ŚLĄSKI PRZEGLĄD STATYSTYCZNY

Podobne dokumenty
ŚLĄSKI PRZEGLĄD STATYSTYCZNY

PROCES RYZYKA Z ZALEŻNYMI OKRESAMI MIĘDZY WYPŁATAMI ANALIZA PRAWDOPODOBIEŃSTWA RUINY 1

ŚLĄSKI PRZEGLĄD STATYSTYCZNY

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Convolution semigroups with linear Jacobi parameters

ZALEŻNY, ZŁOŻONY PROCES POISSONA WYZNACZANIE FUNKCJONAŁÓW SKŁADEK I MIAR RYZYKA

Tychy, plan miasta: Skala 1: (Polish Edition)

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Hard-Margin Support Vector Machines


MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Has the heat wave frequency or intensity changed in Poland since 1950?

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Few-fermion thermometry

DOI: / /32/37

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

deep learning for NLP (5 lectures)

Aerodynamics I Compressible flow past an airfoil

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Stargard Szczecinski i okolice (Polish Edition)

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Revenue Maximization. Sept. 25, 2018

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Rachunek lambda, zima

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński

OpenPoland.net API Documentation

Publikowanie w czasopismach z tzw. "listy filadelfijskiej" i korzystanie z finansowania zewnętrznego - wyzwania i możliwości rozwoju młodego naukowca

Innowacje społeczne innowacyjne instrumenty polityki społecznej w projektach finansowanych ze środków Europejskiego Funduszu Społecznego

Konsorcjum Śląskich Uczelni Publicznych

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Knovel Math: Jakość produktu

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Zarządzanie sieciami telekomunikacyjnymi

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

ŚLĄSKI PRZEGLĄD STATYSTYCZNY

Patients price acceptance SELECTED FINDINGS

Krytyczne czynniki sukcesu w zarządzaniu projektami

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Przedmioty do wyboru oferowane na stacjonarnych studiach II stopnia (magisterskich) dla II roku w roku akademickim 2015/2016

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Zagadnienia statystyki aktuarialnej. pod redakcją Joanny Dębickiej

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Prices and Volumes on the Stock Market

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

UBEZPIECZENIA MAŁŻEŃSKIE UWZGLĘDNIAJĄCE ZALEŻNOŚCI 1

UBEZPIECZENIA GRUPOWE MAŁŻEŃSTW UWZGLĘDNIAJĄCE ZALEŻNOŚCI *

DODATKOWE ĆWICZENIA EGZAMINACYJNE

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

Demand Analysis L E C T U R E R : E W A K U S I D E Ł, PH. D.,

Previously on CSCI 4622

MS Visual Studio 2005 Team Suite - Performance Tool

ZASIĘG DZIAŁALNOŚĆ DOŚWIADCZENIE

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta

Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie - nabycie lub zbycie znacznego pakietu akcji

Akademia Morska w Szczecinie. Wydział Mechaniczny

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Ekonometria. Zastosowania Metod Ilościowych 30/2011

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM

ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

Relaxation of the Cosmological Constant

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Projekty Marie Curie Actions w praktyce: EGALITE (IAPP) i ArSInformatiCa (IOF)

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

Extraclass. Football Men. Season 2009/10 - Autumn round

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Gradient Coding using the Stochastic Block Model

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz


strona 1 / 5 Specjalizacja: B4. Analiza kointegracyjna Publikacje:

The Lorenz System and Chaos in Nonlinear DEs

Cracow University of Economics Poland

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym

Volley English! Tak więc zapraszamy na lekcję nr 2.

Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk

THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS. Alexander Rasskazov & Bence Kocsis Eotvos University

Transkrypt:

Polskie Towarzystwo Statystyczne Oddział we Wrocławiu ŚLĄSKI Silesian Statistical Review Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu Wrocław 2012

RADA NAUKOWA Walenty Ostasiewicz Tadeusz Bednarski, Luisa Canal, Stanislava Hronová, Katarzyna Ostasiewicz, Angiola Pollastri, Emilia Zimková KOMITET REDAKCYJNY Walenty Ostasiewicz (redaktor naczelny) Zofia Rusnak (zastępca redaktora naczelnego) Edyta Mazurek (sekretarz naukowy) Tadeusz Borys, Stanisław Heilpern, Janusz Wywiał ADRES REDAKCJI Katedra Statystyki Uniwersytetu Ekonomicznego we Wrocławiu ul. Komandorska 118/120, 53-345 Wrocław tel. (71) 36-80-356, tel./fax (71) 36-80-357 e-mail: walenty.ostasiewicz@ue.wroc.pl RECENZENCI WSPÓŁPRACUJĄCY Z CZASOPISMEM Jakub Fisher, Helena Jasiulewicz, Krystyna Melich, Stanisława Ostasiewicz, Katarzyna Sawicz, Włodzimierz Szkutnik, Paulina Ucieklak-Jeż, Marek Walesiak, Jerzy Wawrzynek, Emilia Zimková Publikacja jest dostępna na stronie www.ibuk.pl Streszczenia opublikowanych artykułów są dostępne w międzynarodowej bazie danych The Central European Journal of Social Sciences and Humanities http://cejsh.icm.edu.pl oraz w The Central and Eastern European Online Library www.ceeol.com Informacje o naborze artykułów i zasadach recenzowania znajdują się na stronie internetowej Wydawnictwa www.wydawnictwo.ue.wroc.pl

Spis treści Od redakcji 5 Stanisława Bartosiewicz, Elżbieta Stańczyk, Niektóre aspekty historii społeczno-gospodarczej Polski w latach 1918-2011 (na podstawie badań GUS-u) 7 Joanna Dębicka, Matrix approach to analysis of a portfolio of multistate insurance contracts 39 Stanisław Heilpern, Risk processes with dependent claim size and claim occurrence times 57 Anna Nikodem-Słowikowska, Ulepszenie aproksymacji indywidualnego modelu ryzyka przez kolektywny model ryzyka 69 Anna Zięba, Analiza wpływu stresorów na pracowników 83 21. Scientific Statistical Seminar Marburg-Wroclaw, Marburg September 26-29, 2011. Extended summaries of selected paper 93 Eckart Elsner, Der Breslauer Oberbürgermeister und der Berliner Statistiker. Über Johann Gustav Süssmilch (1740-1791) und Seinen Vater Johann Peter (1707-1767) 105 Edyta Mazurek, Wrocławskie obchody 100-lecia istnienia Polskiego Towarzystwa Statystycznego 111 Walenty Ostasiewicz, Italian cradle of chance calculus 121 Katarzyna Ostasiewicz, Problem stabilnych małżeństw, czyli o pożytkach z teorii gier płynących 131 Beata Zmyślona, Applications of Mathematics and Statistics in Economy. The 14 th International Scientific Conference 153 Agata Girul, Ważniejsze dane o województwach 159

ŚLĄSKI 4 Spis treści Summaries Stanisława Bartosiewicz, Elżbieta Stańczyk, Some aspects of socio-economic history of Poland in years 1918-2011 (on the basis of research by CSO) 38 Joanna Dębicka, Macierzowe podejście do analizy portfela ubezpieczeń wielostanowych 55 Stanisław Heilpern, Procesy ryzyka z zależnymi wypłatami i okresami między wypłatami 68 Anna Nikodem-Słowikowska, Improving the approximation of individual risk model by the compound risk model 81 Anna Zięba, Analysis of stressors effect on employees 92 Walenty Ostasiewicz, Włoska kolebka rachunku losów 129

RISK PROCESSES WITH DEPENDENT CLAIM SIZE AND CLAIM OCCURRENCE TIMES ŚLĄSKI Stanisław Heilpern Wrocław University of Economics ISSN 1644-6739 Summary: The paper is devoted to the risk process, when the claim amount and the interclaim times may be dependent. The impact of the degree of dependence on the probability of ruin is investigated. The three cases are studied: the case when the joint distribution has the bivariate exponential distribution and when the dependent structure is described by FGM and Clayton copulas. The comparison with the previous study is made too. Keywords: risk process, dependence, probability of ruin, copula. 1. Introduction The paper is devoted to the risk process, when the claim amounts and the claim occurrence times may be dependent. In the classical approach [Rolski et al. 1999; Ostasiewicz 2000] we assume that all random variables and processes are independent. This assumption is very nice and useful from the mathematical point of view, but it is often unrealistic. In practice some random variables may be dependent. For example, in investigating natural catastrophic events, we meet such variables. The total claim amount on the occurrence of a catastrophe, e.g. the earthquake, and the time elapsed since the previous catastrophe are often dependent [Cossette et al. 2008]. Bigger damages occur when the time between the claims is longer [Boudreault et al. 2006]. Also in auto insurances the size of the next claim amount depends on the time elapsed since the last claim [Ambagaspitiya 2009]. The degree of such dependencies is rather small, but it exists. In the paper we will investigate the probability of ruin for the above dependent risk model. The influence of the degree of dependence on the ruin probability is studied. This paper is a continuation of The paper is financed with the aid of the fund for science in the years 2010-2012 as research project no. 3361/B/H03/2010/38.

ŚLĄSKI 58 Stanisław Heilpern the previous works done by the author. He has studied the risk model where the claim amounts might be dependent [Heilpern 2010a, 2010b] or the interclaim times might be dependent [Heilpern 2012]. In these cases we observe that the relation between the probability of ruin and the degree of dependence may be irregular and nonmonotonic. It can be essentially dependent on the value of the initial capital and the probability of ruin may take positive value for a limit case, when the initial capital tends to infinity. This paper is organized as follows. In section 2 we present the dependent risk process. The risk model with the dependent claim amounts is briefly investigated in section 3. Next section 4 is devoted to the risk model with dependent interclaim times. In section 4, the main section in our paper, we study the case when the interclaim times W i and the claim amounts X i may be dependent. We study three cases. First, we assume, that the joint distribution of such random variables is the bivariate exponential distribution. Second, the distribution structure is described by the FGM copula and third by the Clayton copula. In the last case we use the simulation methods to compute the probability of ruin. 2. Risk process Now we introduce the main notions and properties connected with the risk process studied in this paper. This process takes the following form: ( ) ( ) where u > 0 is an initial capital, c > 0 is a premium rate, X i is a claim amounts and N(t) is a claim number process. If W i is the i-th interclaim time and is the claim arrival time, then the claim number process takes the form ( ), where 1 A is the indicator of event A. We assume that the claims X 1, X 2, are the identically distributed random variables with the means ( ). The interclaim times W 1, W 2, are the identically distributed random variables, too and

Risk processes with dependent claim size and claim occurrence times 59 ŚLĄSKI ( ). The random vectors {(W i, X i )}, where i = 1, 2,, are independent, but the components W i, X i may be dependent, contrary to the classical approach [Rolski et al. 1999; Ostasiewicz 2000]. The time of ruin T is a moment when the risk process U(t) takes a negative value for the first time, i.e. T = inf{t: U(t) < 0}. We will study the probability of ruin in the infinite horizon. Such a probability is determined by the formula ψ(u) = P(T < U(0) = u) in our paper. We know, that if cβ λ, then a ruin is a certain event for any value of initial capital u in this case, i.e. ψ(u) = 1. So, we assume that cβ > λ in our paper. In the classical risk models [Rolski et al. 1999; Ostasiewicz 2000] we have the assumptions that all the random variables: the interclaim times W 1, W 2, and the claim amounts X 1, X 2, are independent and N(t) is Poisson process. So, the interclaim times W i have the exponential distribution with the cumulative distribution function (c.d.f.) F W (t) = 1 e -λt. For the extreme cases, when the initial capital u is equal to zero or to infinity, we obtain the following values: ( ) ( ) When the interclaim times W i have any distribution, not only exponential, we obtain so called the Sparre Andersen model [Rolski et al. 1999]. 3. Dependent claims and dependent interclaim times When the claim amounts X i are dependent we obtain some irregular situation [Heilpern 2010a, 2010b]. For instance, when the dependent structure is described by Archimedean copula, the probability of ruin for initial capital which equals zero takes the greatest value when the claims are independent, i.e. ψ I (0) ψ(0), where ψ I (u) is a probability of ruin for independent case. But, for other extreme case, when the initial capital u tends to infinity, we obtain the reverse situation: ψ I ( ) ψ( ). The probability of ruin may be greater than zero in this case.

ŚLĄSKI 60 Stanisław Heilpern In the paper [Heilpern 2001a] the author studies the case when the dependent structure is done by the Clayton copula: C α (u 1,, u n ) = ( ) and the claim amounts X i have Pareto distribution. The graphs of the probability of ruin for the different degree of dependence are presented in Figure 1. Four cases of the Kendall τ coefficient of correlation: 0 (independence), 0.25, 0.5 and 1 (strict dependence) are investigated in this figure. We can see that the relation between probability of ruin and the degree of dependence depends on the value of the initial capital. For small values of initial capital u, the smaller degree of dependence gives the greater probability of ruin. But for the bigger values of initial capital u we observe reverse relation and the middle values of initial capital give the nonmonotonic situation. We have the smallest probability of ruin for the independent case. The ruin probability increases when the degree of dependence increases; it obtains maximum and next decreases. 0,5 0.5 0,4 0.4 0,3 0.3 ψ(u) indep. 0.25 0.5 str. dep. 0,2 0.2 0,1 0.1 0,0 0.0 0 100 200 300 400 500 600 u Figure 1. Probability of ruin for different degrees of dependence of claims for the dependent claims Source: [Heilpern 2010a]. The claims X i, which take only two values, are studied in [Heilpern 2010b]. We have a similar situation as in the case when the claims have Pareto distribution. Only, for the greater values of initial capital we obtain the nonmonotonic situation, too.

Risk processes with dependent claim size and claim occurrence times 61 ŚLĄSKI 0,8 0.8 ψ( u) 0,7 0.7 0,6 0.6 0,5 0.5 0,4 0.4 0,3 0.3 0,2 0.2 0,1 0.1 0.0 0 0 5 10 15 20 25 30 35 independent 0,091 0,5 0,833 str. dep. u Figure 2. Probability of ruin for different degrees of dependence of interclaims times Source: [Heilpern 2012]. The case when the interclaim times were dependent was studied in [Heilpern 2012]. We can observe the nonmonotonic situation for every value of initial capital u in this case. Figure 2 presents the probability of ruin where the interclaim times W i and the claim amounts X i have the exponential distributions and the dependent structure of random variables W i is described by Clayton copula. The probability of ruin may be positive even for infinite initial capital, i.e. ψ( ) > 0, in this case, too. 4. Dependent claim size and claim occurrence times The case when the interclaim times and the claim sizes are dependent are studied in many papers. For instance the papers [Albrecher, Boxma 2004; Ambagaspitiya 2009; Boudreault et al. 2006; Cheung et al. 2010; Cossette et al. 2008, 2010] are devoted to such a subject. We will present only two of these works in our paper: [Ambagaspitiya 2009; Cossette et al. 2010] and we will investigate the analysis of the influence of the degree of dependence on the ruin probability. First we introduce some additional notions and properties. Let be the decrements of the risk process and

ŚLĄSKI 62 Stanisław Heilpern be a maximal decrement. Then, the probability of ruin can be done by the following formula: ψ(u) = P(M > u). In our paper we will investigate the cases when the claim amounts X i and the interclaim times W i have the exponential distribution with c.d.f. F X (x) = 1 e -βx and F W (t) = 1 e -βt only. When the random variables X i, W i are independent, the probability of ruin is done by the known formula [Rolski 1999; Ostasiewicz 2000]: ( ) ( ). In the case, when variables X i and W i are strictly dependent, i.e. where a =, the probability of ruin is equal 0 or 1 only. It depends on value of a. If, then all decrements Y i = (a c)w i are negative and we obtain the ruin probability ψ(u) = 0 for every value of initial capital u. In the other case the ruin is a certain event. i.e. ψ(u) = 1 for every value of u. R.S. Ambagaspitiya studies the ruin probability [2009] when the (W i, X i ) have the bivariate gamma distribution. He obtains the exact formula for such a probability. For special case of such distribution: the bivariate exponential distribution, with the moment generating function (m.g.f.): ( ) ( )( ), the ruin probability is equal where ψ(u) = Be -zu, ( ) ( ) ( ) ( ) ( ) ( ). The margins of such joint distribution have the exponential distribution with means equal 1/λ and 1/β. Let us recall that m.g.f of the random vector (W, X) is defined by formula

Risk processes with dependent claim size and claim occurrence times ( ) ( ) 63 ŚLĄSKI ( ) where f W,X (t, x) is a joint probability density function. Parameter ρ is a Pearson correlation coefficient between W i and X i [Ambagaspitiya 2009]. We can study the influence of the degree of dependence on the probability of ruin changing the value of this parameter. Statement B is a decreasing function of ρ and z is an increasing function, so the ruin probability is the decreasing function of the value of correlation coefficient ρ. Greater degree of dependence gives the smaller ruin probability for every value of the initial capital. We see that contrary to previous cases we obtain the regular, monotonic situation in this case. 0,8 0.8 0,7 0.7 0,6 0.6 0,5 0.5 0,4 0.4 0,3 0.3 0,2 0.2 0,1 0.1-1 -0,5 0 0,5 0,9 0.0 0 0 2 4 6 8 10 u Figure 3. Probability of ruin for different values of the coefficient of correlation ρ Source: own calculations. Example 1. Let premium rate c = 1.5 and random variables W i, X i have the exponential distribution with mean equal to one, i.e. λ = β = 1. Figure 3 presents the graphs of probability of ruin for different values of the degree of dependence done by the five values of Pearson coefficient of correlation ρ: 1, 0.5, 0, 0.5 and 0.9. We recall, that for ρ = 1 we have ψ(u) = 0 for every value of initial capital u.

ŚLĄSKI 64 Stanisław Heilpern H. Cossete, E. Marceau and F. Marri [Cossette et. al 2010] presented the model, where the dependence structure is done by Farlie- Gumbel-Morgenstern (FGM) copula. Then joint c.d.f. of (W, X) is equal: F W,X (t, x) = (F W (t), F X (t)), where ( ) ( )( ) and 1 θ 1. FGM copula reflects the small dependencies only, because the Kendall coefficient of correlation takes the form and [ ]. However, we meet such dependencies mainly in practice. The Laplace transform of the ruin probability function ψ(u) is equal [Cossette et. al 2010] ( ) ( ) ( ) ( ) ( ) ( ) where ( ) ( ) ( ), ( ) ( ( ) ), ( ) ( ( ) ( )), ( ) ( ( )( ) ( ) ) and ρ is a root of equation h 1 (s) = h 2 (s), for which Re(ρ) > 0. Example 2. Let λ = β = 1, c = 1.5 and the dependent structure is described by FGM copula. In Figure 4, we present the graphs of probability of ruin for different values of parameter θ: 2/9, 0.1, 0, 0.1 and 2/9, which reflect the degree of dependence. We obtain the regular, monotonic situation in this case, too. The probability of ruin is the decreasing function of the degree of dependence, reflected by parameter θ, for every value of initial capital u.

Risk processes with dependent claim size and claim occurrence times 0,8 0.8 Ψ(u) 0,7 0.7-2/9 0,6 0.6-0,1 0.1 0,5 0.5 0 0,4 0.4 0,1 0.1 0,3 0.3 2/9 0,2 0.2 0,1 0.1 0.0 0 0 2 4 6 8 10 u 65 ŚLĄSKI Figure 4. Probability of ruin, when the dependent structure is done by FGM copula for different values of the degree of dependence Source: own calculations. Now, we investigate the case when the dependent structure is described by Clayton copula. It is Archimedean copula done by simple formula: [Nelsen 1999; Heilpern 2007] ( ) ( ) where α [ 1, 0) (0, ). This parameter reflects the degree of dependence, because Kendall τ coefficient of correlation is equal So, the Clayton copula can model all the values of Kendall coefficient, i.e. τ α [ 1, 1], contrary to FGM copula. The positive value of parameter α gives us the positive dependence of the interclaim times W i and the value of claim amounts X i and negative value presents the negative dependence. The limit values, when such a parameter tends to zero, gives the independence of these random variables, i.e. ( ). The probability of ruin cannot be done by exact formula in this case. We may compute it using the simulation methods. But, there are simpler simulation procedures, where the dependent structure is described by the Archimedean copulas [Nelsen 1999; Heilpern 2007]..

ŚLĄSKI 66 Stanisław Heilpern Example 3. Let λ = β = 1, c = 1.5 and the dependent structure is described by Clayton copula. Figure 5 presents the graphs of probability of ruin, when the dependence structure is described by the Clayton copula, for different values of parameter α: 2/3, 1/3, 1/9, 0, 1/3, 1/2 and 2/3, which reflect the different values of degree of dependence. The values of the ruin probability were computed using a simulation method. 0,8 0.8 0,7 0.7 0,6 0.6 0,5 0.5 0,4 0.4 0,3 0.3 0,2 0.2 0,1 0.1 ψ(u) -2/3-1/3-1/9 0 1/3 1/2 2/3 0.00 0 2 4 6 8 10 u Figure 5. Probability of ruin, when the dependent structure is done by Clayton copula for different values of the degree of dependence Source: own calculations. We see that there is a regular, monotonic situation in this case, too. The probability of ruin decreases when the degree of dependence grows for every value of initial capital u. 5. Conclusion The case of the dependent risk process investigated in this paper, based on the dependence between the claim amount and the claim occurrence times, is essentially different from other risk processes studied by the author [Heilpern 2010a; 2010b; 2012]. The examples of risk process investigated in our paper are characterized by the regular, monotonic rela-

Risk processes with dependent claim size and claim occurrence times 67 ŚLĄSKI tion between the degree of dependence and the probability of ruin. There is not such a regular relation in the risk process studied previously by the author. It essentially depends on the value of initial capital. Maybe, there exists the risk process with the dependence between the claim size and the interclaim times, which is characterized by the above irregular relation. The solution of this problem is left for future research. References Albrecher H., Boxma O.J., A ruin model with dependence between claim sizes and claim intervals, Insurance: Mathematics and Economics 2004, 35, pp. 245-254. Ambagaspitiya R.S., Ultimate ruin probability in the Sparre Andersen model with dependent claim sizes and claim occurrence times, Insurance: Mathematics and Economics 2009, 44, pp. 464-472. Boudreault M., Cossette H., Landiault D., Marceau E., On a risk model with dependence between interclaim arrivals and claim sizes, Scandinavian Actuarial Journal 2006, 5, pp. 265-285. Cheung E.C.K., Landiault D., Willmot G.E., Woo J-K., Structural properties of Gerber- Shiu functions in dependent Sparre Andersen models, Insurance: Mathematics and Economics 2010, 46, pp. 117-126. Cossette H., Marceau E., Marri F., On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula, Insurance: Mathematics and Economics 2008, 43, pp. 444-455. Cossette H., Marceau E., Marri F., Analysis of ruin measures for the classical compound Poisson risk model with dependence, Scandinavian Actuarial Journal 2010, 3, pp. 221-245. Heilpern S., Funkcje łączące, Wydawnictwo Akademii Ekonomicznej, Wrocław 2007. Heilpern S., Wyznaczanie prawdopodobieństwa ruiny, gdy struktura zależności wypłat opisana jest Archimedesowi funkcją łaczącą, [w:] Zagadnienia aktuarialne. Teoria i praktyka, red. W. Otto, Wydawnictwo Uniwersytetu Warszawskiego, Warszawa 2010a, pp. 11-20. Heilpern S., Analiza wpływu stopnia zależności wypłat na prawdopodobieństwo ruiny, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu nr 141, Ekonometria 2010b, 29, pp. 92-104. Heilpern S., Proces ryzyka z zależnymi okresami między wypłatami analiza prawdopodobieństwa ruiny, Prace Naukowe Uniwersytetu Ekonomicznego w Katowicach (w druku, 2012). Nelsen R.B., An Introduction to Copulas, Springer, New York 1999. Modele aktuarialne, red. W. Ostasiewicz, Wydawnictwo Akademii Ekonomicznej, Wrocław 2000. Rolski T., Schmidli H., Schmidt V., Teugels J., Stochastic Processes for Insurance and Finance, Willey, New York 1999.

ŚLĄSKI 68 Stanisław Heilpern PROCESY RYZYKA Z ZALEŻNYMI WYPŁATAMI I OKRESAMI MIĘDZY WYPŁATAMI Streszczenie: Praca poświęcona jest procesowi ryzyka, w którym wielkości wypłat mogą być zależne od długości okresów między wypłatami. Badany jest wpływ stopnia zależności na prawdopodobieństwo ruiny. Rozpatrywane są trzy przypadki. Najpierw przyjmuje się, że rozkład łączny jest dwuwymiarowym rozkładem wykładniczym, a następnie rozpatruje się przypadki, gdy struktura zależności opisana jest funkcją łączącą (copula) FGM oraz Claytona. Otrzymane wyniki są porównane z wynikami otrzymanymi we wcześniejszych pracach autora. Słowa kluczowe: proces ryzyka, zależność, prawdopodobieństwo ruiny, funkcje łączące.