MINERAL COMPOSITION OF PLANTS CULTIVATED IN SOIL CONTAMINATED WITH Cd, Pb, Ni, Cu AND Zn. PART I. JERUSALEM ARTICHOKE {Helianthus tuberosus L.

Podobne dokumenty
Proceedings of ECOpole Vol. 3, No

Wpływ niektórych czynników na skład chemiczny ziarna pszenicy jarej

NUTRITION STATUS OF GREENHOUSE TOMATO GROWN IN INERT MEDIA. Part II. MICROELEMENTS

WYKORZYSTANIE POPIOŁÓW PALENISKOWYCH JAKO SORBENTÓW DO WIĄZANIA METALI CIĘŻKICH WYSTĘPUJĄCYCH W GLEBIE

Allocation of elements in former farmland afforestation with birch of varying age

ZAWARTOŚĆ POTASU W MŁODYCH BULWACH ZIEMNIAKA W ZALEŻNOŚCI OD SPOSOBU UPRAWY. Wstęp

ODDZIAŁYWANIE NAWOŻENIA AZOTOWEGO NA PLON I SKŁAD CHEMICZNY KALAREPY. Wstęp

ANNALES. Stanisław Kalembasa, Andrzej Wysokiński

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN POLONIA

INFLUENCE OF ORGANIC FERTILIZATION ON MINERAL CONTENTS OF IN TALL OAT GRASS

ZESZYTY NAUKOWE UNIWERSYTETU PRZYRODNICZEGO WE WROCŁAWIU 2006 ROLNICTWO LXXXIX NR 546. Grzegorz Kulczycki

WYKORZYSTANIE ŚLAZOWCA PENSYLWAŃSKIEGO DO EKSTRAKCJI METALI CIĘŻKICH Z GLEBY

EFFECT OF ORGANIC SUBSTANCE WITH DIVERSIFIED DECOMPOSITION DEGREE ON CADMIUM AND LEAD UPTAKE BY LETTUCE (LACTUCA SATIVA L.)

WPŁYW DAWEK AZOTU NA ZAWARTOŚĆ Ca, Mg, S i Na W BIOMASIE ŚLAZOWCA PENSYLWAŃSKIEGO (SIDA HERMAPHRODITA RUSBY) Stanisław Kalembasa, Beata Wiśniewska

J. Elementol. 2009, 14(3):

IMPACT OF BOTTOM SEDIMENTS ON ASSIMILABILITY OF COPPER AND ZINC IN LIGHT SOIL

J. Elementol. 2009, 14(3):


THE YIELD AND CONTENT OF TRACE ELEMENTS IN BIOMASS OF MISCANTHUS SACCHARIFLORUS (MAXIM.) HACK. AND IN SOIL IN THE THIRD YEAR OF A POT EXPERIMENT

EFFECT OF CHELATED AND MINERAL FORMS OF MICRONUTRIENTS ON THEIR CONTENT IN LEAVES AND THE YIELD OF LETTUCE. PART II. COPPER

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech. 2015, 316(33)1, 89 94

WPŁYW OSŁON ORAZ SPOSOBU SADZENIA ZĄBKÓW NA PLONOWANIE CZOSNKU W UPRAWIE NA ZBIÓR PĘCZKOWY. Wstęp

The estimation of the yield and content of some chemical compounds in the fruits of chosen hot pepper (Capsicum annuum L.


ZINC AND COPPER CONTENT IN VEGETABLES GROWN NEAR COMMUNICATION ROUTES IN ŚRODA WIELKOPOLSKA COMMUNE. Introduction

WZROST I PLONOWANIE PAPRYKI SŁODKIEJ (CAPSICUM ANNUUM L.), UPRAWIANEJ W POLU W WARUNKACH KLIMATYCZNYCH OLSZTYNA

Sylwester Smoleń* ) on uptake and accumulation of Al, B, Cd, Cr, Cu, Fe, Li, Ti and V in carrot storage roots.

IONIC EQUILIBRIUM IN MAIZE GRAIN DEPENDING ON THE FERTILISATION AND SOIL TYPE

Zarządzanie sieciami telekomunikacyjnymi

ZALEŻNOŚĆ MIĘDZY NORMĄ WYSIEWU NASION A PLONEM ZIELA KARCZOCHA (CYNARA SCOLYMUS L.) * Wstęp. Materiał i metody

Evaluation of selected quality traits of storage roots of ten beet cultivars

Environment Protection Engineering BCR METHOD IN ASSESSING ALTERATIONS OF COPPER FORMS IN SLUDGE COMPOSTED ACCORDING TO DIFFERENT METHODS

EVALUATION OF MICROELEMENTS CONTENTS IN ARABLE SOILS OF EASTERN W IELKOPOLSKA LOWLAND

EFFECT OF NITROGEN FERTILIZATION ON THE CONTENT OF MINERAL COMPONENTS IN SOIL, LEAVES AND FRUITS OF ŠAMPION APPLE TREES

Wpływ rzutowego i rzędowego nawożenia mocznikiem na wysokość plonu i niektóre cechy jakości bulw ziemniaka

WPŁYW PH POŻYWEK NA DYNAMIKĘ ZAWARTOŚCI MAKROELEMENTÓW W LIŚCIACH POMIDORA SZKLARNIOWEGO UPRAWIANEGO W WEŁNIE MINERALNEJ

LIGNOCELLULOSIC BIOMASS PRODUCTION AND DELIVER FOR BIOREFINERIES

Has the heat wave frequency or intensity changed in Poland since 1950?

Jolanta JANOWIAK*, Ewa SPYCHAJ-FABISIAK*, Elżbieta WSZELACZYŃSKA**, Mieczysława PIŃSKA**, Barbara MURAWSKA*

ZAWARTOŚĆ MIKROSKŁADNIKÓW W SUROWCACH WYBRANYCH GATUNKÓW ROŚLIN ZIELARSKICH Z UPRAW EKOLOGICZNYCH. Wstęp

WPŁYW TERMINU POBIERANIA PRÓBEK DO ANALIZ NA ZAWARTOŚĆ SKŁADNIKÓW POKARMOWYCH W LIŚCIACH CZTERECH ODMIAN BORÓWKI WYSOKIEJ (VACCINIUM CORYMBOSUM L.

EFFECT OF CHELATED AND MINERAL FORMS OF MICRONUTRIENTS ON THEIR CONTENT IN LEAVES AND THE YIELD OF LETTUCE. PART III. ZINC

WPLYW ZANIECZYSZCZENIA GLEBY METALAMI CIJ^ZKIMI NA ZAWARTOSC TYCH PIERWIASTKOW W ZIELU I KORZENIACH MELISY LEKARSKIEJ

Helena Boguta, klasa 8W, rok szkolny 2018/2019

COMPARISON OF MACROELEMENT CONTENTS IN THE WINTER WHEAT GRAIN FROM ORGANIC AND CONVENTIONAL FARMS

THE EFFECT OF INCREASING DOSES OF MEAT-AND-BONE MEAL ON THE YIELD AND MACRONUTRIENT CONTENT OF PERENNIAL RYEGRASS (LOLIUM PERENNE L.

THE ELEMENTAL COMPOSITION OF ASH FROM STRAW AND HAY IN THE CONTEXT OF THEIR AGRICULTURAL UTILIZATION*

WPŁYW NAWOŻENIA MINERALNEGO I KOMPOSTU NA PLON I SKŁAD CHEMICZNY WIERZBY ENERGETYCZNEJ

THE LEAD AND CADMIUM CONTENT IN EDIBLE PARTS OF VEGETABLES SOLD IN THE AREA OF CITY OF POZNAŃ. Introduction

Effect of plastic covering and nitrogen fertilization on yield and quality of early potatoes

Wp³yw nawo enia popio³ami z biomasy na plon i pobranie sk³adników przez kukurydzê zwyczajn¹

STĘŻENIE SKŁADNIKÓW MINERALNYCH W WODACH GRUNTOWYCH NA ŁĄKACH TORFOWYCH NAWOŻONYCH GNOJOWICĄ I OBORNIKIEM

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁ ODOWSKA LUBLIN POLONIA

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech. 2016, 328(39)3,

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

ZESZYTY NAUKOWE UNIWERSYTETU PRZYRODNICZEGO WE WROCŁAWIU 2009 ROLNICTWO XCV NR 574

Effect of cultivar on early yield of parsley grown from the late summer sowing

THE INFLUENCE OF SELECTED FACTORS ON THE YIELD OF Allium moly L. BULBS. Jerzy Hetman, Halina Laskowska, Wojciech Durlak

Metale ciężkie w glebach uprawnych jako możliwy czynnik zagrożenia zdrowia mieszkańców województwa śląskiego

ZMIANY ZAWARTOŚCI N, P, K, CA, MG W PODŁOŻACH I W LIŚCIACH POMIDORA W OKRESIE WEGETACJI. Wstęp

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁ ODOWSKA LUBLIN POLONIA. Contents of selected microelements in canned meat and meat pies

THE YIELD AND NUTRITIVE VALUE OF SELECTED CARROT CULTIVARS WITH ORANGE AND PURPLE COLORED STORAGE ROOTS. Joanna Majkowska-Gadomska, Brygida Wierzbicka

Dorota Kalembasa, ElŜbieta Malinowska

Dorota Kalembasa*, Elżbieta Malinowska*

Jacek Antonkiewicz* WYKORZYSTANIE POPIOŁÓW PALENISKOWYCH DO WIĄZANIA METALI CIĘŻKICH WYSTĘPUJĄCYCH W GLEBIE

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ZESZYTY NAUKOWE UNIWERSYTETU PRZYRODNICZEGO WE WROCŁAWIU 2006 ROLNICTWO LXXXIX NR 546. Grzegorz Kulczycki

POTASSIUM CONTENT IN MAIZE AND SOIL FERTILIZED WITH ORGANIC MATERIALS

ZAWATOŚĆ METALI CIĘŻKICH W BIOMASIE KUKURYDZY POD WPŁYWEM DODATKU OSADU DENNGO DO GLEBY

Stanisław Kalembasa*, Beata Wiśniewska* WPŁYW DAWEK AZOTU NA ZAWARTOŚĆ I POBRANIE WYBRANYCH METALI CIĘŻKICH PRZEZ ŚLAZOWIEC PENSYLWAŃSKI

Contents of chlorophyll and selected mineral components and the yield of common thyme (Thymus vulgaris L.) at differentiated nitrogen fertilization


EFFECT OF FOLIAR FERTILIZATION ON YIELDING AND LEAF MINERAL COMPOSITION OF HIGHBUSH BLUEBERRY (Vaccinium corymbosum L.)

Acta Sci. Pol., Agricultura 7(4) 2008,

EFFECT OF LIMING AND USE OF WASTE ORGANIC MATERIALS ON THE CONTENTS OF CALCIUM AND MAGNESIUM IN COCK S-FOOT CULTIVATED ON

HARVEST INDEX OF POTATO CROP GROWN UNDER DIFFERENT NITROGEN AND WATER SUPPLY* Władysław Mazurczyk, Anna Wierzbicka, Cezary Trawczyński

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁ ODOWSKA LUBLIN POLONIA

NASTĘPCZE DZIAŁANIE NAWOZÓW ZIELONYCH W UPRAWIE MARCHWI FLACORO. Wstęp

EFFECT OF USING COVERS IN EARLY CROP POTATO CULTURE ON THE CONTENT OF PHOSPHPRUS AND MAGNESIUM IN TUBERS

ASSESSMENT OF AGRICULTURAL UTILIZATION OF BOTTOM SEDIMENTS FROM THE BESKO RESERVOIR OCENA ROLNICZEGO WYKORZYSTANIA OSADÓW DENNYCH ZBIORNIKA BESKO

ZAWARTOŚĆ AZOTU MINERALNEGO W WODACH GRUNTOWYCH I POWIERZCHNIOWYCH NA OBSZARACH NAWOŻONYCH GNOJOWICĄ

Acta Sci. Pol., Agricultura 9(1) 2010, 41-54

Beata Kuziemska*, Stanisław Kalembasa*

ODDZIAŁYWANIE SYNTETYCZNYCH ZEOLITÓW NA POBIERANIE Z GLEBY METALI CIĘŻKICH PRZEZ SAŁATĘ NAWOŻONĄ OSADEM ŚCIEKOWYM


Skład chemiczny bulw ziemniaka odmiany Fianna nawożonego międzyplonami i słomą

Knovel Math: Jakość produktu

Dorota Kalembasa*, Beata Wiśniewska* ZAWARTOŚĆ Ti i As W BIOMASIE TRAWY I GLEBIE NAWOŻONEJ PODŁOŻEM POPIECZARKOWYM

Life Sciences, Bydgoszcz, Poland Katedra Melioracji i Agrometeorologii, Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy

Application of extraction with 0.03 M CH 3 COOH as the universal method in orchard soil analysis

Exposure assessment of mercury emissions

OCENA EFEKTYWNOŚCI NAWOŻENIA OSADAMI ŚCIEKOWYMI NA PODSTAWIE PLONOWANIA ROŚLIN I WYKORZYSTANIA SKŁADNIKÓW POKARMOWYCH

ROZPRAWY NR 161. Iwona Jaskulska

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

THE EFFECT OF NITROGEN FERTILIZATION ON YIELDING AND BIOLOGICAL VALUE OF SPINACH GROWN FOR AUTUMN HARVEST

Katedra Chemii Rolnej, Akademia Rolnicza, al. Mickiewicza 21, Kraków WSTĘP

Wp³yw stymulacji laserowej nasion na bioakumulacjê metali ciê kich w kostrzewie czerwonej

YIELD OF THE ABOVEGROUND PARTS AND TUBERS OF JERUSALEM ARTICHOKE (Helianthus tuberosus L.) DEPENDING ON PLANT DENSITY

Transkrypt:

CHEMIA I INZYNIERIA EKOLOGICZNA T. ll,nr4-5 2004 Jacek ANTONKIEWICZ* and Czeslawa JASIEWICZ* MINERAL COMPOSITION OF PLANTS CULTIVATED IN SOIL CONTAMINATED WITH Cd, Pb, Ni, Cu AND Zn. PART I. JERUSALEM ARTICHOKE {Helianthus tuberosus L.) SKLAD MINERALNY ROSLIN UPRAWIANYCH NA GLEBIE ZANIECZYSZCZONEJ Cd, Pb, Ni, Cu I Zn. CZl^SC I. TOPINAMBUR {Helianthus tuberosus L.) Summary: A significant effect of soil pollution levels on yielding of Jerusalem artichoke was determined. Mean contents of examined elements in Jerusalem artichoke ranged as follows: 0.04-1.61 mg Cr, 17.13-786.75 mg Fe, 11.60-1337.5 mg Mn kg"' s.m. The macroelement content in Jerusalem artichoke top parts ranged between 0.08-3.77 g Mg kg''; 0.51-7.49 g Ca kg"'; 0.03-0.08 g Na kg"'; 0.77-9.04 g K kg~'; 0.24-3.16 g P kg"' d.m. Pasture fodder meeting cattle requirements should contain at least 0.3% P, 1.7% K, 0.7% Ca, 0.2% Mg and 0.15% Na. Considering animal nutritional requirements for the above mentioned elements it was found that only Mg and Ca content in the tested Jerusalem artichoke was fully sufficient. However, the analysed plant abundance in the other elements did not meet nutritional requirements. Key words: Jerusalem artichoke, heavy metals, mineral composition Depending on raw material appropriation Jerusalem artichoke {Helianthus tuberosus L.) may be cultivated for consumption, alcohol distilling or for sugar industry [1,2]. The cut down above-ground parts may be also used for fodder, silage, dry matter, compost or they may be left as green manure for the subsequent year crop [3, 4]. Jerusalem artichoke may be grown in infields without crop rotation and fertilisation because the cut green mass left on the spot may provide the fertiliser. Due to water and assimilates stored in its tubers the plant grows very well in soiless grounds, beneficently influences soil forming processes and formation of organic matter, which makes it an excellent plant for soil reclamation [5]. Because of its high resistance to chemical pollution in the environment, Jerusalem artichoke, also called tuber sunflower, grows very well in heavy metal polluted soils [6-8]. The studies aimed to determine the effect of soil pollution with heavy metals on chemical composition of Jerusalem artichoke yield biomass. * Department of Agricultural Chemistry, University of Agriculture, Al. A. Mickiewicza 21, 31-120 Krakow, tel. 0/../12/662 43 50, e-mail: rrantonk@cyf-kr.edu.pl

268 Jacek Antonkiewicz and Czeslawa Jasiewicz Materials and methods The experiment on Jerusalem artichoke was carried out in 5 kg pots. The substratum used for the experiment was soil with a texture of clayey silt collected from the arable top layer and containing 12% of sand, 52% of silt and 35% of clay. It was acid soil with ph in 1 mol KCl dm~^ = 5.5, cation exchange capacity (CEC) measured by Kappen's method was 12.0 cmol(+) and hydrolytic acidity 2.3 cmol(+) kg"' of soil. Available potassium and phosphorus soil concentrations determined by Egner-Riehm's method were 148.76 mg K and 23.14 mg P kg"* of soil d.m. The experimental design considered increasing levels of soil contamination with heavy metals and the control object, free of heavy metal addition, each in four replications. Full experimental design was shown in Table 1. Heavy metals were applied as water solutions of the following salts: 3CdS04 SHjO, CUSO4 5H2O, NiS04 7H2O, Pb(N03)2 and ZnS04 7H2O (pure p.a.). All pots received equal basis fertilisation: 0.3g N as NH4NO3, 0.08 g P as KH2PO4, 0.20 g K as KH2PO4 + KCl and 0.05 g Mg as MgS04 7H2O per 1 kg of soil d.m. A week prior to tuber planting heavy metals and fertilisers were mixed with the whole soil mass. Jerusalem artichoke vegetation period was 132 days. After harvest the plants were dried off with a hot air dryer at 105 C and then the amount of yield was determined. The tested plant samples were dry mineralised in a muffle furnace at 450 C. Concentrations of Cr, Fe, Mn and P were assayed by ICP-AES (specfrophotometry) method and Na, K, Ca and Mg by AAS (atomic absorption spectrometry) method. In soil samples collected after Jerusalem artichoke harvesting soil reaction (ph) was assayed by potentiometer [9]. Heavy metal doses and soil ph after experiment Table 1 Object (Obiekt) Doses of metals [mg kg ' d.m. soil] ph Dawki metali [mg kg"' s.m. gleby] [H2O] [1 mol dm"^ KCl] I Control - Kontrola 6.32 5.42 II Cd l,pb 15,Ni5,Cu 10, Zn 50 6.34 5.42 III Cd 2, Pb 30, Ni 10, Cu 20, Zn 100 6.36 5.43 IV Cd 4, Pb 60, Ni 20, Cu 40, Zn 200 6.33 5.35 V Cd 8, Pb 120, Ni 40, Cu 80, Zn 400 5.33 5.02 NRI-LSD 0.04 0.05 Results and discussion Detailed data concerning the amount of yield and heavy metal concentrations in Jerusalem artichoke were given in our earlier work [6]. The analysed experimental material revealed highly diversified contents of Cr, Fe and Mn (Tab. 2). Chromium concentrations, depending on the object and plant indicator part, ranged between 0.04 and 1.61 mg kg"' d.m., iron between 17.13 and 786.75 mg kg"' d.m., and manganese between 11.60 and 1337.5 mg kg"' d.m. Among the analysed indicator parts the highest concentrations of Crand Fe were found in Jerusalem artichoke roots and Mn in leaves. Per-

Mineral Composition of Plants... Part I 269 Element contents in Jerusalem artichoke Table 2 Object Stems Leaves Roots Tubers Stems Leaves Roots Tubers (Obiekt) (Lodygi) (Liscie) (Korzenie) (Bulwy) (Lodygi) (Liscie) (Korzenie) (Bulwy) Cr [mg kg-' d.m.] Fe [mg kg-' d.m.] I 0.05 0.92 1.30 0.05 17.13 153.75 786.75 32.72 II 0.05 1.01 1.25 0.04 18.60 164.75 444.50 31.50 III 0.05 0.95 1.13 0.04 17.18 173.00 506.00 31.68 IV 0.04 1.00 1.32 0.04 18.23 178.25 630.83 31.45 V 0.11 0.88 1.61 0.05 30.50 185.00 731.20 32.55 Mn [mg - kg-' d.m.] Mg [g kg-' d.m.] I 32.85 200.25 41.43 11.98 0.29 3.64 0.47 0.10 II 44.20 253.75 42.30 11.60 0.27 3.77 0.44 0.09 III 42.98 347.50 48.75 14.88 0.26 3.37 0.45 0.09 IV 74.43 661.00 74.70 14.45 0.24 2.60 0.50 0.08 V 334.00 1337.50 87.53 16.05 0.96 2.47 0.46 0.09 Ca [g kg-' d.m.] Na [g kg-' d.m.] I 1.02 6.12 1.01 0.51 0.034 0.039 0.059 0.053 II 1.06 6.31 1.02 0.53 0.028 0.041 0.059 0.055 III 0.98 6.77 0.98 0.56 0.032 0.042 0.059 0.054 IV 1.08 6.91 0.99 0.52 0.034 0.045 0.064 0.053 V 4.09 7.49 1.19 0.58 0.042 0.049 0.076 0.058 K [g kg-' d.m.] P[g- kg-' d.m.] I 0.94 3.26 1.47 2.69 0.30 1.84 0.68 1.45 II 0.90 3.24 1.54 2.64 0.30 1.85 0.53 1.14 III 0.77 3.34 1.68 2.97 0.24 1.58 0.56 1.23 IV 0.90 4.62 1.87 2.93 0.30 1.63 0.59 1.15 V 1.68 9.04 3.91 3.43 0.42 3.16 1.05 1.15 missible contents of the above-mentioned elements in fodder plants are 20 mg Cr, 50 mg Fe and 50-60 mg IVIn kg"' d.m. [10]. Comparison of the microelement contents with limit values demonstrated that the researched Jerusalem Artichoke was highly abundant in these elements. According to Falkowski et al. [11] soil reaction is among the factors which considerably influence microelement uptake by plants from soil. Our investigations revelaed that with increasing pollution of soil with heavy metals Fe and Mn concentrations in Jerusalem artichoke raised too (Tab. 2). As may be inferred from the data in Tables 1 and 2 soil reaction played an important role in Fe and IvIn uptake by the investigated plant. Also Czuba and Mazur [12] and Kaczor [13] reported soil reaction effect on element uptake by plants. Diversified doses of heavy metals influenced

270 Jacek Antonkiewicz and Czeslawa Jasiewicz macroelement levels in Jerusalem artichoke. Depending on the object and plant indicator part, Mg content ranged between 0.08 and 3.77 g kg"\a 0.51-7.49 kg"', Na 0.03-0.08 g kg-'- K O.f 7-9.04 g kg"' and P 0.24-3.16 g kg"'. Data in Table 2 show the highest concentrations of Mg, Ca, K and P in Jerusalem artichoke leaves, whereas roots and tubers were most abundant in Na. Permissible contents of macroelements in fodder are as follows: 2.0 g Mg, 7.0 g Ca, 1.5-2.5 g Na, 17.0-20.0 g K, 3.0 g P kg"' d.m. [11]. The experiment demonstrated that only Jerusalem artichoke leaves met the required level considering Mg and Ca contents, whereas the other indicator parts did not meet the above-mentioned standard. Na, K, and P contents in the plant studied were relatively low, irrespective of the object and did not match the optimum recommended for good quality fodder. Sodium proved to be the most deficient element among all macroelements investigated in the described experiment. Its level was many times lower than required, despite the fact that Jerusalem artichoke is recommended among others for reclamation of saline areas. For fodder quality assessment mutual ratios between mineral components is equally important as fodder abundance in them [7, 14]. Czuba and Mazur [12] state the optimal ionic ratios for green fodder as following: K : Mg = 6: l,k:ca = 2: 1,K: (Ca + Mg) = 1.6-2.2, Ca : Mg = 3:l,Ca:P = 2:l. The Ca : P weight ratio in dry mass of Jerusalem artichoke above-ground parts assumed values higher than required, irrespective of the treatment (Fig. 1). On the other hand the above-mentioned ratio in tubers and roots was lower than optimal. Value of Ca : Mg weight ratio in stems and tubers of Jerusalem artichoke was higher than optimal but in leaves and roots it was lower. Weight K : Na proportion in Jerusalem artichoke, depending on soil contamination with heavy metals level, ranged widely. Data shown in figure indicate that K : Na ratio was unfavourable, as it exceeded the permissible value 10 [12]. The investigated plant material revealed a wide scope of quantitative ratio values F : Mn, which in the above-ground parts of Jerusalem artichoke was unfavourable because it was below one. Only in tubers the value of the abovementioned ratio remained in the optimal range, i.e. 1.5-2.5 [15], The K : Mg equivalent ratio in the above-ground parts and roots of Jerusalem artichoke assumed values lower than optimal. On the other hand with increasing level of soil contamination with heavy metals the value of this proportion in tubers of the tested plant raised too. The K : (Ca + + Mg) ratio calculated in miliequivalents for the above-ground parts and roots of Jerusalem artichoke did not fall within the range considered as optimal. In Jerusalem artichoke tubers the value of the above-mentioned proportion was within the optimal range. The value of K : Ca ratio computed equivalently in the above-ground parts and roots of Jerusalem artichoke was higher than optimal. Conclusions 1. Concentration of microelements and macroelements in Jerusalem artichoke depended on the level of soil contamination with heavy metals and plant indicator part. 2. Determined Fe and Mn concentrations in Jerusalem artichoke leaves are much higher than the optimal level.

Mineral Composition of Plants... Part I 271 Objects Objects

272 Jacek Antonkiewicz and Czeslawa Jasiewicz 3. Among the analysed macroelements only Mg and Ca content in Jerusalem artichoke leaves corresponded to the value considered as optimal. 4. The values of Fe : Mn, K : (Ca + Mg) ratios in Jerusalem artichoke tubers fell within the ranges considered as safe for fodder. On the other hand the K : Na ratio proved most unfavourable as it many times exceeded the optimal value. References [1] Gutmanski I. and Pikulik R.: Biul. Inst. Hodow. Aklim. Rosl., 1994, (189), 91-100. [2] Sawicka B.: Rocz. AR Pozn. CCCXXIII, Ogrodn., 2000, (31), I, 447^51. [3] Aniol-Kwiatkowska J.: Wiad. Ziel., 1994, (12/94), 12-13. [4] Tabin S.: Bulwa (Topinambur). PWRiL, Warszawa 1955, 25 pp. [5] Klimont K., and Coral S.: Glebotworcze dzialanie trow i topinamburu na gruncie z wapnapoflotacyjnego. Mater. Konf. nt. "Przyrodnicze uzytkowanie osadow sciekowych. Ochrona i rekultywacja gruntow". Bydgoszcz 4-6 czerwca 2001, Wyd. PTIE, Inz. Ekol., 2001, 3, 198-201. [6] Antonkiewicz J. and Jasiewicz Cz.: Ocena przydatnosci topinamburu (Helianthus tuberosus L.) do fitoremediacji gleby zanieczyszczonej Cd, Pb, Ni, Cu i Zn. Mater. Konf. Ill Ogolnopolskie Sympozjum Naukowo-Techniczne "Bioremediacja Gruntow". Wisla-Jarz?bata, 10-13 grudnia 2002 r., pp. 59-66. [7] Bobrecka-Jamro D. and Szpunar-Krok E.: Fragm. Agron., 2002, XIX(2/74), 52-58. [8] Jasiewicz Cz. and Antonkiewicz J.: Chem. Inz. Ekol., 2002, 9(4), 379-386. [9] Ostrowska A., Gawlinski S. and Szczubialka Z.: Metody analizy i oceny wlasciwosci gleb i roslin. Katalog. Wyd. los, Warszawa 1991, 334 pp. [10] Pres J. and Kinal S.: Zesz. Probl., PNR, 1996, (434), 1043-1061. [11] Falkowski M., Kukulka I. and Kozlowski S.: Wlasciwosci chemiczne roslin l^kowych. Wyd. AR Poznan 2000, 132 pp. [12] Czuba R. and Mazur T.: Wplyw nawozenia na jakosc plonow. Wyd. Nauk. PWN, Warszawa 1988, pp. 291-292. [13] Kaczor A.: Zesz. Probl. PNR, 1998, (456), 55-62. [14] Krzywy J. and Krzywy E.: Zesz. Probl. PNR, 2001, (480), 253-258. [15] Warda M., Krzywiec D. and Cwintal H.: Zesz. Probl. PNR., 1996, (434), 537-542. SKLAD MINERALNY ROSLIN UPRAWIANYCH NA GLEBIE ZANIECZYSZCZONEJ Cd, Pb, Ni, Cu I Zn. CZJ^SC I. TOPINAMBUR {Helianthus tuberosus L.) Streszczenie Badania przeprowadzono stosuj^c doswiadczenia wazonowe. Schemat doswiadczenia obejmowal 5 obiektow (kazdy w czterech powtorzeniach): obiekt kontrolny (bez dodatku metali ci^zkich) i 4 obiekty zawieraj^cych wzrastaj^ce dawki metali ciqzkich. Najwyzszy poziom zanieczyszczenia gleby metalami ci^zkimi wynosil: Cd - 8 mg kg"'; Pb - 120 mg kg''; Ni - 40 mg kg"'; Cu - 80 mg kg"'; Zn - 400 mg kg"' s.m. gleby. Zawartosc Cr, Fe, Mn i P oznaczono za pomoc^ spektrometru emisyjnego z plazm^^ sprz?zon^ indukcyjnie (ICP-AES), natomiast Mg, Ca, Na i K w topinamburze slonecznik bulwiasty oznaczono za pomoc^ spektrofotometru absorpcji atomowej (ASA) firmy Philips model PU 9100X, a P kolorymetrycznie. Stwierdzono duzy wplyw poziomow zanieczyszczenia gleby metalami ci?zkimi na plonowanie topinamburu. Srednie zawartosc pierwiastkow w topinamburze miescila si? w zakresie: 0,04-1,61 mg Cr, 17,13-786,75 mg Fe, 11,60-1337,5 mg Mn kg"' s.m. Zawartosc Mg w zaleznosci od obiektu i cz^sci wskaznikowej topinamburu wahala si? od 0,08 do 3,77 g kg"', Ca od 0,51 do 7,49 g kg"', Na od 0,03 do 0,08 g kg-', K od 0,77 do 9,04 g kg-', P od 0,24 do 3,16 g kg-' s.m.p kg-' s.m. Pasza pastwiskowa odpowiadaj^ca potrzebom bydla powinna zawierac przynajmniej 0,3% P, 1,7% K, 0,7% Ca, 0,2% Mg, 0,15% Na. Uwzgl?dniaj^c potrzeby zywieniowe zwierz^t na wyzej wymienione pierwiastki stwierdzono, ze jedynie zawartosc Mg i Ca w badanych lisciach topinamburu byla w pehii wystarczaj^ca. Natomiast zasobnosc, ocenianego topinamburu w pozostale pierwiastki, byla niekorzystna dla potrzeb zywieniowych. Slowa kluczowe: topinambur, metale ci^zkie, sklad mineralny