NAFTA-GAZ, ROK LXX, Nr 11 / 2014

Podobne dokumenty
Wyniki laboratoryjnych badań właściwości elektrycznych skał

Rentgenowska mikrotomografia komputerowa w badaniu skał węglanowych

na ścieżce nr 3, od lewej strony do prawej, przedstawiono

Opracowanie modeli matematycznych do określania parametrów zbiornikowych skał w rejonie Załazia

Ocena właściwości zbiornikowych i sprężystych w aspekcie szczelinowatości skał

Przykłady wykorzystania mikroskopii elektronowej w poszukiwaniach ropy naftowej i gazu ziemnego. mgr inż. Katarzyna Kasprzyk

Charakterystyka przestrzeni porowej utworów czerwonego spągowca na podstawie rentgenowskiej mikrotomografii komputerowej

Charakterystyka parametrów termicznych skał mezopaleozoicznych z rejonu Kraków-Dębica

Badanie zależności pomiędzy właściwościami zbiornikowymi piaskowców czerwonego spągowca a wymiarem fraktalnym struktury porowej

Analiza związków prędkości propagacji fal sprężystych z przestrzenią porową skały odzwierciedloną w obrazie 3D

NAFTA-GAZ wrzesień 2009 ROK LXV

Wykorzystanie metod statystyki matematycznej do oceny ciepła radiogenicznego skał mezopaleozoicznych zapadliska przedkarpackiego rejonu Tarnów Dębica

STATYSTYKA I DOŚWIADCZALNICTWO

NAFTA-GAZ, ROK LXXII, Nr 10 / 2016

Zastosowanie sztucznych sieci neuronowych i logiki rozmytej w tworzeniu baz danych dla złóż dual porosity dual permeability

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

Przestrzeń porowa skał łupkowych

Badania laboratoryjne

Hierarchiczna analiza skupień

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE

Trójwymiarowa wizualizacja szczelin metodą mikrotomografii rentgenowskiej

Badanie różnych typów skał klastycznych metodą NMR przy zastosowaniu spektrometrów pracujących z częstotliwością rezonansową 2 MHz, 8 MHz i 23 MHz

STATYSTYKA I DOŚWIADCZALNICTWO

NAFTA-GAZ, ROK LXXIV, Nr 11 / Paulina Krakowska, Edyta Puskarczyk, Magdalena Habrat. Paweł Madejski. Mariusz Jędrychowski

OCENA NASYCENIA PRZESTRZENI POROWEJ PIASKOWCÓW MIOCEÑSKICH METOD MAGNETYCZNEGO REZONANSU J DROWEGO

Wydzielanie i charakterystyka frakcji pylastej (silt) w skałach mułowcowych zapadliska przedkarpackiego

NAFTA-GAZ luty 2010 ROK LXVI. Wprowadzenie. Wyniki. Jadwiga Zalewska, Marek Dohnalik. Anna Poszytek

Analiza własności zbiornikowych skał węglanowych z wykorzystaniem mikrotomografii rentgenowskiej

Kontrola stanu technicznego. przy zastosowaniu metod geofizyki otworowej

Wpływ mikrocementu na parametry zaczynu i kamienia cementowego

Wizualizacja kanalików robaczkowych, wywołanych zabiegiem kwasowania rdzeni wiertniczych, uzyskana metodą mikrotomografii rentgenowskiej

Zachowania odbiorców. Grupa taryfowa G

KATEDRA GEOFIZYKI. Proponowane tematy prac magisterskich dla studentów I roku studiów stacjonarnych II stopnia rok akademicki 2016/2017

Do obliczeń można wykorzystywać rozmaite algorytmy wykorzystujące najprostszych należą przedstawione niżej:

Wpływ warunków hydratacji na strukturę przestrzenną kamieni cementowych

Metody statystyczne wykorzystywane do oceny zróżnicowania kolekcji genowych roślin. Henryk Bujak

GEOLOGIA: Petrologia i petrografia Mineralogia i geochemia Geologia dynamiczna Gleboznawstwo Tektonika Stratygrafia Paleontologia Kartowanie

Metody wyznaczania ciśnienia przebicia w skałach słabo przepuszczalnych

Analiza zmiany objętości węglowodorów gromadzonych w danej strukturze w czasie geologicznym z wykorzystaniem modelowania PetroCharge

Zastosowanie dekonwolucji typu shape filter do poprawy rozdzielczości sekcji sejsmicznej

NAFTA-GAZ listopad 2009 ROK LXV

Nazwa przedmiotu INSTRUMENTARIUM BADAWCZE W INŻYNIERII MATERIAŁOWEJ Instrumentation of research in material engineering

Badania przepuszczalności rdzeni wiertniczych z użyciem różnych płynów złożowych

KORELACJA POMIARÓW MAGNETYCZNEGO REZONANSU J DROWEGO Z BADANIAMI POROZYMETRII RTÊCIOWEJ UTWORÓW CZERWONEGO SP GOWCA

WPŁYW GĘSTOŚCI SUROWCA NA BILANSOWANIE PRODUKTÓW KLASYFIKACJI HYDRAULICZNEJ W HYDROCYKLONACH W OPARCIU O WYNIKI LASEROWYCH ANALIZ UZIARNIENIA**

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)

Wpływ szkła wodnego potasowego na parametry zaczynów cementowo-lateksowych

METODYKA POSZUKIWAŃ ZLÓŻ ROPY NAFTOWEJ I GAZU ZIEMNEGO

DENSYMETRIA ŁUPKA MIEDZIOWEGO

Ocena możliwości budowy modelu geologicznogeofizycznego dla utworów czerwonego spągowca z rejonu rowu Grodziska

Petrografia i granulometria utworów czerwonego spągowca wstępna charakterystyka do poszukiwania złóż gazu zamkniętego (tight gas)

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski

Oznaczanie składu ziarnowego kruszyw z wykorzystaniem próbek zredukowanych

Analiza przepływu płynów złożowych w skałach zbiornikowych

ZAKŁAD GEOMECHANIKI. BADANIA LABORATORYJNE -Właściwości fizyczne. gęstość porowatość nasiąkliwość KOMPLEKSOWE BADANIA WŁAŚCIWOŚCI SKAŁ

WYKORZYSTANIE MODELI SIECI NEURONOWYCH DO IDENTYFIKACJI SKŁADU LITOLOGICZNEGO RUDY MIEDZI**

Zastosowanie metod analizy termicznej w badaniach skał silikoklastycznych o zróżnicowanym zaileniu

Analiza składowych głównych. Wprowadzenie

SZACOWANIE WARTOŚCI WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ PIASKOWCÓW MEZOPALEOZOICZNYCH PODŁOŻA KARPAT NA PODSTAWIE SKŁADU MINERALNEGO

1. Wstęp. Z prasy. Encyklopedia medyczna. Autor: Hayk Hovhannisyan. Tytuł: Badanie transportu radonu w ośrodku porowatym na stanowisku laboratoryjnym

Wykorzystanie tomografii komputerowej w badaniu rdzeni skał

Badanie dylatometryczne żeliwa w zakresie przemian fazowych zachodzących w stanie stałym

Wstęp. Layer identification for reservoir simulation

Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

BAZA DANYCH ORAZ SZCZEGÓŁOWY 3D MODEL GEOLOGICZNY DLA PODZIEMNEJ SEKWESTRACJI CO 2 REJONU BEŁCHATOWA NA PRZYKŁADZIE STRUKTURY BUDZISZEWIC - ZAOSIA

ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE EFEKTÓW ROZDRABNIANIA POJEDYNCZYCH ZIAREN

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Wpływ promieniowania na wybrane właściwości folii biodegradowalnych

Modyfikacja przestrzeni porowej kamieni cementowych

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

OCENA AGRESYWNOŚCI I KOROZJI WOBEC BETONU I STALI PRÓBKI WODY Z OTWORU NR M1 NA DRODZE DW 913

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Podstawowe pojęcia statystyczne

PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ

Planowanie i kontrola zabiegów regeneracji i rekonstrukcji studni głębinowych przy użyciu metod geofizycznych

Badanie procesów dyfuzji i rozpuszczania się gazu ziemnego w strefie kontaktu z ropą naftową

W1. Wprowadzenie. Statystyka opisowa

Korelacja wyników badań laboratoryjnych uzyskanych metodą rentgenowskiej mikrotomografii, jądrowego rezonansu magnetycznego i porozymetrii rtęciowej

Podział gruntów ze względu na uziarnienie.

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej

NAFTA-GAZ, ROK LXXII, Nr 12 / 2016

Zadania ze statystyki, cz.6

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

Paweł Pollok*, Sławomir Wysocki** PT-51 i PT-52***

Wynagrodzenia w sektorze publicznym w 2011 roku

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

KATEDRA GEOFIZYKI. Proponowane tematy prac magisterskich dla studentów studiów stacjonarnych II stopnia rok akademicki 2017/2018

Płyta VSS. Piotr Jermołowicz - Inżynieria Środowiska Szczecin

LABORATORIUM Z FIZYKI

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G

Badania laboratoryjne oddziaływania gazów kwaśnych na skałę zbiornikową w procesach sekwestracji CO 2

Pomiary pojemności wymiany kationowej (CEC) w badaniach skał osadowych

Naszym zadaniem jest rozpatrzenie związków między wierszami macierzy reprezentującej poziomy ekspresji poszczególnych genów.

Co to właściwie znaczy porowatość skał łupkowych

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności

Inteligentna analiza danych

Estymacja punktowa i przedziałowa

Recenzja rozprawy doktorskiej mgr. Tomasza TOPORA Informacje ogólne:

Transkrypt:

NAFTA-GAZ, ROK LXX, Nr 11 / 2014 Jolanta Klaja, Grażyna Łykowska Instytut Nafty i Gazu Państwowy Instytut Badawczy Wyznaczenie typów petrofizycznych skał czerwonego spągowca z rejonu południowozachodniej części niecki poznańskiej na podstawie analizy statycznej wyników pomiarów laboratoryjnych Analiza pomiarów NMR wykonanych dla skał czerwonego spągowca pochodzących z rejonu SW części niecki poznańskiej pozwoliła, w powiązaniu z badaniami porozymetrycznymi i mineralogicznymi, na wydzielenie czterech grup skał o odmiennych własnościach petrofizycznych. W przestrzeni porowej skał o najsłabszych właściwościach zbiornikowych i filtracyjnych dominują mikropory. Najlepszymi właściwościami zbiornikowymi i filtracyjnymi charakteryzują się jednorodne piaskowce o stosunkowo wysokiej zawartości kwarcu i niskiej minerałów ilastych, z systemem dość dużych porów (przewaga porów powyżej 1 µm). Zaobserwowane zróżnicowanie własności petrofizycznych odzwierciedla zmienność litologiczną skał czerwonego spągowca. Słowa kluczowe: czerwony spągowiec, analiza skupień, własności zbiornikowe. Assignation of types of Rotliegend sandstones from the southwestern part of the Poznań Basin based on static analysis results of laboratory measurements Four groups of rocks from the southwestern part of the Poznań basin displaying different petrophysical properties were distinguished on the basis of the NMR measurements, mercury porosimetry and microscopic observations. The pore space of rocks representing the poorest reservoir and filtration properties is dominated by micropores. The best reservoir and filtration properties are represented by the homogenous sandstones containing high amounts of quartz and low quantities of clay minerals. The observed differentiation in the petrophysical properties reflect the litological diversity of the rotliegendes sandstones. Key words: Rotliegend sandstone, reservoir properties, cluster analysis. Wprowadzenie Badania metodą magnetycznego rezonansu jądrowego pozwalają na scharakteryzowanie przestrzeni porowej skał [2, 4, 5, 8]. Powiązanie badań NMR z porozymetrią rtęciową, obserwacjami mikroskopowymi oraz analizą rentgenowską składu mineralnego umożliwia wyróżnienie typów skał o odmiennych własnościach petrofizycznych [1, 3]. Pomiary zostały wykonane w Zakładach Geofizyki Wiertniczej oraz Geologii i Geochemii INiG PIB. Przy pomocy analizy skupień [7] wydzielono cztery grupy skał czerwonego spągowca. Materiał badawczy stanowiła seria 63 próbek skał reprezentujących utwory czerwonego spągowca z rejonu SW części niecki poznańskiej, z następujących otworów wiertniczych: Bonikowo-2, Cicha Góra-7, Cicha Góra-9, Czarna Wieś-4, Paproć-28, Parzęczewo-1. 757

NAFTA-GAZ Analiza skupień umożliwia organizowanie obserwowanych danych w spójne struktury lub grupy danych. Obejmuje ona kilka algorytmów klasyfikacji, do których należą między innymi: metoda aglomeracji ma na celu łączenie obiektów w coraz większe grupy, z zastosowaniem pewnej miary odległości; wynikiem tego typu grupowania jest drzewo hierarchiczne; metoda k-średnich w metodzie tej tworzonych jest k różnych, możliwie odmiennych skupień (grup), następnie bada się średnie dla każdego skupienia w każdym wymiarze (cecha), aby oszacować, na ile utworzone grupy są od siebie różne. Procedura ta polega na przesuwaniu obiektów z grupy do grupy w celu zminimalizowania wariancji wewnątrz grup i zmaksymalizowania wariancji między grupami. Algorytmy dostępne w analizie skupień wymagają oszacowania odległości między skupieniami a obiektami. Przy obliczaniu odległości należy zdecydować o skali danych cech. W przypadku gdy poszczególne parametry wyrażone są w różnych skalach, należy je przed zastosowaniem analizy skupień wystandaryzować. W wyniku standaryzacji zmiennych każda z nich przyjmuje średnią wartość 0 i odchylenie standardowe 1. Bardzo istotne jest, aby wymiary zmiennych, które są wykorzystywane do obliczenia odległości między obiektami, miały porównywalne wartości. W przeciwnym wypadku analiza byłaby obciążona i opierałaby się na wymiarach, które mają największy zakres wartości. W przeprowadzonej analizie skupień wykorzystano parametry najlepiej różnicujące właściwości badanych skał, wyznaczone: metodą jądrowego rezonansu magnetycznego NMR: Kp porowatość całkowita; Kp 3 wielkość przestrzeni porowej zajęta przez wodę wolną; Sw 1 współczynnik nasycenia wodą nieredukowalną; Sw 3 współczynnik nasycenia wodą wolną; metodą ilościowej analizy rentgenowskiej: q zawartość kwarcu; ił zawartość minerałów ilastych; metodą porozymetrii rtęciowej, takie jak: por > 1 ilość porów o średnicy powyżej 1 mm; sr_prog średnica progowa. W celu sprawdzenia, na ile ewentualnych skupień można podzielić badaną populację, przeprowadzono analizę aglomeracyjną. Wynika z niej, przyjmując odległość wiązania równą 10, że najbardziej prawdopodobna liczba skupień wynosi 4 (rysunek 1). Taki podział potwierdza inna z metod dostępna w analizie skupień metoda k-średnich. Przeprowadzono badania dla 758 Nafta-Gaz, nr 11/2014 Analiza skupień Odległość wiąz. Metoda Warda Odległość euklidesowa Rys. 1. Drzewo hierarchiczne uzyskane metodą aglomeracji Kp Kp 3 Sw 1 Sw 3 q ił pory > 1 µm sr_prog Zmienne Rys. 2. Średnie wartości standaryzowanych parametrów dla poszczególnych grup (metoda k-średnich, k = 4) Kp współczynnik porowatości całkowitej; Kp 3 wielkość przestrzeni porowej zajęta przez wodę wolną; Sw 1, Sw 3 współczynniki nasycenia, odpowiednio: wodą nieredukowalną, wodą wolną; q zawartość kwarcu; ił zawartość minerałów ilastych; por > 1 ilość porów o średnicy powyżej 1 mm; sr_prog średnica progowa różnych wartości k i najlepsze rezultaty otrzymano w przypadku k = 4. Na rysunku 2 przedstawiono efekty grupowania standaryzowanych parametrów metodą k-średnich na podstawie euklidesowej miary odległości. W tablicy 1 przedstawiono wykaz próbek reprezentujących poszczególne skupiska skał wydzielone w wyniku zastosowania algorytmu k-średnich, zaś w tablicy 2 zakresy zmian oraz średnie wartości parametrów w zidentyfikowanych grupach.

artykuły Tablica 1. Wykaz próbek skał zakwalifikowanych do poszczególnych grup na podstawie analizy skupień (metoda k-średnich, k = 4) Grupa Liczba Nr próbki I 7 4976, 6216, 6236, 6342, 6335, 6201, 4973 II 22 4978, 4985, 6323, 6328, 6336, 6240, 6341, 4968, 6208, 6209, 6188, 6221, 6238, 6330, 6203, 6205, 6212, 6339, 6340, 6235, 6239 III 21 4957, 6324, 6325, 6326, 6329, 6331, 6332, 6333, 6334, 6202, 6213, 6218, 6220, 6222, 6224, 6225, 6233, 6234, 6337, 6338, 6217 IV 11 4951, 4953, 4955, 4959, 4980, 6204, 6206, 6207, 6192, 6193, 6219 Wskaźnik zbiornikowy Wskaźnik zbiornikowy jest iloczynem współczynników porowatości i przepuszczalności [6]. Nie charakteryzuje on żadnej fizycznej cechy skały, stanowi natomiast miarę jej potencjału zbiornikowego. Wykorzystując ten wskaźnik, podjęto próbę wyróżnienia grup próbek o różnych właściwościach zbiornikowych w celu potwierdzenia poprawności wykonanej analizy skupień. Wartości wskaźnika zbiornikowego RR badanych próbek skał przedstawiono na rysunku 3. Wyniki klasyfikacji próbek na podstawie tego wskaźnika zobrazowano na wykresie zależności współczynników przepuszczalności Kpr od porowatości Kp (rysunek 5), zaś w tablicy 3 zestawiono numery próbek w poszczególnych grupach. Wydzielono pięć grup skał różniących się wartościami wskaźnika zbiornikowego (rysunki 4 i 5). Najwięcej próbek należy do grup o niskich i bardzo niskich wartościach wskaźnika RR. Bardzo dobre właściwości zbiornikowe (RR > 1000) wykazują 3 próbki z grupy V. Cztery próbki z grupy IV (zaznaczone) charakteryzują się również wysoką wartością wskaźnika RR. Dla próbek: 6207 i 6192 przyjmuje on wartości 522 600, a w przypadku próbek: 6206 i 6193 powyżej 900. Należy podkreślić, że grupy wydzielone na podstawie wskaźnika zbiornikowego pokrywają się w dużej mierze z grupami uzyskanymi na bazie analizy skupień. Próbki o najwyższym wskaźniku zbiornikowym (grupa V i częściowo grupa IV) zostały, również na podstawie analizy skupień, zaliczone do grupy o najlepszych właściwościach zbiornikowych (grupa IV). Natomiast próbki reprezentujące grupy I i II (złe i bardzo niskie właściwości zbiornikowe, wskaźnik RR) pokrywają się w większości przypadków z grupami I i II wyznaczonymi na podstawie analizy skupień. Tablica 2. Zakresy zmian i średnie wartości wybranych parametrów w poszczególnych grupach wydzielonych na podstawie analizy skupień Parametr Zakres zmian parametru od do Grupa I Średnia wartość parametru Odchylenie standardowe Kp [%] 6,60 9,15 7,99 0,87 Kp 3 [%] 0,10 0,82 0,36 0,29 Sw 1 [%] 68,41 89,29 78,04 8,18 Sw 3 [%] 1,07 9,91 4,58 3,61 Kpr [md] 0,01 0,07 0,03 0,02 q [%] 48,00 61,00 52,86 4,14 Ił [%] 16,00 29,00 23,00 5,26 Por > 1 [%] 9,00 21,00 16,29 4,15 Sr_prog [μm] 0,10 1,00 0,47 0,38 Grupa II Kp [%] 5,12 13,66 9,17 2,25 Kp 3 [%] 0,13 2,58 1,18 0,77 Sw 1 [%] 41,27 84,84 57,71 9,45 Sw 3 [%] 1,66 22,03 11,91 6,15 Kpr [md] 0,01 0,49 0,16 0,12 q [%] 57,00 85,00 69,52 7,07 Ił [%] 11,00 21,00 15,57 2,68 Por > 1 [%] 7,00 50,00 26,95 10,47 Sr_prog [μm] 0,40 3,00 1,78 0,70 Grupa III Kp [%] 8,65 16,14 11,86 2,22 Kp 3 [%] 1,95 5,17 3,60 0,93 Sw 1 [%] 29,80 48,34 40,48 4,77 Sw 3 [%] 18,01 43,76 30,43 6,11 Kpr [md] 0,38 11,46 3,97 3,40 q [%] 61,00 83,00 73,38 6,76 Ił [%] 7,00 20,00 13,48 3,39 Por > 1 [%] 40,00 81,00 56,33 9,44 Sr_prog [μm] 2,00 20,00 8,81 6,87 Grupa IV Kp [%] 13,20 19,50 15,92 1,92 Kp 3 [%] 6,01 10,38 7,97 1,59 Sw 1 [%] 19,22 26,79 22,51 2,57 Sw 3 [%] 40,26 61,38 50,04 7,93 Kpr [md] 6,18 233,25 69,10 75,22 q [%] 70,00 87,00 77,27 5,27 Ił [%] 6,00 12,00 8,73 2,33 Por > 1 [%] 63,00 82,00 73,91 6,91 Sr_prog [μm] 20,00 35,00 22,73 5,18 Nafta-Gaz, nr 11/2014 759

NAFTA-GAZ Wskaźnik zbiornikowy RR 10000,00 1000,00 100,00 10,00 1,00 0,10 0,01 P-28 P-1 CW-4 B-22 CG-7 1 6 11 16 21 26 31 36 41 46 51 56 61 Próbka Rys. 3. Wartość wskaźnika zbiornikowego RR dla poszczególnych próbek skał w badanych otworach wiertniczych CG-9 r [md] Kpr_s 1000 100 10 1 0,1 0,0101 0,001 0,0001 RR < 1 RR < 1, 10) RR < 10, 100) RR < 100, 1000) 0 5 10 15 20 25 Kp [%] RR > 1000 Rys. 4. Klasyfikacja skał zbiornikowych ze względu na wielkość wskaźnika zbiornikowego RR w badanych otworach wiertniczych Tablica 3. Wykaz próbek skał zakwalifikowanych do poszczególnych grup na podstawie wskaźnika zbiornikowego RR Grupa Wskaźnik RR Właściwości zbiornikowe Liczba Nr próbki I < 1 złe 18 II < 1, 10) bardzo słabe 14 III < 10, 100) słabe 14 6238, 6335, 6236, 4976, 6216, 6336, 4973, 6340, 6205, 6201, 6240, 6188, 6342, 6203, 6212, 6339, 6208, 6341 6323, 6328, 6221, 6235, 4968, 4985, 4978, 6239, 6330, 6234, 6324, 6233, 6213, 6209 6329, 6326, 6202, 6333, 6325, 6332, 6337, 4957, 6222, 6331, 6334, 6338, 6220, 4953 IV < 100, 1000) dobre 11 6224, 6218, 6225, 6217, 6219, 6204, 4980, 6207, 6192, 6193, 6206 V > 1000 bardzo dobre 3 4951, 4955, 4959 Charakterystyka grup wydzielonych na podstawie analizy skupień Grupa I Grupa I jest najmniej liczna (N = 7) i wykazuje najsłabsze właściwości zbiornikowe i filtracyjne. Należące do niej skały charakteryzują się najniższymi współczynnikami porowatości: Kp (6,60 9,15%), śr. 7,99% i przepuszczalności: Kpr (0,01 0,07 md) spośród wszystkich wydzielonych grup. Zawartość porów > 1 μm wynosi 9 21%, a wartość średnicy progowej 0,1 1 μm. Widać tutaj zdecydowaną przewagę wody nieredukowalnej: Sw 1 (68,41 89,29%), śr. 78,04%. Udział wody wolnej jest bardzo niewielki: Sw 3 (1,07 9,91%), śr. 4,58%. Kształt krzywej rozkładu czasów poprzecznej relaksacji T 2 skał grupy I wskazuje na przewagę mikroporów w przestrzeni porowej (rysunek 5A). Do grupy tej należą zlepieńce i piaskowce zlepieńcowate ze wszystkich przebadanych otworów (oprócz otworu Bonikowo-2). Charakteryzują się one stosunkowo niską zawartością kwarcu, średnio 52,86%. Przykład obserwacji w mikroskopie optycznym i skaningowym dla skały reprezentującej grupę I przedstawiono na rysunku 6. Grupa II Do grupy II należą próbki o nieco lepszych własnościach zbiornikowych: Kp (5,12 13,66%), śr. 9,17%, ale równie słabych własnościach filtracyjnych: Kpr (0,01 0,49 md). Jest to związane z wysoką ilością wody nieredukowalnej: Sw 1 (41,27 84,84%), śr. 57,71%. Zawartość porów > 1 μm wynosi 7 50%, a wartość średnicy progowej 0,4 0,3 μm. Tak jak w skałach grupy I widać tutaj przewagę mikroporów w przestrzeni porowej (rysunek 5B). Próbki tej grupy występują we wszystkich badanych otworach i reprezentują różne typy litologiczne (zlepieńce, piaskowce zlepieńcowate, piaskowce jednorodne). Obserwacje w mikroskopie optycznym i skaningowym dla piaskowca z grupy II przedstawia rysunek 7. Grupa III Grupa III jest najliczniejsza i najbardziej zróżnicowana. Wartości współczynnika porowatości są zbliżone do wartości dla skał grupy II: Kp (8,65 16,14%), śr. 11,86%, natomiast 760 Nafta-Gaz, nr 11/2014

artykuły A 800 700 600 nieredukowalna Grupa I pr. 6216 B 800 700 600 nieredukowalna kapilarna Grupa II pr. 6208 Amplituda 500 400 300 kapilarna wolna Amplituda 500 400 300 wolna 200 200 100 100 C Amplituda 0 10 100 1 000 10 000 100 000 1 000 000 10 000 000 T 2 [μs] 1200 1000 800 600 400 200 nieredukowalna kapilarna Grupa III pr. 6338 wolna 0 10 100 1 000 10 000 100 000 1 000 000 10 000 000 T 2 [μs] D Amplituda 0 10 100 1 000 10 000 100 000 1 000 000 10 000 000 T 2 [μs] 1600 1400 1200 1000 800 600 400 200 nieredukowalna kapilarna Grupa IV pr. 4951 wolna 0 10 100 1000 10000 100000 1000000 10000000 T 2 [μs] Rys. 5. Zestawienie przykładowych rozkładów T 2 dla próbek należących do poszczególnych grup: A grupa I, B grupa II, C grupa III, D grupa IV A B C D Próbka 6216, otwór Cicha Góra-7 Litologia: piaskowiec zlepieńcowaty Skład mineralny: 53% Q, 26% Sk, 1% C, 2% D, 5% A, 1% Ha, 19% Σil (Ch, M) Grupa: I Kp NMR /Kpr: 7,55% / 0,03 md A) Widok ogólny. Drobnoziarnisty szkielet ziarnowy i duże klasty wulkanitów. B) Wtórna porowatość w obrębie klastów wulkanitów. C) Przestrzeń porowa całkowicie wypełniona cementami. D) Cement anhydrytowy. Rys. 6. Obserwacje w mikroskopie optycznym (A, B) i skaningowym (C, D) dla skały reprezentującej grupę I współczynnik przepuszczalności przyjmuje wartości wyższe: Kpr (0,38 11,46 md). Jest to związane z wyraźnym zmniejszeniem się ilości mikroporów w przestrzeni porowej: Sw 1 (29,80 48,34%). Zawartość porów > 1 μm wynosi 40 81%, a wartość średnicy progowej 2 20 μm. Krzywe T 2 próbek z tej grupy są często wielomodalne (rysunek 5C), co sugeruje obecność systemów porów o różnych rozmiarach oraz słabsze wysortowanie materiału. Próbki z tej grupy reprezentowane są przez piaskowce i występują głównie w otworach Parzęczewo-1 i Cicha Góra-7 (rysunek 8). Grupa IV Najkorzystniejszymi właściwościami zbiornikowymi charakteryzuje się grupa IV, do której zakwalifikowano 11 próbek. Próbki te wykazują najlepsze właściwości zbiornikowe: Kp (13,20 19,50%) i filtracyjne: Kpr (6,18 233,25 md). Nafta-Gaz, nr 11/2014 761

NAFTA-GAZ A B C D Próbka 6208, otwór Czarna Wieś-4 Litologia: piaskowiec Skład mineralny: 71% Q, 15% Sk, 17% Σil (Ch, M) Grupa: II Kp NMR /Kpr: 10,17% / 0,09 md A) Widok ogólny. Drobnoziarnisty szkielet ziarnowy. B) Nieliczne duże pory. C) Ziarna detrytyczne silnie upakowane. D) Chloryty narastające na ziarnach detrytycznych i idiomorficzne kryształy kwarcu. Rys. 7. Obserwacje w mikroskopie optycznym (A, B) i skaningowym (C, D) dla skały reprezentującej grupę II A B C D Próbka 6220, otwór Cicha Góra-7 Litologia: piaskowiec Skład mineralny: 68% Q, 18% Sk, 5% C, < 1% D, 11% Σil (Ch, M) Grupa: III Kp NMR /Kpr: 11,00% / 8,01 md A) Widok ogólny. Uziarnienie wybitnie bimodalne. B) Bimodalny rozkład wielkości porów. C) Wtórna porowatość w obrębie klastów wulkanicznych. D) Chloryty narastające na ziarnach detrytycznych. Rozpuszczanie skaleni. Rys. 8. Obserwacje w mikroskopie optycznym (A, B) i skaningowym (C, D) dla skały reprezentującej grupę III Zawartość porów > 1 μm wynosi 63 82%, a wartość średnicy progowej 20 35 μm. Woda wolna przeważa w przestrzeni porowej i jej ilość jest najwyższa spośród wszystkich wyróżnionych typów: Sw 3 (40,26 61,38%), śr. 50,04%. Zawartość wody nieredukowalnej jest najniższa: Sw 1 (19,22 26,79%), śr. 22,51%. Kształt krzywej T 2 (wyraźny pik w zakresie wysokich czasów T 2 ) świadczy o występowaniu systemu dość dużych porów (rysunek 5D). Próbki z tej grupy występują w otworach Paproć-28, Bonikowo-2 i Czarna Wieś-4 oraz Cicha Góra-7 (jedna próbka). Są to jednorodne piaskowce o stosunkowo wysokiej zawartości kwarcu (70 87%) i niskiej minerałów ilastych (6 12%) oraz węglanów (0 4%). Charakteryzują się luźnym szkieletem ziarnowym złożonym głównie z kwarcu i skaleni z niewielkim udziałem klastów wulkanitów (rysunek 9). Ziarna detrytyczne o średnicy od 100 do 350 μm charakteryzują się słabym obtoczeniem i wysortowaniem. W skale obecne są strefy o porowatości znacznie zredukowanej przez cementację węglanową. 762 Nafta-Gaz, nr 11/2014

artykuły A B C D Próbka 4951, otwór Paproć-28 Litologia: piaskowiec Skład mineralny: 77% Q, 23% Sk, 3% D, 1% C, 6% Σil (Ch, M) Grupa: IV Kp NMR /Kpr: 14,96% / 70,44 md A) Widok ogólny. W lewym górnym rogu strefa cementacji węglanowa. B) Słabe wysortowanie ziarn detrytycznych. Szkielet rozproszony. C) Rozpuszczanie skaleni. D) Ziarna detrytyczne z narastającymi blaszkami chlorytów i romboedrami dolomitu. Rys. 9. Obserwacje w mikroskopie optycznym (A, B) i skaningowym (C, D) dla skały reprezentującej grupę IV Podsumowanie Wszystkie badane skały charakteryzują się bardzo skomplikowanym sposobem wykształcenia przestrzeni porowej. Wiązać to można z małą dojrzałością materiału detrytycznego budującego szkielet ziarnowy, co z kolei jest wynikiem bliskości obszarów źródłowych (wał wolsztyński). W trakcie krótkotrwałego transportu materiał detrytyczny nie został wysortowany i obtoczony. Bardzo duży udział w szkielecie ziarnowym zajmują klasty skał wulkanicznych (głównie riolitów) oraz skalenie, które najprawdopodobniej dopiero w trakcie diagenezy uległy degradacji (rozpuszczaniu i zastępowaniu przez minerały ilaste, przede wszystkim illit). Zastosowanie analizy skupień umożliwiło wydzielenie czterech grup skał o różnych własnościach petrofizycznych. W przestrzeni porowej skał o najsłabszych właściwościach zbiornikowych i filtracyjnych, reprezentowanych przez zle- pieńce i piaskowce zlepieńcowate, dominują mikropory (skały z grupy I). Najlepszymi właściwościami zbiornikowymi i filtracyjnymi charakteryzują się jednorodne piaskowce o stosunkowo wysokiej zawartości kwarcu i niewielkich ilościach minerałów ilastych, zawierające system dość dużych porów (skały z grupy IV). Zaobserwowane zróżnicowanie własności petrofizycznych odzwierciedla zmienność litologiczną skał czerwonego spągowca. Szczególny wpływ na zróżnicowanie przestrzeni porowej mają takie zjawiska jak: rozpuszczanie skaleni, słabe obtoczenie materiału ziarnowego i nierównomierna cementacja węglanami. Zastosowanie wskaźnika RR opartego na współczynnikach porowatości oraz przepuszczalności może być przydatnym narzędziem w ocenie skał pod względem właściwości zbiornikowych. Prosimy cytować jako: Nafta-Gaz 2014, nr 11, s. 757 764 Artykuł powstał na podstawie pracy pt. Korelacja pomiarów NMR z badaniami wykonanymi na porozymetrze rtęciowym dla utworów czerwonego spągowca z rejonu południowo-zachodniej części niecki poznańskiej praca INiG na zlecenie PGNiG; nr zlecenia: 602/SW, nr archiwalny: DK-4100-107/2006. Literatura [1] Bowers M. C., Ehrlich R., Howard J. J., Kenyon W. E.: Determination of porosity types from NMR data and their relationship to porosity types derived from thin section. Journal of Petroleum Science and Engineering 1995, vol. 13, pp. 1 14. [2] Coates G., Xiao L., Prammer M.: NMR Logging Principles & Applications. Halliburton Energy Services, USA, 1999. [3] Dastidar R.: Integrating NMR with Other Petrophysical Parameters to Characterize a Turbidite Reservoir. University of Oklahoma, 2004. [4] Klaja J.: Zastosowanie metody magnetycznego rezonansu jadrowego do wyznaczania kretosci porow. Nafta-Gaz 2012, nr 9, s. 575 584. Nafta-Gaz, nr 11/2014 763

NAFTA-GAZ [5] Klaja J., Kulinowski P.: Wykorzystanie zjawiska samodyfuzji do badania przestrzeni porowej piaskowcow metoda magnetycznego rezonansu jadrowego. Nafta-Gaz 2009, nr 10, s. 760 767. [6] Poszytek A.: Analiza zmiennosci własciwosci zbiornikowych gornego czerwonego spagowca z wykorzystaniem wskaznika zbiornikowego (RR). Konferencja Geopetrol 2006, Zakopane. [7] STATISTICA PL dla Windows. Tom III. Statystyki II. StatSoft, 1997. [8] Straley C., Rossini D., Vinegar H. J., Tutunjian P., Morriss C. E.: Core Analysis by Low-Field NMR. The Log Analyst 1997, vol. 38, no. 2, March April, pp. 84 94. Mgr inż. Jolanta Klaja Specjalista badawczo-techniczny w Zakładzie Geofizyki Wiertniczej. Instytut Nafty i Gazu Państwowy Instytut Badawczy ul. Lubicz 25A 31-503 Kraków E-mail: klaja@inig.pl Mgr inż. Grażyna Łykowska Asystent w Zakładzie Geofizyki Wiertniczej; kierownik ds. Jakości Laboratorium Geofizycznych Parametrów Skał i Płynów Złożowych. Instytut Nafty i Gazu Państwowy Instytut Badawczy ul. Lubicz 25A, 31-503 Kraków E-mail: lykowska@inig.pl OFERTA ZAKŁAD GEOFIZYKI WIERTNICZEJ Zakres działania: trójwymiarowa wizualizacja i analiza wewnętrznej struktury przestrzeni porowej skał metodą mikrotomografii rentgenowskiej (micro-ct); określanie rozkładu nasycenia wodą przestrzeni porowej próbek skał i kamienia cementowego metodą magnetycznego rezonansu jądrowego (NMR); oznaczanie jakościowego i ilościowego składu mineralnego skał oraz wydzielonej frakcji ilastej na podstawie analizy rentgenowskiej; wyznaczanie zawartości naturalnych pierwiastków promieniotwórczych: uranu, toru i potasu w skałach, płuczkach wiertniczych i materiałach budowlanych; ocena elektrycznych parametrów skał (wskaźnika struktury porowej i zwilżalności); określanie zależności elektrycznej oporności właściwej płuczek wiertniczych od temperatury; ocena prędkości propagacji fal ultradźwiękowych w skałach, kamieniach cementowych i płuczkach wiertniczych; interpretacja profilowań geofizycznych w zakresie oceny stanu zacementowania rur okładzinowych w otworach; profilowanie rdzeni wiertniczych (bezpośrednio na otworze) w celu określenia całkowitej energii promieniowania gamma emitowanego przez naturalne pierwiastki promieniotwórcze (U+Th+K) metodą spektrometrii gamma (Gamma Logger). Kierownik: dr inż. Marek Dohnalik Adres: ul. Bagrowa 1, 30-733 Kraków Telefon: 12 617-74-70 Faks: 12 653-16-65 E-mail: marek.dohnalik@inig.pl 764 Nafta-Gaz, nr 11/2014