Podstawowe typy serwerów

Podobne dokumenty
Serwer współbieżny połączeniowy

Podstawowe typy serwerów

Serwery współbieżne c.d.

Iteracyjny serwer TCP i aplikacja UDP

Literatura uzupełniająca: W. Richard Stevens, Programowanie zastosowań sieciowych w systemie Unix WNT 1998

Gniazda BSD. komunikacja bezpołączeniowa

Klient-Serwer Komunikacja przy pomocy gniazd

Architektura typu klient serwer: przesyłanie pliku tekstowo oraz logowania do serwera za pomocą szyfrowanego hasła

Gniazda UDP. Bartłomiej Świercz. Łódź, 3 kwietnia Katedra Mikroelektroniki i Technik Informatycznych. Bartłomiej Świercz Gniazda UDP

Programowanie z wykorzystaniem gniazd

Model OSI/ISO. Komputer B. Warstwy w modelu OSI aplikacji. aplikacji. prezentacji Komputer A. prezentacji. sesji. sesji. komunikacja wirtualna

Przykłady interfejsu TCP i UDP w Javie

Schemat dla UDP. = możliwe zablokowanie aplikacji KLIENT SERWER. s=socket(...) bind(s,...) recvfrom(s,...) sendto(s,...) recvfrom(s,...

Programowanie współbieżne i rozproszone

JAVA I SIECI. MATERIAŁY:

Gniazda BSD implementacja w C#

Programowanie przy użyciu gniazdek

Programowanie Sieciowe 1

Komunikacja międzyprocesowa. Krzysztof Banaś Systemy rozproszone 1

Instrukcja do laboratorium Systemów Operacyjnych. (semestr drugi)

Programowanie sieciowe

Gniazda BSD. Procesy w środowisku sieciowym. Gniazda podstawowe funkcje dla serwera. Gniazda podstawowe funkcje dla klienta

3. Identyfikacja. SKŁADNIA #include <sys/socket.h> int getpeername(int socket, struct sockaddr *addr, int *addrlen);

Sieci komputerowe. Wykład 7: Transport: protokół TCP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Aplikacja wielowątkowa prosty komunikator

Komunikacja z użyciem gniazd aplikacje klient-serwer

Zwielokrotnianie wejścia wyjścia

5. Algorytmy serwera

PROTOKOŁY WARSTWY TRANSPORTOWEJ

Komunikacja sieciowa - interfejs gniazd

Programy typu klient serwer. Programowanie w środowisku rozproszonym. Wykład 5.

Protokół UDP UDP (User Datagram Protocol) . [

Wybrane działy Informatyki Stosowanej

Transport. część 2: protokół TCP. Sieci komputerowe. Wykład 6. Marcin Bieńkowski

Aplikacja wielow tkowa prosty komunikator

Zadanie 2: transakcyjny protokół SKJ (2015)

TCP - receive buffer (queue), send buffer (queue)

ZESZYTY ETI ZESPOŁU SZKÓŁ W TARNOBRZEGU Nr 1 Seria: Teleinformatyka 2013

Gniazda surowe. Bartłomiej Świercz. Łódź,9maja2006. Katedra Mikroelektroniki i Technik Informatycznych. Bartłomiej Świercz Gniazda surowe

Obiekty sieciowe - gniazda Komputery w sieci Internet komunikują się ze sobą poprzez:

Programowanie w języku Java

Gniazda. S. Samolej: Gniazda 1

Łącza nienazwane(potoki) Łącza nienazwane mogą być używane tylko pomiędzy procesami ze sobą powiązanymi.

5. Model komunikujących się procesów, komunikaty

Transport. część 2: protokół TCP. Sieci komputerowe. Wykład 6. Marcin Bieńkowski

Programowanie aplikacji w architekturze Klient-Serwer - UDP

Ćwiczenie 1. Kolejki IBM Message Queue (MQ)

Systemy rozproszone. Krzysztof Banaś Obliczenia równoległe 1

Aplikacja Sieciowa wątki po stronie klienta

Java programowanie w sieci. java.net RMI

Sieci komputerowe. Wykład 5: Warstwa transportowa: TCP i UDP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Programowanie aplikacji równoległych i rozproszonych. Wykład 4

Platformy Programistyczne Zagadnienia sieciowe i wątki

Programowanie sieciowe

Krótkie wprowadzenie do korzystania z OpenSSL

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Współbieżność, tunelowanie i kapsułkowanie, XDR i RPC

RPC. Zdalne wywoływanie procedur (ang. Remote Procedure Calls )

Proxy (pełnomocnik) Cel: Zastosowanie: Dostarczyć zamiennik pewnego obiektu, pozwalający kontrolować dostęp do niego.

Architektura typu klient serwer: uproszczony klient POP3

Programowanie rozproszone w języku Java

socket(int domain, int type, int protocol)

Mechanizmy pracy równoległej. Jarosław Kuchta

Tworzenie i wykorzystanie usług

1. Model klient-serwer

MODEL WARSTWOWY PROTOKOŁY TCP/IP

Komunikacja międzyprocesowa. Krzysztof Banaś Systemy rozproszone 1

Aplikacje RMI. Budowa aplikacji rozproszonych. Część 2.

1. Co można powiedzieć o poniższym kodzie? public interface I { void m1() {}; static public void m2() {}; void abstract m3();

Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna

Gniazda komunikacji sieciowej w środowisku Java

Komunikacja za pomocą potoków. Tomasz Borzyszkowski

Networking. Zaawansowane technologie Javy 2019

Aplikacje RMI

Gniazda - Wstęp. Oprogramowanie systemów równoległych i rozproszonych. Sposób komunikacji. Domena adresowa. olas@icis.pcz.pl

SUMA KONTROLNA (icmp_cksum) NUMER KOLEJNY (icmp_seq)

Dokumentacja wstępna TIN. Rozproszone repozytorium oparte o WebDAV

Podstawy i języki programowania

Laboratorium 03: Podstawowe konstrukcje w języku Java [2h]

Programowanie obiektowe

Laboratorium - Przechwytywanie i badanie datagramów DNS w programie Wireshark

Tryb bezpołączeniowy (datagramowy)

Warstwa transportowa. Warstwa transportowa. Enkapsulacja. Zapewnienie niezawodnego przesyłania danych /wg ISO/ Transmisja bezpołączeniowa

Współbieżność w środowisku Java

Kurs programowania. Wykład 1. Wojciech Macyna. 3 marca 2016

1.1 Przykład znajdowanie liczb pierwszych leżących w zadanym zakresie, tryb bezpołączeniowy

Instytut Teleinformatyki

Laboratorium Systemów Operacyjnych. Ćwiczenie 4. Operacje na plikach

4. Procesy pojęcia podstawowe

Aplikacje internetowe i rozproszone - laboratorium

Sieci komputerowe Warstwa transportowa

Adresy URL. Zaawansowane technologie Javy 2019

Java. Wykład. Dariusz Wardowski, Katedra Analizy Nieliniowej, WMiI UŁ

2. Interfejs gniazd Gniazdo

Aplikacja Sieciowa. Najpierw tworzymy nowy projekt, tym razem pracować będziemy w konsoli, a zatem: File->New- >Project

Tunelowanie, kapsułkowanie, XDR. 1. Transmisja tunelowa i kapsułkowanie serwery proxy. 2. Zewnętrzna reprezentacja danych XDR.

Sieci komputerowe 1 DSRG

1. Co można powiedzieć o poniższym kodzie (zakładając, że znajduje się on w jednym pliku A.java)?

Komponenty sterowane komunikatami

1. Co będzie wynikiem wykonania poniŝszych instrukcji? g2d.gettransform().scale(1, -1); g2d.gettransform().translate(4, -8); g2d.drawline(4, 0, 4, 4);

Transkrypt:

Podstawowe typy serwerów 1. Algorytm serwera. 2. Cztery podstawowe typy serwerów. iteracyjne, współbieżne, połączeniowe, bezpołączeniowe. 3. Problem zakleszczenia serwera. 4. Serwery współbieżne serwery połączeniowe, usuwanie zakończonych procesów, serwery bezpołączeniowe, 5. Jednoprocesowe serwery współbieżne. koncepcja i implementacja. 1

Algorytm serwera 1. Utworzenie gniazda powiązanego z odpowiednim portem, pod którym będą przyjmowane zgłoszenia. 2. Przyjęcie zgłoszenia od klienta. 3. Obsługa zgłoszenia. przetwarzanie danych, sformatowanie i wysłanie odpowiedzi. 4. Powrót do punktu 2. 2

Serwery współbieżne i iteracyjne Serwer iteracyjny obsługuje zgłoszenia sekwencyjnie. Jest łatwiejszy do zaprojektowania i konserwacji, jednak średni czas obsługi klienta może być długi ze względu na oczekiwanie przed rozpoczęciem obsługi zgłoszenia. Serwer współbieżny może obsługiwać kilka zgłoszeń równocześnie. Zwykle zapewnia krótszy czas obsługi ale jest trudniejszy do zaprojektowania niż serwer iteracyjny. Termin serwer współbieżny jest używany niezależnie od tego, czy implementacja jest oparta na współbieżnie działających procesach czy też nie. 3

Serwery połączeniowe i bezpołączeniowe Nawiązywanie logicznego połączenia zależy od protokołu warstwy transportowej, z którego korzysta klient, aby uzyskać dostęp do serwera. Serwer używający protokołu TCP jest serwerem połączeniowym, natomiast serwer używający protokołu UDP jest serwerem bezpołączeniowym. Przy projektowaniu serwera trzeba pamiętać o tym, że protokół wykorzystywany przez warstwę aplikacji (zastosowań) może dodatkowo narzucać różne ograniczenia dla protokołu warstwy transportowej. 4

Serwery połączeniowe Serwer przyjmuje od klienta zgłoszenie połączenia i po jego nawiązaniu używa tego połączenia do komunikacji z klientem, który je zainicjował. Po zakończeniu interakcji połączenie jest zamykane. Podstawowe zalety: niezawodność transmisji danych zapewniana przez protokół transportowy (TCP), łatwość zaprojektowania i implementacji. Podstawowe wady: oddzielne gniazdo dla każdego połączenia (zasoby systemowe), wrażliwość na awarie programów klienckich. 5

Serwery bezpołączeniowe Komunikacja pomiędzy klientem i serwerem odbywa się bez nawiązywania połączenia (UDP). Podstawowe zalety: mniejsze ryzyko wyczerpania zasobów serwera, wydajna transmisja danych, możliwość pracy w trybie rozgłoszeniowym. Podstawowe wady: konieczność zapewnienia odpowiedniego poziomu niezawodności transmisji wymaganej przez aplikacje wbudowanie zabezpieczeń w protokół warstwy aplikacji, problemy przy przenoszeniu aplikacji z sieci lokalnej do sieci rozległej. 6

Serwery bezstanowe i wielostanowe Serwery rejestrujące informację o stanie interakcji z klientami nazywamy serwerami wielostanowymi, natomiast te które nie przechowują takiej informacji, bezstanowymi. Zagadnienie bezstanowości serwerów musi być rozważane m. in. w związku z problemem zapewnienia niezawodności transmisji (UDP), jak również w zależności od używanego protokołu aplikacyjnego: serwery bezstanowe: ECHO, TIME, serwery wielostanowe: POP, IMAP, SMTP. 7

Optymalizacja serwerów bezstanowych Optymalizacja serwera bezstanowego wymaga wielkiej ostrożności, ponieważ przechowywanie nawet niewielkiej ilości informacji o stanie interakcji może doprowadzić do wyczerpania zasobów w razie częstych awarii i wznowień programów klienckich lub w razie błędów transmisji, polegających na powielaniu komunikatów albo dostarczaniu ich z opóźnieniem. 8

Podstawowe typy serwerów Można wyróżnić cztery podstawowe typy serwerów: iteracyjne bezpołączeniowe, iteracyjne połączeniowe, współbieżne bezpołączeniowe, współbieżne połączeniowe. Ocena działania serwera: czas przetwarzania zgłoszenia, obserwowany czas odpowiedzi. 9

Problem zakleszczenia serwera Niepoprawnie działający klient może spowodować zakleszczenie serwera jednoprocesowego, jeśli serwer używa funkcji systemowych, których wykorzystanie może zablokować proces serwera w trakcie wysyłania lub odbierania danych od klienta (np. funkcje read() lub write()). Podatność na zakleszczenie jest poważną wadą serwera, ponieważ oznacza, że określone zachowanie jednego klienta może uniemożliwić serwerowi obsługę innych klientów. 10

Iteracyjny serwer połączeniowy Schemat struktury iteracyjnego serwera połączeniowego. proces serwera połączeniowego gniazdo pierwotne gniazdo Gniazdo pierwotne jest związane z powszechnie znanym portem odpowiadającym realizowanej przez serwer usłudze. Za jego pośrednictwem proces serwera oczekuje na połączenia klientów. Po nawiązaniu połączenia tworzone jest osobne gniazdo przeznaczone do komunikacji z klientem. 11

Iteracyjny serwer połączeniowy Zwykle najprostszy w implementacji jest algorytm iteracyjnego serwera połączeniowego. 1. Utwórz gniazdo i zwiąż je z powszechnie znanym adresem odpowiadającym usłudze udostępnionej przez serwer. 2. Ustaw bierny tryb pracy gniazda. 3. Przyjmij zgłoszenie połączenia nadesłane na adres gniazda. Uzyskaj nowe gniazdo do obsługi tego połączenia. 4. Odpowiadaj na komunikaty klienta zgodnie z obsługiwanym protokołem. 5. Po zakończeniu obsługi zamknij połączenie i wróć do kroku 3. 12

Powiązanie gniazda z usługą Do powiązania gniazda z określoną usługą służy funkcja bind() zadeklarowana w pliku sys/socket.h: int bind(int s, const struct sockaddr *address, int len); gdzie: s deskryptor gniazda zwrócony przez funkcję socket(), address wskaźnik do struktury zawierającej adres internetowy klienta. W przypadku programu serwera zwykle address wskazuje na tzw. adres wieloznaczny zdefiniowany stałą INADDR_ANY, len rozmiar struktury wskazywanej przez address. Wartość zwracana: 0 w przypadku powodzenia, -1 w przypadku błędu ustawiana zmienna errno. 13

Tryb bierny gniazda Do ustawienia gniazda w tryb bierny służy funkcja listen() zadeklarowana w pliku sys/socket.h: int listen(int s, int qlen); gdzie: s deskryptor gniazda związanego z usługą, qlen długość wewnętrznej kolejki zgłoszeń związanej z gniazdem maksymalnie SOMAXCONN, Wartość zwracana: 0 w przypadku powodzenia, -1 w przypadku błędu ustawiana zmienna errno. 14

Utworzenie biernego gniazda #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <netdb.h> #include <stdio.h> #include <errno.h> int passivesock(char *service, char *protocol, int qlen){ struct servent *pse; struct protoent *ppe; struct sockaddr_in sin; int type, s; 15

Utworzenie biernego gniazda bzero((char*) &sin, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_addr.s_addr = INADDR_ANY; if (pse = getservbyname(service, protocol)){ sin.sin_port = pse->s_port; else if ((sin.sin_port = htons((u_short)atoi(service)))==0){ fprintf(stderr, "getservbyname: %s\n", strerror(errno)); return -1; if ((ppe = getprotobyname(protocol))==null){ fprintf(stderr, "getprotobyname: %s\n", strerror(errno)); return -1; if (strcmp(protocol, "udp")==0){ type = SOCK_DGRAM; else{ type = SOCK_STREAM; 16

Utworzenie biernego gniazda if ((s = socket(pf_inet, type, ppe->p_proto))<0){ fprintf(stderr, "socket: %s\n", strerror(errno)); return -1; if(bind(s, (struct sockaddr *)&sin, sizeof(sin))<0){ fprintf(stderr, "bind: %s\n", strerror(errno)); return -1; if (type==sock_stream && listen(s, qlen)<0){ fprintf(stderr, "listen: %s\n", strerror(errno)); return -1; return s; 17

Przyjmowanie połączeń Do przyjmowania zgłoszenia połączenia służy funkcja accept() zadeklarowana w pliku sys/socket.h: int accept(int s, struct sockaddr *address, int *len); gdzie: s deskryptor gniazda dla którego wywołano funkcje bind() i listen(), address wskaźnik do struktury, w którą zostaną wpisane dane o adresie klienta. len wskaźnik do zmiennej określającej rozmiar struktury *address. Wartość zwracana: deskryptor gniazda utworzonego w celu obsługi połączenia lub -1 w przypadku błędu ustawiana zmienna errno. 18

Obsługa połączenia Po zaakceptowaniu połączenia transmisja danych odbywa się z wykorzystaniem funkcji read() i write(). Po zakończeniu wymiany danych deskryptor przyznanego przez accept() gniazda powinien zostać zwolniony za pomocą funkcji close(). 19

Iteracyjny serwer połączeniowy Serwer usługi ECHO: Stałe LINELEN i TESTPORT powinny być zdefiniowane w programie głównym. int svr_echo_tcp(){ int s1, s2, alen; struct sockaddr_in sin; alen = sizeof(sin); if((s1=passivesock(testport, "tcp", 10))<0){ fprintf(stderr, "passivesock: %s\n", strerror(errno)); return -1; printf("tcp echo serwer uruchomiony\n"); 20

Iteracyjny serwer połączeniowy while(1){ if((s2=accept(s1, (struct sockaddr *)&sin, &alen))<0){ fprintf(stderr, "accept: %s\n", strerror(errno)); return -1; echod(s2); if (close(s2)<0){ fprintf(stderr, "close: %s\n", strerror(errno)); return -1; 21

Iteracyjny serwer połączeniowy Funkcja echod() obsługuje komunikację z klientem. int echod(int s){ char buf[linelen+1]; int n; while(n=read(s, buf, LINELEN)){ if (n<0){ fprintf(stderr, "read: %s\n", strerror(errno)); return -1; if (write(s, buf, n)<0){ fprintf(stderr, "write: %s\n", strerror(errno)); return -1; buf[n] = '\0'; printf("%s", buf); return 1; 22

Zakleszczenia Zaprezentowany serwer iteracyjny jest wrażliwy na na niepoprawne działanie klientów. Program serwera zawiera instrukcje, które mogą prowadzić do zakleszczenia: read() - wstrzymuje działanie programu do czasu odebrania danych, lub osiągnięcia,,końca pliku. W przypadku gdy klient nie wyśle danych ani nie zamknie połączenia serwer zatrzyma się. Podobny scenariusz może mieć miejsce w instrukcji close(). write() - wstrzymuje działanie programy do czasu przekazania wysyłanych danych do protokołu warstwy transportowej (TCP). Jeśli serwer będzie generował nowe komunikaty a klient nie będzie ich odbierał, to po pewnym czasie bufory TCP po obu stronach zostaną wypełnione. Kolejna instrukcja write() zatrzyma serwer. 23

Iteracyjny serwer połączeniowy import java.io.ioexception; import java.io.inputstream; import java.io.outputstream; import java.net.serversocket; import java.net.socket; public class EchoTCPServer { public static void main(string args[]){ Socket s; OutputStream os; InputStream is; byte[] buffer = new byte[100]; int i; 24

Iteracyjny serwer połączeniowy try { ServerSocket ss = new ServerSocket(TESTPORT); while(true){ s = ss.accept(); is = s.getinputstream(); os = s.getoutputstream(); while (true){ if ((i = is.read(buffer))<0){ break; os.write(buffer, 0, i); s.close(); catch (IOException e) { e.printstacktrace(); 25

Itewracyjny serwer bezpołączeniowy Schemat struktury iteracyjnego serwera bezpołączeniowego. proces serwera bezpołączeniowego gniazdo Jeden proces serwera komunikuje się kolejno z wieloma klientami przez jedno gniazdo. Gniazdo to jest związane z powszechnie znanym portem odpowiadającym realizowanej przez serwer usłudze. 26

Iteracyjny serwer bezpołączeniowy Iteracyjne serwery bezpołączeniowe są używane do zadań, w których czas przetwarzania danych jest krótki. Transport bezpołączeniowy pozwala też na efektywne przesyłanie niewielkiej ilości danych. 1. Utwórz gniazdo i zwiąż je z powszechnie znanym adresem odpowiadającym usłudze udostępnionej przez serwer. 2. Odpowiadaj na kolejne komunikaty otrzymywane od klientów zgodnie z obsługiwanym protokołem. 27

Adresowanie odpowiedzi W przypadku serwerów bezpołączeniowych do komunikacji nie można używać funkcji read() i write(), ponieważ ograniczają one możliwość wymiany datagramów przez gniazdo do komunikacji z jednym komputerem i jednym portem na tym komputerze. Co więcej bez nawiązania połączenia funkcją connect() nie ma zdefiniowanego żadnego adresu docelowego do transmisji przez utworzone wcześniej gniazdo. Problem można rozwiązać używając funkcji recvfrom() i sendto(). 28

Odbieranie danych Do obierania danych od klientów w serwerach bezpołączeniowych używa się funkcji recvfrom() zdeklarowaną w pliku sys/socket.h. int recvfrom(int s, char *buffer, int blen, int flags, struct sockaddr *address, int *alen); s deskryptor gniazda, buffer wskaźnik do bufora o długości blen, w którym zostaną umieszczone odebrane dane, flags parametr kontrolujący odbiór wiadomości. Może składać się z MSG_PEEK, MSG_OOB, MSG_WAITALL. Zwykle używa się wartości 0, address wskaźnik do struktury o rozmiarze *alen, w którą zostaną wpisane dane o adresie klienta. Wartość zwracana: długość wiadomości lub -1 w przypadku błędu (errno). 29

Wysyłanie danych Do wysyłania danych do klientów w serwerach bezpołączeniowych używa się funkcji sendto() zdeklarowaną w pliku sys/socket.h. int sendto(int s, char *buffer, int blen, int flags, struct sockaddr *address, int alen); s deskryptor gniazda, buffer wskaźnik do bufora z danymi do wysłania, blen - rozmiar komunikatu, flags parametr kontrolujący wysyłanie danych. Może składać się z MSG_OOB, MSG_DONTROUTE. Zwykle używa się wartości 0, address wskaźnik do struktury o rozmiarze alen, określającą adresata wiadomości. Wartość zwracana: liczba wysłanych bajtów lub -1 w przypadku błędu (errno). 30

Iteracyjny serwer bezpołączeniowy int svr_echo_udp(){ int s, alen; struct sockaddr_in sin; char buf[linelen+1]; alen = sizeof(sin); if ((s=passivesock(testport, "udp", 0))<0){ fprintf(stderr, "passivesock: %s\n", strerror(errno)); return -1; printf("udp echo serwer uruchomiony\n"); 31

Iteracyjny serwer bezpołączeniowy while(1){ if (recvfrom(s, buf, sizeof(buf), 0, (struct sockaddr *)&sin, &alen)<0){ fprintf(stderr, "recvfrom: %s\n", strerror(errno)); return -1; if (sendto(s, buf, strlen(buf)+1, 0, (struct sockaddr *)&sin, sizeof(sin))<0){ fprintf(stderr, "sendto: %s\n", strerror(errno)); return -1; printf("odeslalem: %s\n", buf); Serwer działa w nieskończonej pętli realizując kolejne żądania klientów. Do kontaktów z wszystkimi klientami jest używane jedno gniazdo. 32

Serwer współbieżny Zasadniczym powodem stosowania mechanizmu współbieżności w serwerach jest potrzeba zapewnienia krótkiego czasu odpowiedzi w warunkach obsługi wielu klientów. Współbieżność skraca obserwowany czas odpowiedzi gdy: przygotowanie odpowiedzi wymaga czasochłonnych operacji wejścia wyjścia, występują znaczne różnice czasu przetwarzania dla różnych zgłoszeń, serwer działa na komputerze wieloprocesorowym. Wyższa wydajność jest uzyskiwana zwykle przez zrównoleglenie przetwarzania danych z operacjami wejścia wyjścia. 33

Serwer współbieżny połączeniowy Proces główny: 1. Utwórz gniazdo i zwiąż je z powszechnie znanym adresem odpowiadającym usłudze udostępnionej przez serwer bind(). 2. Ustaw bierny tryb pracy gniazda listen(). 3. Przyjmij zgłoszenie połączenia nadesłane na adres gniazda - accept(). Utwórz nowy proces podporządkowany fork() odpowiedzialny za obsługę tego połączenia. 4. Wróć do kroku 3. 34

Serwer współbieżny połączeniowy Proces podporządkowany: 1. Przejmij od procesu głównego nawiązane połączenie. 2. Korzystając z otrzymanego gniazda prowadź interakcję z klientem zgodnie z protokołem warstwy aplikacji read(), write(). 3. Zwolnij gniazdo close() i zakończ działanie exit(). Współbieżność w działaniu serwerów typu połączeniowego polega na zrównolegleniu obsługi wielu połączeń, a nie poszczególnych zapytań. 35

Serwer współbieżny połączeniowy Schemat struktury współbieżnego serwera połączeniowego. proces główny gniazdo pierwotne proces potomny 1 proces potomny 2... proces potomny n gniazdo gniazdo gniazdo Proces główny przyjmuje zgłoszenia połączeń. Do obsługi każdego połączenia tworzony jest proces podporządkowany. 36

Usuwanie procesów po ich zakończeniu Procesy potomne po obsłużeniu klienta kończą pracę. W systemach UNIX powinny one dodatkowo zostać zakończone przez proces macierzysty. W przeciwnym razie będą nadal egzystować w systemie. W chwili zakończenia procesu potomnego proces macierzysty otrzymuje sygnał SIGCHILD. Dzięki temu może on zakończyć proces potomny używając instrukcji signal(sigchild, gc); gdzie gc jest wskaźnikiem do przykładowej funkcji: void gc(int i){ while(waitpid(-1, NULL, WNOHANG)<=0) ; 37

Serwer współbieżny połączeniowy svr_con_echo_tcp(){ int s1, s2, alen; struct sockaddr_in sin; if((s1=passivesock(testport, "tcp", 10))<0){ fprintf(stderr, "passivesock: %s\n", strerror(errno)); return -1; signal(sigchld, gc); while(1){ alen = sizeof(sin); if((s2=accept(s1, (struct sockaddr *)&sin, &alen))<0){ if(errno==eintr){ continue; fprintf(stderr, "accept: %s\n", strerror(errno)); return -1; 38

Serwer współbieżny połączeniowy switch(fork()){ case 0: // proces potomny close(s1); echod(s2); if (close(s2)<0){ fprintf(stderr, "close: %s\n", strerror(errno)); return -1; exit(1); default: // proces macierzysty close(s2); break; case -1: fprintf(stderr, "fork: %s\n", strerror(errno)); return -1; // switch 39

Serwer współbieżny połączeniowy Współbieżne serwery połączeniowe jednocześnie komunikują się z wieloma klientami. W zaprezentowanym przykładzie proces główny tworzy nowy proces podporządkowany dla każdego zgłoszonego połączenia. Proces potomny obsługuje klienta po czym zamyka połączenie i kończy działanie. Proces główny bezpośrednio nie kontaktuje się z klientami. 40

Serwer współbieżny bezpołączeniowy Proces główny 1. Utwórz gniazdo i zwiąż je z powszechnie znanym adresem odpowiadającym usłudze udostępnionej przez serwer - bind(). 2. Ustaw bierny tryb pracy gniazda - listen(). 3. Odbierz kolejne zapytanie od klientów - recvfrom(). Utwórz nowy proces podporządkowany fork(), który przygotuje odpowiedź. 4. Przejdź do punktu 3. 41

Serwer współbieżny bezpołączeniowy Proces podporządkowany: 1. Przejmij od procesu głównego dostęp do gniazda. 2. Skonstruuj odpowiedź zgodnie z używanym protokołem i wyślij ją do klienta sendto(). 3. Zakończ działanie exit(). Z powodu znacznego kosztu operacji tworzenia nowego procesu istnieje niewiele współbieżnych realizacji serwerów bezpołączeniowych. 42

Serwer współbieżny bezpołączeniowy import java.io.ioexception; import java.net.datagrampacket; import java.net.datagramsocket; import java.net.inetaddress; public class EchoConcurentUDPServer { private static final int LINELEN = 100; public static void main(string[] args) { if (args.length<1){ System.out.println( "wywolanie java EchoConcurentUDPServer port"); return; DatagramPacket p; DatagramSocket s=null; 43

Serwer współbieżny bezpołączeniowy try { s = new DatagramSocket(Integer.parseInt(args[0])); while(true){ p = new DatagramPacket(new byte[linelen], LINELEN); s.receive(p); Thread t = new Thread(new Worker(s,p)); t.start(); System.out.println("otrzymano :" + new String(p.getData(), 0, p.getlength())); catch (Exception e) { e.printstacktrace(); finally { if (s!=null){ s.close(); 44

Serwer współbieżny bezpołączeniowy private static class Worker implements Runnable{ private DatagramPacket request; private DatagramSocket socket; /** * Konstruktor * @param ds gniazdo uzywane do transmisji * @param dp pakiet zawierający żądanie obsługi */ public Worker(DatagramSocket ds, DatagramPacket dp){ this.socket = ds; this.request = dp; 45

Serwer współbieżny bezpołączeniowy public void run() { byte[] ba = this.request.getdata(); int length = this.request.getlength(); InetAddress ia = this.request.getaddress(); int port = this.request.getport(); DatagramPacket response = new DatagramPacket(ba, 0, length, ia, port); try { this.socket.send(response); System.out.println("wyslano :" + new String(response.getData(), 0, response.getlength())); catch (IOException e) { e.printstacktrace(); 46

Pozorna współbieżność w jednym procesie 1. Utwórz gniazdo i zwiąż je z powszechnie znanym adresem odpowiadającym usłudze udostępnionej przez serwer bind() oraz listen(). 2. Czekaj na zdarzenia dotyczące istniejących gniazd. 3. W razie gotowości pierwotnie utworzonego gniazda przyjmij zgłoszenie połączenia nadesłane na adres gniazda - accept(). Dodaj nowe gniazdo do listy obsługiwanych gniazd. 4. W razie gotowości innego gniazda używaj funkcji read() oraz write() w celu komunikacji z wcześniej połączonym klientem. 5. Wróć do punktu 2. 47

Pozorna współbieżność w jednym procesie Pozorna współbieżność może być stosowana jeśli: korzyści z rzeczywistej współbieżności są mniejsze niż koszt tworzenia nowego procesu, kilka połączeń jest obsługiwane z wykorzystaniem wspólnego zbioru danych, dane są przekazywane pomiędzy niezależnymi połączeniami. Przykład: X-Windows. 48

Jednoprocesowe serwery współbieżne Schemat struktury współbieżnego serwera połączeniowego. proces główny gniazdo pierwotne gniazdo gniazdo... gniazdo Proces główny przyjmuje zgłoszenia połączeń; do obsługi każdego połączenia tworzony wykorzystywane jest osobne gniazdo. 49

Sprawdzenie stanu gniazd W celu wybrania gniazda, do którego przyszedł komunikat można użyć funkcji select() zadeklarowanej w pliku unistd.h: int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); readfds, writefds, exceptfds zbiory obserwowanych deskryptorów ze względu na gotowość do odczytu, zapisu oraz wystąpienia wyjątków. Po wykonaniu funkcji wskaźniki zostaną wypełnione zbiorami deskryptorów, dla których zaszło odpowiednie zdarzenie. n największy deskryptor ze wszystkich trzech zbiorów plus 1. timeout maksymalny czas oczekiwania na powrót z funkcji. 0 powrót natychmiastowy, NULL potencjalnie nieskończony czas oczekiwania. Zwraca: liczbę znalezionych deskryptorów lub -1 w przypadku błędu. 50

Sprawdzanie stanu gniazd W pliku sys/types.h zdefiniowano cztery makra przeznaczone do operowania na zbiorach deskryptorów: FD_ZERO(fd_set *set) usuwa wszystkie deskryptory ze zbioru *set, FD_SET(int fd, fd_set *set) dodaje deskryptor fd do zbioru *set, FD_CRL(int fd, fd_set *set) usuwa deskryptor fd ze zbioru *set, FD_ISSET(int fd, fd_set *set) sprawdza, czy deskryptor fd znajduje się w zbiorze *set. Zwykle używane po wykonaniu funkcji select(). 51

Przykład: C svr_pseudocon_echo_tcp(){ int s0, s, maxs, alen; struct sockaddr_in sin; fd_set afds, //zbiór aktywnych deskryptorów rdfs; //zbiór znalezionych deskryptorów w funkcji select() if((s0=passivesock(testport, "tcp", 10))<0){ fprintf(stderr, "passivesock: %s\n", strerror(errno)); return -1; maxs = s0; FD_ZERO(&afds); FD_SET(s0, &afds); 52

Przykład: C while(1){ bcopy((char *)&afds, (char *)&rdfs, sizeof(afds)); if (select(maxs+1, &rdfs, NULL, NULL, 0)<0){ fprintf(stderr, "select: %s\n", strerror(errno)); return -1; if (FD_ISSET(s0, &rdfs)){ //nowe połączenie alen = sizeof(sin); if((s=accept(s0, (struct sockaddr *)&sin, &alen))<0){ fprintf(stderr, "accept: %s\n", strerror(errno)); return -1; FD_SET(s, &afds); if (s>maxs) maxs = s; // if 53

Przykład: C for (s=0; s<=maxs; s++){ // nawiązane połączenia if(s!=s0 && FD_ISSET(s, &rdfs)){ echod(s); if (close(s)<0){ fprintf(stderr, "close: %s\n", strerror(errno)); return -1; FD_CLR(s, &afds); //for //while 54

Przykład: Java import java.io.ioexception; import java.io.inputstream; import java.io.outputstream; import java.net.serversocket; import java.net.socket; import java.net.sockettimeoutexception; import java.util.enumeration; import java.util.vector; public class EchoPseudoConcurentTCPServer { private static final int LINELEN = 100; public static void main(string args[]){ Socket s; OutputStream os; InputStream is; int i; if (args.length<1){ System.out.println("wywolanie java EchoPseudoConcurentTCPServer port"); return; 55

Przykład: Java byte[] buffer = new byte[linelen]; Vector v = new Vector(); Enumeration e; try { ServerSocket ss = new ServerSocket( Integer.parseInt(args[0])); ss.setsotimeout(1); v.clear(); while(true){ try{ s = ss.accept(); catch (SocketTimeoutException ex){ s = null; if (s!=null){ s.setsotimeout(1); v.add(s); 56

Przykład: Java for(e=v.elements(); e.hasmoreelements(); ){ s = (Socket)e.nextElement(); is = s.getinputstream(); os = s.getoutputstream(); try{ i = is.read(buffer); catch(sockettimeoutexception ex){ continue; if (i>0){ os.write(buffer, 0, i); System.out.println("wyslano :" + new String(buffer, 0, i)); catch (IOException ex) { ex.printstacktrace(); 57

Jednoprocesowe serwery współbieżne Serwery jednoprocesowy wykonuje wszystkie zadania zarówno procesu głównego jak i procesów podporządkowanych serwera wieloprocesowego. Po zgłoszeniu gotowości przez gniazdo główne, serwer nawiązuje nowe połączenie. Gdy jest gotowe do obsługi którekolwiek z pozostałych gniazd, serwer czyta zapytanie nadesłane przez klienta i odsyła odpowiedź. 58

Porównanie serwerów Serwer iteracyjny czy współbieżny. iteracyjny - prostszy do zaprogramowania i konserwacji, współbieżny krótszy czas oczekiwania na odpowiedź. Współbieżność rzeczywista czy pozorna. rzeczywista połączenia obsługiwane niezależnie, pozorna niezależne połączenia korzystają lub wymieniają wspólne dane. Serwer bezpołączeniowy czy połączeniowy. bezpołączeniowy sieć lokalna, małe prawdopodobieństwo błędów transmisji, połączeniowy wszystkie pozostałe zastosowania. 59

Podsumowanie W ramach wykładu zostały zaprezentowane przykładowe implementacje podstawowych, omawianych wcześniej typów serwerów, z wykorzystaniem mechanizmów dostępnych w systemach UNIX. Serwery iteracyjne są zwykle prostsze do implementacji jednak nie zapewniają szybkiej reakcji serwera w przypadku dużego obciążenia. W takim przypadku często lepiej zaprojektować i zaimplementować serwer współbieżny. Serwery bezpołączeniowe są dosyć odporne na różne awarie sieci. W przypadku serwerów połączeniowych dodatkowo mogą wystąpić problemy związane z zakleszczeniami. Ważne funkcje: bind(), listen(), accept(), recvfrom(), sendto(), select(). 60