Conference on Electrical Machines (ICEM), Brugge, Belgium, August 2-28, 22 INFLUENCE OF SLOTS WIDTH OPENING ON THE STATIC AND DYNAMIC CHARACTERISTICS OF A SMALL POWER INDUCTION MOTOR The work presents calculation results of a small (1. kw) squirrel cage induction motor. The influence of slots width opening on static and dynamic characteristics of the motor was examined. A torque and a stator current calculations were realized by finding distribution of time-harmonic magnetic field in a field-circuit motor model. Calculations, for different combination of the stator and the rotor slots width openings and for different values of a slip, showed influence of these parameters on the torque and the stator current values. Solution of transient magnetic field in the two-dimensional field-circuit motor model gives transient characteristics of start-up and steady state for the motor with normal load. These characteristics were computed for different values of the stator slots width openings.