KOSZTY NAPRAW A INTENSYWNOŚĆ UŻYTKOWANIA POJAZDÓW

Podobne dokumenty
Analiza intensywności uŝytkowania pojazdów (Część I)

Has the heat wave frequency or intensity changed in Poland since 1950?

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

Akademia Morska w Szczecinie. Wydział Mechaniczny

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Analiza kosztów napraw samochodów w firmie transportowej

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Hard-Margin Support Vector Machines

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach


EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

25 27 May th Logistics, Warehousing and Transport Expo. summary.

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

PERSPEKTYWY ZRÓWNOWAŻONEGO ROZWOJU TRANSPORTU DROGOWEGO W POLSCE DO 2030 ROKU

P R A C A D Y P L O M O W A

Cracow University of Economics Poland

Sustainable mobility: strategic challenge for Polish cities on the example of city of Gdynia

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Employment. Number of employees employed on a contract of employment by gender in Company

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO ANALIZY WARUNKÓW UśYTKOWANIA POJAZDU ORAZ ROZRUCHU SILNIKA SPALINOWEGO

Zarządzanie sieciami telekomunikacyjnymi

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

SNP SNP Business Partner Data Checker. Prezentacja produktu

ROZPRAWY NR 128. Stanis³aw Mroziñski


No matter how much you have, it matters how much you need

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

Jan NIKONIUK Leszek KRZYWONOS Piotr PIECZYWEK. 1. Wstęp. 1. Introduction

KOMUNIKACYJNEGO W LUBLINIE

Jakość płynu hamulcowego a bezpieczeństwo w ruchu drogowym

ANALIZA EKONOMICZNA BUDOWY I EKSPLOATACJI SYSTEMÓW TELEFONII INTERNETOWEJ W PRZEDSIĘBIORSTWIE ROLNICZYM

Krytyczne czynniki sukcesu w zarządzaniu projektami

Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

DOI: / /32/37

Health Resorts Pearls of Eastern Europe Innovative Cluster Health and Tourism

PRIMARY AND SECONDARY RESIDENTIAL REAL ESTATE MARKETS IN POLAND ANALOGIES IN OFFER AND TRANSACTION PRICE DEVELOPMENT

Chronotyp i struktura temperamentu jako predyktory zaburzeń nastroju i niskiej jakości snu wśród studentów medycyny

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

HemoRec in Poland. Summary of bleeding episodes of haemophilia patients with inhibitor recorded in the years 2008 and /2010

Country fact sheet. Noise in Europe overview of policy-related data. Poland

WYZNACZANIE KOSZTÓW TRANSPORTU Z WYKORZYSTANIEM OCTAVE 3.4.3

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

WYBRANE PROBLEMY BADAWCZE EKOLOGII, ORGANIZACJI I INFRASTRUKTURY TRANSPORTU

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Analiza kosztów eksploatacji pojazdów komunikacji miejskiej na przykładzie Miejskiego Przedsiębiorstwa Komunikacyjnego w Lublinie


CITY LOGISTICS FOR BIG POLISH CITIES - solutions for rapidly increasing problems of congestion in city centers

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Effective Governance of Education at the Local Level

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

Baptist Church Records

DROGOWEGO W POLSCE W LATACH

Instructions for student teams

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

The data reporting such indexes for a number of years (about twelve years of such data are were fitted to a logistic curve:

Patients price acceptance SELECTED FINDINGS

"Strategic management in organizations XXI Century"

Planning and Cabling Networks

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

czynnikami ryzyka i chorobami układu sercowo-naczyniowego.

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona

PRÓBY EKSPLOATACYJNE KOMPOZYTOWYCH WSTAWEK HAMULCOWYCH TOWAROWEGO

An employer s statement on the posting of a worker to the territory of the Republic of Poland

THE INVESTMENT AREAS - BYTOM, LEŚNA STREET TERENY INWESTYCYJNE - BYTOM, ULICA LEŚNA

SPITSBERGEN HORNSUND

NAKŁADY PRACY W GOSPODARSTWACH ROLNYCH O RÓŻNEJ WIELKOŚCI EKONOMICZNEJ

Estimated data of three ICT indexes available from GUSM

2 nd ClimMani EU COST Action Meeting Poznań, Poland September, 2015

Instytucje gospodarki rynkowej w Polsce

PROGRAM STAŻU. Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o.

OCENA MOśLIWOŚCI WYKORZYSTANIA HODOWLI ŚWIŃ RASY ZŁOTNICKIEJ

CEE 111/211 Agenda Feb 17

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Updated Action Plan received from the competent authority on 4 May 2017

SNP Business Partner Data Checker. Prezentacja produktu

SWPS Uniwersytet Humanistycznospołeczny. Wydział Zamiejscowy we Wrocławiu. Karolina Horodyska

ZWROTNICOWY ROZJAZD.

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

SPITSBERGEN HORNSUND

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Gdański Uniwersytet Medyczny Wydział Nauk o Zdrowiu z Oddziałem Pielęgniarstwa i Instytutem Medycyny Morskiej i Tropikalnej. Beata Wieczorek-Wójcik

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

REGIONAL DIFFERENTIATION OF THE POWER OF AGRICULTURAL TRACTORS PURCHASED IN POLAND IN THE YEARS

Innowacje społeczne innowacyjne instrumenty polityki społecznej w projektach finansowanych ze środków Europejskiego Funduszu Społecznego

WYDZIAŁ NAUK EKONOMICZNYCH. Studia II stopnia niestacjonarne Kierunek Międzynarodowe Stosunki Gospodarcze Specjalność INERNATIONAL LOGISTICS

NAUKA I TECHNIKA. Paweł DROŹDZIEL. 1. Introduction. 1. Wstęp

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Transkrypt:

TRANSPORT PROBLEMS 2013 PROBLEMY TRANSPORTU Volume 8 Issue 3 Paweł DROŹDZIEL*, Henryk KOMSTA, Leszek KRZYWONOS Lublin University of Technology Nadbystrzycka 36, 20-618 Lublin, Poland *Corresponding author. E-mail: p.drozdziel@pollub.pl intensity of vehicle use; repair costs; correlation analysis REPAIR COSTS AND THE INTENSITY OF VEHICLE USE Summary. This paper presents correlation analyses of real-life data associated with the intensity of use of vehicles and the costs of replacement of operating materials and components performed in a three-year period for delivery vans, which was operated by the Poczta Polska (Polish Mail) delivery office in Lublin. KOSZTY NAPRAW A INTENSYWNOŚĆ UŻYTKOWANIA POJAZDÓW Streszczenie. W artykule opisano wyniki analiz korelacyjnych wykonanych dla rzeczywistych danych związanych z intensywnością użytkowania pojazdów oraz kosztami wymiany rzeczowych czynników eksploatacji w okresie trzech lat dla samochodów dostawczych należących do lubelskiego centrum logistycznego Poczty Polskiej. 1. INTRODUCTION The possibility of predicting the repair costs to be incurred during vehicle use allows specialists to prognosticate the economic efficiency of performing particular transportation services. This is important when determining freight rates and designing business development strategies based on introduction of innovative transport technologies [1, 3, 7]. It is widely known that the economic efficiency of a transport system depends on many interacting operating factors, such as the intensity of use of vehicles, transportation service rates, personnel costs, costs of maintenance materials, taxes, insurance, etc. The most important factor that directly affects the income derived from a transportation service is the intensity of vehicle use. It is defined as the mileage (in kilometers) travelled by a car within a specified period of time (day, month or year). The value of this index affects other parameters of operation and maintenance, such as vehicle life, the driver s working time, etc. [2, 9, 10]. Another important factor in maintaining a means of transport that affects the economic efficiency of transport are the costs associated with service and repair of vehicles. Repair costs are made out of two types of cost: the costs of operating materials and components plus labor costs of the staff working at a repair station. Operating materials and components include elements, parts, systems, various sub-assemblies and assemblies, as well as fluids (engine oil, brake fluid, etc.). They do not include the costs of fuel consumed during transport [5, 8, 11]. It seems important, primarily from the utilitarian point of view, to perform a correlation analysis between the intensity of use of a means of transport and the cost of replacement of operating materials and components of the vehicle incurred during its use. The results of such a statistical analysis for an actual transport system may be useful for freight carriers when making decisions related to planning a business strategy [6, 9, 12].

132 P. Droździel, H. Komsta, L. Krzywonos This article presents the results of correlation analyses of real-life data associated with the intensity of use of vehicles and the costs of replacement of operating materials and components performed in a three-year period for delivery vans of Poczta Polska (the Polish Mail) in Lublin. 2. MATERIAL The analysis presented in this article covered a group of 116 cars used by Poczta Polska in Lublin in the period of three years (2008 2010). This group consisted of vehicles of different makes and types, which performed a variety of transportation tasks specific to the manner of operation of postal service. The vehicles were divided into three groups, which differed primarily in cargo capacity. Subgroup I were LCV vans (e.g., the Fiat Doblo), which ran between mailboxes and carried mail in the urban area of the city of Lublin and its vicinity. This group consisted of 32 cars. MCV vans (e.g., the VW Transporter) were sub-group II. These vehicles moved a variety of mail between post offices in the city of Lublin and the former Lublin province. This group consisted of 60 vehicles. Lorries, characterized by the highest cargo capacity (e.g., the IVECO Stralis) represented sub-group III. These vehicles transported mail mainly on routes between regional logistics centres of Poczta Polska, thus connecting Lublin with other capitals of Polish provinces. This group comprised 24 vehicles. 3. CORRELATION ANALYSIS Statistical analyses of data related to monthly and annual intensity of use of the vehicles of Poczta Polska as well as their total mileage (travelled over three years) and the corresponding costs of replacing operating materials and components, were performed using Statistica PL software, version 7. The coefficients of linear correlation [4] between the parameters analyzed within one month of use of the three subgroups of cars are shown in Table 1. Table 1 Coefficients of linear correlation between monthly costs of replacement of operating materials and components and the monthly intensity of vehicle use in the test subgroups along with their levels of significance Year Subgroup I Subgroup II Subgroup III 2008.039.091.017 p=.449 p=.015 p=.768 2009.025.002.064 p=.631 p=.949 p=.279 2010.138.079.0975 p=.007 p=.033 p=.099 The results of the calculations of linear correlation coefficients shown in Table 1 indicate that there is no relationship between the monthly intensity of vehicle use and the costs of replacement of operating materials and components. Figures 1 3 present scatter plots of monthly intensity of vehicle use as a function of the costs of replacement of operating materials and components in the test subgroups in the successive years. A regression line was also plotted in those figures together with 95% confidence intervals for predicted mean and individual observations.

Repair costs and the intensity of vehicle use 133 Fig. 1. Scatter plots of monthly intensity of vehicle use and the costs of replacement of operating materials and components for subgroup I vehicles; 1 regression line, 2 confidence interval for predicted mean Rys. 1. Wykres rozrzutu miesięcznej intensywności użytkowania oraz miesięcznych kosztów wymiany rzeczowych czynników eksploatacji dla pojazdów podgrupy nr I; 1 prosta regresji, 2 przedział ufności dla prognozowanej średniej obserwacji, 3 przedział ufności dla prognozowanej obserwacji; a) rok 2008, b) rok 2009, c) rok 2010 Fig. 2. Scatter plots of monthly intensity of vehicle use and the costs of replacement of operating materials and components for subgroup II vehicles; 1 regression line, 2 confidence interval for predicted mean Rys. 2. Wykres rozrzutu miesięcznej intensywności użytkowania oraz miesięcznych kosztów wymiany rzeczowych czynników eksploatacji dla pojazdów podgrupy nr II; 1 prosta regresji, 2 przedział ufności dla prognozowanej średniej obserwacji, 3 przedział ufności dla prognozowanej obserwacji; a) rok 2008, b) rok 2009, c) rok 2010

134 P. Droździel, H. Komsta, L. Krzywonos Fig. 3. Scatter plots of monthly intensity of vehicle use and the costs of replacement of operating materials and components for subgroup III vehicles; 1 regression line, 2 confidence interval for predicted mean Rys. 3. Wykres rozrzutu miesięcznej intensywności użytkowania oraz miesięcznych kosztów wymiany rzeczowych czynników eksploatacji dla pojazdów podgrupy nr III; 1 prosta regresji, 2 przedział ufności dla prognozowanej średniej obserwacji, 3 przedział ufności dla prognozowanej obserwacji; a) rok 2008, b) rok 2009, c) rok 2010 Coefficients of linear correlation between annual intensity of vehicle use and corresponding costs of replacement of operating materials and components for the three test subgroups are shown in Table 2. Table 2 Coefficients of linear correlation between annual costs of replacement of operating materials and components and the annual intensity of vehicle use for the test subgroups along with levels of significance Year Subgroup I Subgroup II Subgroup III 2008.446.225.238 p=.01 p=.084 p=.262 2009.344.371.328 p=.053 p=.004 p=.117 2010.336.376.134 p=.06 p=.003 p=.531 The results of the calculations of linear correlation coefficients shown in Figure 2 point to the existence of a moderate relationship between annual intensity of use of vehicles belonging to subgroups I and II and the costs of replacement of operating materials and components within a oneyear period. This is reflected in the values of linear correlation coefficients along with their levels of significance. In the case of vehicles belonging to subgroup III, the relationships observed between the two parameters analyzed were weaker. Figures 4-6 show scatter plots of annual intensity of vehicle use as a function of the costs of replacement of operating materials and components in the successive years. Also, a regression line (and its equation) was plotted in those figures together with 95% confidence intervals for predicted mean value and predicted individual observation.

Repair costs and the intensity of vehicle use 135 Fig. 4. Scatter plot of annual intensity of vehicle use and annual costs of replacement of operating materials and components for subgroup I vehicles; 1 regression line, 2 confidence interval for predicted mean Rys. 4. Wykres rozrzutu rocznej intensywności użytkowania oraz rocznych kosztów wymiany rzeczowych czynników eksploatacji dla pojazdów podgrupy nr I; 1 prosta regresji, 2 przedział ufności dla prognozowanej średniej obserwacji, 3 przedział ufności dla prognozowanej obserwacji; a) rok 2008, b) rok 2009, c) rok 2010 Fig. 5. Scatter plot of annual intensity of vehicle use and annual costs of replacement of operating materials and components for subgroup II vehicles; 1 regression line, 2 confidence interval for predicted mean Rys. 5. Wykres rozrzutu rocznej intensywności użytkowania oraz rocznych kosztów wymiany rzeczowych czynników eksploatacji dla pojazdów podgrupy nr II; 1 prosta regresji, 2 przedział ufności dla prognozowanej średniej obserwacji, 3 przedział ufności dla prognozowanej obserwacji; a) rok 2008, b) rok 2009, c) rok 2010

136 P. Droździel, H. Komsta, L. Krzywonos Fig. 6. Scatter plot of annual intensity of vehicle use and annual costs of replacement of operating materials and components for subgroup III vehicles; 1 regression line, 2 confidence interval for predicted mean Rys. 6. Wykres rozrzutu rocznej intensywności użytkowania oraz rocznych kosztów wymiany rzeczowych czynników eksploatacji dla pojazdów podgrupy nr III; 1 prosta regresji, 2 przedział ufności dla prognozowanej średniej obserwacji, 3 przedział ufności dla prognozowanej obserwacji; a) rok 2008, b) rok 2009, c) rok 2010 Coefficients of linear correlation between total mileage travelled over the three years and the corresponding costs of replacement of operating materials and components for the three test subgroups are shown in Table 3. Table 3 Coefficients of linear correlation between total costs of replacement of operating materials and components and total mileage travelled in the analyzed 3-year period for the test subgroups along with levels of significance Subgroup I Subgroup II Subgroup III.482.416.060 p=.005 p=.001 p=.778 The results of the calculations of linear correlation coefficients shown in Figure 3 point to the existence of moderate statistically significant relationships between total mileage travelled by subgroup I and II vehicles of Poczta Polska in Lublin and the costs of replacement of operating materials and components in the analysed 3-year period. This is reflected in the values of linear correlation coefficients along with their levels of significance. No relationships were observed for subgroup III vehicles. This is caused by excessive scatter of the values of the costs of replacement of operating materials and components in the analysed period, which is clearly seen in Figure 7. Figure 7 shows scatter plots of total mileage as a function of the costs of replacement of operating materials and components in the three-year period of operation of the test vehicles. Also, a regression line was plotted in this figure (with its equation) together with 95% confidence intervals for the predicted mean and the predicted individual observation.

Repair costs and the intensity of vehicle use 137 Fig. 7. Scatter plot of total mileage and the costs of replacement of operating materials and components for the three subgroups in the analyzed 3-year period; 1 regression line, 2 confidence interval for predicted mean observation, 3 confidence interval for predicted observation; a) subgroup I, b) subgroup II, c) subgroup III Rys. 7. Wykres rozrzutu sumarycznego przebiegu oraz kosztów wymiany rzeczowych czynników eksploatacji dla pojazdów w okresie 3 lat; 1 prosta regresji, 2 przedział ufności dla prognozowanej średniej obserwacji, 3 przedział ufności dla prognozowanej obserwacji; a) podgrupa nr I, b) podgrupa nr II, c) podgrupa nr III 4. CONCLUSIONS The results of the correlation analyses presented in this study for data from three-year observations related to the costs of replacement of operating materials and components and the intensity of use of vehicles in the fleet of the Polish Mail company in Lublin confirm the fact that service and repair costs grow along with increasing intensity of vehicle use. It is observed, at the same time, that the costs of replacement of operating materials and components in LCVs, as a function of intensity of use, grow faster than in MCVs. This is reflected in higher values of direction coefficients of the regression lines defining the dependence of service and repair costs on intensity of vehicle use. This confirms the fact that cars which travel mainly in urban conditions (high load variation) are characterized by a larger number of failures and faults. Bibliography 1. Čorejová, T. & Križanová, A. & Novák, A. Contribution of the faculty of operation and economics of transport and communications to training of employees in transportation. Logistyka. 2009. Vol. 6 (on CD). 2. Bachmann, R. & Langevin, A. A vehicle cost evaluation algorithm for the strategic analysis of radial distribution networks. Transportation Research Part E. 2009. Vol. 45. P. 50-60. 3. Buková, B. & Brumerčíková, E. The role of innovation in transport company. In: 11 th International Scientific Conference LOGI 2010. Pardubice, Czech Republic. 2010. P. 15-23.

138 P. Droździel, H. Komsta, L. Krzywonos 4. Dobosz, M. Wspomagana komputerowo statystyczna analiza wyników badań. Warszawa: EXIT Publishers. 2004 [In Polish: Computer-assisted Statistical Analysis of Research Results. Warsaw: EXIT Publishers]. 5. Droździel, P. & Komsta, H. & Krzywonos, L. An analysis of cost of vehicles repairs in a transportation company. Part I. Transport Problems. 2012. Vol. 7. Issue 3. P. 67-75. 6. Droździel, P. & Komsta, H. & Krzywonos, L. An analysis of cost of vehicles repairs in a transportation company. Part II. Transport Problems. 2012. Vol. 7. Issue 4. P. 5-11. 7. Hlavňa, V. & Kukuča, P. & Isteník, R. & Labuda, R. & Liščák, Š. Dopravný prostriedok a jeho motor. Žilina, Slovak Republic: EDIS Žilina University Publisher. 2000. [In Slovak: Vehicle and its engine] 8. Komsta, H. & Krzywonos, L. & Winiarski, G. An analysis of the intensity of vehicle use using the example of the Polish Mail company. Doprava a spoje Internetový časopis. 2011. Vol. 2. P. 66-70. Available: http://fpedas.uniza.sk/dopravaaspoje 9. Mendyk, E. Ekonomika transportu. Poznań: Poznań School of Logistics. 2009 [In Polish: The Economics of Transport. Poznan: Poznan School of Logistics]. 10. Redmer, A. Optimisation of exploitation period of individual vehicles in freight transportation companies. Transportation Research Part E. 2009. Vol. 45. P. 978-987. 11. Rydzykowski, W. & Wojewódzka-Król, K. Transport. Warszawa: PWN. 2009 [In Polish: Transport. Warsaw: PWN] 12. Sahin, B. & Yilmaz, H. & Ust, Y. & Guneri, A.F. & Gulsun, B. An approach for analyzing transportation costs and a case study. European Journal of Operational Research. 2007. Vol. 193. P. 1-11. Received 22.03.2012; accepted in revised form 25.08.2013