Krótkie wprowadzenie do korzystania z OpenSSL
|
|
- Bogna Bielecka
- 9 lat temu
- Przeglądów:
Transkrypt
1 Krótkie wprowadzenie do korzystania z OpenSSL Literatura: E. Rescola, "An introduction to OpenSSL Programming (PartI)" ( "An introduction to OpenSSL Programming (PartII)" ( Biblioteka OpenSSL Pliki nagłówkowe #include <openssl/error.h> Kompilacja programu gcc o serwer serwer.c lcrypto lssl gcc o klient klient.c lcrypto lssl Inicjalizacja biblioteki #include <openssl/err.h> SSL_library_init(); OpenSSL_add_all_algoritms(); Struktury wykorzystywane przez bibliotekę SSL_METHOD Pozwala określić metodę kryptograficzną wykorzystywana do komunikacji: SSLv1, SSLv2,..., TLSv1 my_ssl_method = TLSv1_method(); 1
2 SSL_CTX Określa kontekst komunikacji serwera, czyli jakiej konfiguracji oczekujemy. Wykorzystywana jest do tworzenia obiektu reprezentującego każde połączenie. // utwórz nowy kontekst my_ssl_ctx = SSL_CTX_new(my_ssl_method); // lokalizacja plików z kluczem prywatnym i certyfikatów SSL_CTX_use_certificate_file(my_ssl_ctx,"server.pem",SSL_FILETYPE_PEM); SSL_CTX_usePrivateKey_file(my_ssl_ctx,"server.pem",SSL_FILETYPE_PEM); //Weryfikacja klucza prywatnego if (SSL(SSL_CTX_check_private_key(my_ssl_ctx) // klucz działa else // niepoprawny klucz BIO Interfejs pozwalający czyta/zapisywać dane z różnych źródeł we/wy (gniazd, terminala, buforów pamięci, itd.) SSL Struktura zarządzająca danymi niezbędnymi do korzystania z bezpiecznego połączenia. Jest tworzona dla każdego połączenia. // połączenie struktury z kontekstem my_ssl = SSL_new(my_ssl_ctx); // połączenie struktury z gniazdem opisanym za pomocą deskryptora fd SSL_set_fd(my_ssl, fd) //server if (SSL_accept(my_ssl) <= 0) // wystapiły błędy else // nawiązano bezpieczne połączenie //klient if (SSL_connect(my_ssl) <= 0) // wystapiły błędy else // nawiązano bezpieczne połączenie // uzyskanie informacji o połączeniu printf("[%s,%s]\n", SSL_get_version(my_ssl), SSL_get_cipher(my_ssl)); 2
3 A. Przykład klienta Działamy w oparciu o powiązanie z deskryptorami plików. #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <netdb.h> #include <unistd.h> #include <arpa/inet.h> /* SSL includes */ #include <openssl/err.h> int main(int argc, char *argv[]) { int my_fd; struct sockaddr_in server; int error = 0, read_in = 0; char buffer[512]; memset(buffer,'\0',sizeof(buffer)); OpenSSL_add_all_algorithms(); SSL_library_init(); my_ssl_method = TLSv1_client_method(); if((my_ssl_ctx = SSL_CTX_new(my_ssl_method)) == NULL) { if((my_ssl = SSL_new(my_ssl_ctx)) == NULL) { my_fd = socket(af_inet, SOCK_STREAM, 0); bzero(&server,sizeof(server)); server.sin_family = AF_INET; server.sin_port = htons(5353); inet_aton(" ",&server.sin_addr); bind(my_fd, (struct sockaddr *)&server, sizeof(server)); connect(my_fd,(struct sockaddr *)&server, sizeof(server)); SSL_set_fd(my_ssl,my_fd); 3
4 if(ssl_connect(my_ssl) <= 0) { printf("connection made with [version,cipher]: [%s,%s]\n",ssl_get_version(my_ssl),ssl_get_cipher(my_ssl)); for( read_in = 0; read_in < sizeof(buffer); read_in += error ) { error = SSL_read(my_ssl,buffer+read_in,sizeof(buffer) - read_in); if(error <= 0) break; SSL_shutdown(my_ssl); SSL_free(my_ssl); SSL_CTX_free(my_ssl_ctx); close(my_fd); printf("%s",buffer); return 0; 4
5 A. Przykład serwera Działamy w oparciu o powiązanie z deskryptorami plików. #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <netdb.h> #include <unistd.h> #include <arpa/inet.h> /* SSL */ #include <openssl/err.h> int main(int argc, char *argv[]) { int my_fd,client_fd; struct sockaddr_in server, client; int client_size; int error = 0, wrote = 0; char buffer[] = "Hello there! Welcome to the SSL test server.\n\n"; OpenSSL_add_all_algorithms(); SSL_library_init(); my_ssl_method = TLSv1_server_method(); if((my_ssl_ctx = SSL_CTX_new(my_ssl_method)) == NULL) { SSL_CTX_use_certificate_file(my_ssl_ctx,"server.pem",SSL_FILETYPE_PEM); SSL_CTX_use_PrivateKey_file(my_ssl_ctx,"server.pem",SSL_FILETYPE_PEM); if(!ssl_ctx_check_private_key(my_ssl_ctx)) { fprintf(stderr,"private key does not match certificate\n"); my_fd = socket(pf_inet, SOCK_STREAM, 0); server.sin_family = AF_INET; server.sin_port = htons(5353); server.sin_addr.s_addr = INADDR_ANY; bind(my_fd, (struct sockaddr *)&server, sizeof(server)); listen(my_fd, 5); 5
6 for(;;) { client_size = sizeof(client); bzero(&client,sizeof(client)); client_fd = accept(my_fd, (struct sockaddr *)&client, (socklen_t *)&client_size); if((my_ssl = SSL_new(my_ssl_ctx)) == NULL) { SSL_set_fd(my_ssl,client_fd); if(ssl_accept(my_ssl) <= 0) { printf("connection made with [version,cipher]: [%s,%s]\n",ssl_get_version(my_ssl),ssl_get_cipher(my_ssl)); for(wrote = 0; wrote < strlen(buffer); wrote += error) { error = SSL_write(my_ssl,buffer+wrote,strlen(buffer)-wrote); if(error <= 0) break; SSL_shutdown(my_ssl); SSL_free(my_ssl); close(client_fd); SSL_CTX_free(my_ssl_ctx); return 0; 6
7 B. Przykład klienta Wykorzystywana jest struktura BIO #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <string.h> /* SSL */ #include <openssl/err.h> int main(int argc, char *argv[]) { BIO *my_bio; int error = 0, read_in = 0; char buffer[512]; memset(buffer,'\0',sizeof(buffer)); OpenSSL_add_all_algorithms(); SSL_library_init(); my_ssl_method = TLSv1_client_method(); if((my_ssl_ctx = SSL_CTX_new(my_ssl_method)) == NULL) { if((my_ssl = SSL_new(my_ssl_ctx)) == NULL) { if((my_bio = BIO_new_connect(" :5353")) == NULL) { if(bio_do_connect(my_bio) <=0) { SSL_set_bio(my_ssl,my_bio,my_bio); if(ssl_connect(my_ssl) <= 0) { printf("connection made with [version,cipher]: [%s,%s]\n",ssl_get_version(my_ssl),ssl_get_cipher(my_ssl)); 7
8 for( read_in = 0; read_in < sizeof(buffer); read_in += error ) { error = SSL_read(my_ssl,buffer+read_in,sizeof(buffer) - read_in); if(error <= 0) break; SSL_shutdown(my_ssl); SSL_free(my_ssl); SSL_CTX_free(my_ssl_ctx); printf("%s",buffer); return 0; report_error("report error (not quit) test\n", FILE, LINE,0); report_error_q("report error (quit) test\n", FILE, LINE,0); return 0; 8
9 B. Przykład serwera Wykorzystywana jest struktura BIO /* Standard includes */ #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <string.h> /* SSL includes */ #include <openssl/err.h> int main(int argc, char *argv[]) { BIO *server_bio,*client_bio; int error = 0, wrote = 0; char buffer[] = "Hello there! Welcome to the SSL test server.\n\n"; OpenSSL_add_all_algorithms(); SSL_library_init(); my_ssl_method = TLSv1_server_method(); if((my_ssl_ctx = SSL_CTX_new(my_ssl_method)) == NULL) { SSL_CTX_use_certificate_file(my_ssl_ctx,"server.pem",SSL_FILETYPE_PEM); SSL_CTX_use_PrivateKey_file(my_ssl_ctx,"server.pem",SSL_FILETYPE_PEM); if(!ssl_ctx_check_private_key(my_ssl_ctx)) { fprintf(stderr,"private key does not match certificate\n"); if((server_bio = BIO_new_accept("5353")) == NULL) { if(bio_do_accept(server_bio) <= 0) { 9
10 for(;;) { if(bio_do_accept(server_bio) <= 0) { client_bio = BIO_pop(server_bio); if((my_ssl = SSL_new(my_ssl_ctx)) == NULL) { SSL_set_bio(my_ssl,client_bio,client_bio); if(ssl_accept(my_ssl) <= 0) { printf("connection made with [version,cipher]: [%s,%s]\n",ssl_get_version(my_ssl),ssl_get_cipher(my_ssl)); for(wrote = 0; wrote < strlen(buffer); wrote += error) { error = SSL_write(my_ssl,buffer+wrote,strlen(buffer)-wrote); if(error <= 0) break; SSL_shutdown(my_ssl); SSL_free(my_ssl); SSL_CTX_free(my_ssl_ctx); SSL_BIO_free(server_bio); return 0; Biblioteka OpenSSL Implementacja protokołów SSL/TSL Procedury kryptograficzne Generatory liczb losowych Wsparcie działań na wielkich liczbach Inicjalizacja OpenSSL_add_all_algorithms(); 10
11 Struktury wykorzystywane przez bibliotekę SSL_METHOD SSLv1, SSLv2,..., TLSv1 my_ssl_method = TLSv1_method(); SSL_CTX my_ssl_ctx = SSL_CTX_new(my_ssl_method) if((my_ssl_ctx = SSL_CTX_new(my_ssl_method)) == NULL) { exit(1); SSL my_ssl = SSL_new(my_ssl_ctx if((my_ssl = SSL_new(my_ssl_ctx)) == NULL) { BIO 11
Gniazda BSD. komunikacja bezpołączeniowa
Gniazda BSD komunikacja bezpołączeniowa Użycie gniazd w transmisji bezpołączeniowej socket() socket() bind() bind() STOP! recv() żądanie send() send() odpowiedź recv() STOP! recvfrom() #include
Literatura uzupełniająca: W. Richard Stevens, Programowanie zastosowań sieciowych w systemie Unix WNT 1998
Gniazda BSD Literatura uzupełniająca: W. Richard Stevens, Programowanie zastosowań sieciowych w systemie Unix WNT 1998 socket() Użycie gniazd w transmisji połączeniowej bind() listen() socket() accept()
3. Identyfikacja. SKŁADNIA #include <sys/socket.h> int getpeername(int socket, struct sockaddr *addr, int *addrlen);
3.1. Określanie adresu połączonego hosta 3. #include int getpeername(int socket, struct sockaddr *addr, int *addrlen); Funkcja getpeername dostarcza adresu drugiej strony połączenia. Parametry:
Sockety TCP/IP - podstawy. Sieci Komputerowe II Wyk ład 2
Sockety TCP/IP - podstawy Sieci Komputerowe II Wyk ład 2 Plan Klient IPv4 Serwer IPv4 Pierwszy program Aplikacja w architekturze klient-serwer Realizacja protokołu echo Zasada działania: klient łączy się
1.1 Przykład znajdowanie liczb pierwszych leżących w zadanym zakresie, tryb bezpołączeniowy
1.1 Przykład znajdowanie liczb pierwszych leżących w zadanym zakresie, tryb bezpołączeniowy Należy znaleźć liczby pierwsze w zakresie od 2 do N na P komputerach. Zarządca pocz[i], kon[i] wykonawca 1 wykonawca
Bezpieczeństwo Usług Sieciowych SSL API. dr inż. Tomasz Surmacz. 28 listopada 2011
Bezpieczeństwo Usług Sieciowych SSL API dr inż. Tomasz Surmacz 28 listopada 2011 SSL API Utworzenie kontekstu SSL (SSL CTX) do kontekstu można dodawać certyfikaty i klucze prywatne, a także wybierać dopuszczalne
Architektura typu klient serwer: przesyłanie pliku tekstowo oraz logowania do serwera za pomocą szyfrowanego hasła
Architektura typu klient serwer: przesyłanie pliku tekstowo oraz logowania do serwera za pomocą szyfrowanego hasła Wydział Inżynierii Mechanicznej i Informatyki Instytut Informatyki Teoretycznej i Stosowanej
Programowanie przy użyciu gniazdek
Programowanie przy użyciu gniazdek Gniazdo (ang. socket) pojęcie abstrakcyjne reprezentujące dwukierunkowy punkt końcowy połączenia. Dwukierunkowość oznacza możliwość wysyłania i przyjmowania danych. Wykorzystywane
SUMA KONTROLNA (icmp_cksum) NUMER KOLEJNY (icmp_seq)
Program my_ping: wysłanie komunikatu ICMP z żądaniem echa Struktura icmp (plik netinet/ip_icmp.h) 0 7 8 15 16 31 TYP (icmp_type) KOD (icmp_code) IDENTYFIKATOR (icmp_id) SUMA KONTROLNA (icmp_cksum) NUMER
Programowanie sieciowe
Programowanie sieciowe dr Tomasz Tyrakowski Dyż ury: wtorki 12:00 13:00 czwartki 14:00 15:00 pokój B4-5 e-mail: ttomek@amu.edu.pl materiały: http://www.amu.edu.pl/~ttomek 1 Wymagania podstawowa znajomość
Aplikacja Sieciowa. Najpierw tworzymy nowy projekt, tym razem pracować będziemy w konsoli, a zatem: File->New- >Project
Aplikacja Sieciowa Jedną z fundamentalnych właściwości wielu aplikacji jest możliwość operowania pomiędzy jednostkami (np. PC), które włączone są do sieci. W Windows operacja ta jest możliwa przy wykorzystaniu
Podstawowe typy serwerów
Podstawowe typy serwerów 1. Algorytm serwera. 2. Cztery podstawowe typy serwerów. iteracyjne, współbieżne, połączeniowe, bezpołączeniowe. 3. Problem zakleszczenia serwera. 1 Algorytm serwera 1. Utworzenie
Programowanie aplikacji równoległych i rozproszonych. Wykład 4
Wykład 4 p. 1/44 Programowanie aplikacji równoległych i rozproszonych Wykład 4 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Gniazda - Wstęp
2. Interfejs gniazd. 2.1. Gniazdo
2. 2.1. Gniazdo Gniazdo (ang. socket): pewna abstrakcja wykorzystywana do wysyłania lub otrzymywania danych z innych procesów. Pełni rolę punktu końcowego w linii komunikacyjnej. to interfejs między programem
Podział programu na moduły
Materiały Podział programu na moduły Informatyka Szczegółowe informacje dotyczące wymagań odnośnie podziału na moduły: http://www.cs.put.poznan.pl/wcomplak/bfiles/c_w_5.pdf Podział programu na moduły pozwala
Pobieranie argumentów wiersza polecenia
Pobieranie argumentów wiersza polecenia 2. Argumenty wiersza polecenia Lista argumentów Lista argumentów zawiera cały wiersz poleceń, łącznie z nazwą programu i wszystkimi dostarczonymi argumentami. Przykłady:
Model OSI/ISO. Komputer B. Warstwy w modelu OSI aplikacji. aplikacji. prezentacji Komputer A. prezentacji. sesji. sesji. komunikacja wirtualna
1 Plan wykładu 1. Model ISO/OSI warstwy modelu OSI transmisja w modelu OSI 2. Model TCP/IP protokół UDP protokół TCP 3. Połączenie i rozłączenie w TCP 4. Programowanie z wykorzystaniem gniazd. 2 Model
Programowanie Sieciowe 1
Programowanie Sieciowe 1 dr inż. Tomasz Jaworski tjaworski@iis.p.lodz.pl http://tjaworski.iis.p.lodz.pl/ Klient UDP Kolejność wykonywania funkcji gniazdowych klienta UDP Protokół UDP jest bezpołączeniowy:
iseries Programowanie z użyciem gniazd
iseries Programowanie z użyciem gniazd iseries Programowanie z użyciem gniazd Copyright International Business Machines Corporation 2000, 2001. Wszelkie prawa zastrzeżone. Spis treści Część 1. Programowanie
Sieciowa komunikacja procesów - XDR i RPC
*** abc.x Przyklad pliku RPCGEN Obliczanie sumy, roznicy i iloczynu dwoch liczb calkowitych *** ************************************ Wywolanie procedury odleglej dopuszcza tylko jeden argument wywolania
Iteracyjny serwer TCP i aplikacja UDP
Iteracyjny serwer TCP i aplikacja UDP Iteracyjny serwer TCP Funkcje wywoływane przez serwer TCP socket() - bind() - listen() - accept() - read() / write() - close() socket() Creates an endpoint for communication
ZESZYTY ETI ZESPOŁU SZKÓŁ W TARNOBRZEGU Nr 1 Seria: Teleinformatyka 2013
ZESZYTY ETI ZESPOŁU SZKÓŁ W TARNOBRZEGU Nr 1 Seria: Teleinformatyka 2013 Paweł Kowalik Zespół Szkół im. ks. S. Staszica w Tarnobrzegu KOMUNIKACJA SIECIOWA MIĘDZY URZĄDZENIAMI Z WYKORZYSTANIEM PROTKOŁU
RPC. Zdalne wywoływanie procedur (ang. Remote Procedure Calls )
III RPC Zdalne wywoływanie procedur (ang. Remote Procedure Calls ) 1. Koncepcja Aplikacja wywołanie procedury parametry wyniki wykonanie procedury wynik komputer klienta komputer serwera Zaletą takiego
Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1
Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1 1 Interfejs gniazdek Jednolity interfejs API (Application Program Interface) do mechanizmów komunikacji sieciowej. Wprowadzony w wersji Unixa BSD 4.2
Gniazda - Wstęp. Oprogramowanie systemów równoległych i rozproszonych. Sposób komunikacji. Domena adresowa. olas@icis.pcz.pl
Gniazda - Wstęp Oprogramowanie systemów równoległych i rozproszonych Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Domena adresowa 1/??
Szyfrowanie w aplikacjach biblioteka Openssl
Szyfrowanie w aplikacjach biblioteka Openssl Obrona Paweł Maziarz stopień trudności Informacja w dzisiejszych czasach to jedna z bardziej cennych rzeczy, dlatego trzeba o nią odpowiednio zadbać. Sieci
Wstęp do programowania 1
Wstęp do programowania 1 Argumenty funkcji main Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Argumenty funkcji main dwa równoważne sposoby int main(int argc, char*
1. Model klient-serwer
1. Model klient-serwer 1.1. Model komunikacji w sieci łącze komunikacyjne klient serwer Tradycyjny podział zadań: Klient strona żądająca dostępu do danej usługi lub zasobu Serwer strona, która świadczy
Programowanie Proceduralne
Programowanie Proceduralne Struktury Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Co dziś będzie: Definiowanie struktury Deklarowanie zmiennych bȩda cych strukturami
Pliki w C/C++ Przykłady na podstawie materiałów dr T. Jeleniewskiego
Pliki w C/C++ Przykłady na podstawie materiałów dr T. Jeleniewskiego 1 /24 Pisanie pojedynczych znaków z klawiatury do pliku #include void main(void) { FILE *fptr; // wkaznik do pliku, tzw. uchwyt
Materiał uzupełniający do ćwiczen z przedmiotu: Programowanie w C ++ - ćwiczenia na wskaźnikach
Materiał uzupełniający do ćwiczen z przedmiotu: Programowanie w C ++ - ćwiczenia na wskaźnikach 27 kwietnia 2012 Wiedząc, że deklarowanie typu rekordowego w języku C/ C++ wygląda następująco: struct element
Architektura typu klient serwer: uproszczony klient POP3
Architektura typu klient serwer: uproszczony klient POP3 Wydział Inżynierii Mechanicznej i Informatyki Instytut Informatyki Teoretycznej i Stosowanej dr inż. Łukasz Szustak Składniki systemu poczty e-mail
7. Sterowanie współbieżnością
7. Zalety stosowania współbieżności: skrócenie obserwowanego czasu odpowiedzi na zgłoszenie, w konsekwencji zwiększenie ogólnej przepustowości serwera uniknięcie ryzyka zakleszczenia Realizacja serwerów
dynamiczny przydział pamięci calloc() memset() memcpy( ) (wskaźniki!! )
dynamiczny przydział pamięci malloc() free() realloc() calloc() memset() memcpy( ) mempcpy( ) memmove() (wskaźniki!! ) 1 dynamiczny przydział pamięci void * memccpy (void * to, void * from, int c, int
Buffer Overflow w Windows, symulacja włamania do systemu z wykorzystaniem błędu usługi sieciowej. by h07 (h07@interia.pl)
Buffer Overflow w Windows, symulacja włamania do systemu z wykorzystaniem błędu usługi sieciowej. by h07 (h07@interia.pl) Intro Większość exploitów wykorzystujących przepełnienie bufora na stosie nadpisuje
Wstęp do Programowania, laboratorium 02
Wstęp do Programowania, laboratorium 02 Zadanie 1. Napisać program pobierający dwie liczby całkowite i wypisujący na ekran największą z nich. Zadanie 2. Napisać program pobierający trzy liczby całkowite
4. Tablica dwuwymiarowa to jednowymiarowa tablica wskaźników do jednowymiarowych tablic danego typu.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 6. Tablice znakowe o dwóch indeksach, przekazywanie tablic do funkcji cd., dynamiczna alokacja pamięci, funkcje przetwarzające ciągi
Wykład 7 Abstrakcyjne typy danych słownik (lista symboli)
Wykład 7 Abstrakcyjne typy danych słownik (lista symboli) Definicja słownika: Słownik (tablica lub lista symboli) to struktura danych zawierająca elementy z kluczami, która pozwala na przeprowadzanie dwóch
1. Utwórz blok pamięci współdzielonej korzystając z poniższego kodu:
6 Pamięć współdzielona 6.1 Dostęp do pamięci współdzielonej 1. Utwórz blok pamięci współdzielonej korzystając z poniższego kodu: #include #include #include #include
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Inżynierii Elektrycznej i Komputerowej Politechnika Krakowska programowanie usług sieciowych Dziedzina Unix laboratorium: 06 Kraków, 2014 06. Programowanie Usług Sieciowych
Procesy. Systemy Operacyjne 2 laboratorium. Mateusz Hołenko. 9 października 2011
Procesy Systemy Operacyjne 2 laboratorium Mateusz Hołenko 9 października 2011 Plan zajęć 1 Procesy w systemie Linux proces procesy macierzyste i potomne procesy zombie i sieroty 2 Funkcje systemowe pobieranie
Komunikacja sieciowa - interfejs gniazd
SOE Systemy Operacyjne Wykład 14 Komunikacja sieciowa - interfejs gniazd dr inŝ. Andrzej Wielgus Instytut Mikroelektroniki i Optoelektroniki WEiTI PW Model komunikacji sieciowej Model OSI (ang. Open System
Katedra Elektrotechniki Teoretycznej i Informatyki. wykład 12 - sem.iii. M. Czyżak
Katedra Elektrotechniki Teoretycznej i Informatyki wykład 12 - sem.iii M. Czyżak Język C - preprocesor Preprocesor C i C++ (cpp) jest programem, który przetwarza tekst programu przed przekazaniem go kompilatorowi.
Gniazda. S. Samolej: Gniazda 1
Gniazda dr inż. Sławomir Samolej Katedra Informatyki i Automatyki Politechnika Rzeszowska Program przedmiotu oparto w części na materiałach opublikowanych na: http://wazniak.mimuw.edu.pl/ oraz na materiałach
Wykład VII. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik
Wykład VII Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Kompilacja Kompilator C program do tłumaczenia kodu źródłowego na język maszynowy. Preprocesor
Obsługa plików. Systemy Operacyjne 2 laboratorium. Mateusz Hołenko. 25 września 2011
Obsługa plików Systemy Operacyjne 2 laboratorium Mateusz Hołenko 25 września 2011 Plan zajęć 1 Pliki w systemie Linux i-węzły deskryptory plików 2 Operacje na plikach otwieranie i zamykanie zapis i odczyt
PROGRAMOWANIE SYSTEMÓW CZASU RZECZYWISTEGO
PROGRAMOWANIE SYSTEMÓW CZASU RZECZYWISTEGO LABORATORIUM Temat: QNX Neutrino IPC native Mariusz Rudnicki 2016 Wstęp QNX Neutrino wspiera różnorodne mechanizmy komunikacji IPC: rodzima komunikacja QNX Neutrino
// Liczy srednie w wierszach i kolumnach tablicy "dwuwymiarowej" // Elementy tablicy są generowane losowo #include <stdio.h> #include <stdlib.
Wykład 10 Przykłady różnych funkcji (cd) - przetwarzanie tablicy tablic (tablicy "dwuwymiarowej") - sortowanie przez "selekcję" Dynamiczna alokacja pamięci 1 // Liczy srednie w wierszach i kolumnach tablicy
Wykład 5_2 Algorytm ograniczania liczby serii za pomocą kopcowego rozdzielania serii początkowych
Wykład 5_2 Algorytm ograniczania liczby serii za pomocą kopcowego rozdzielania serii początkowych Założenia: 1. Pamięć wewnętrzna ma ograniczone rozmiary 2. Pamięć zewnętrzna ma rozmiary nieograniczone
Zaawansowane operacje wejścia/wyjścia
Zaawansowane operacje wejścia/wyjścia Witold Paluszyński witold.paluszynski@pwr.wroc.pl http://sequoia.ict.pwr.wroc.pl/ witold/ Copyright c 2002 2003 Witold Paluszyński All rights reserved. Niniejszy dokument
[ Odnajdywanie shellcodu w procesach zdalnych. ]
[ Odnajdywanie shellcodu w procesach zdalnych. ] Autor: Krystian Kloskowski (h07) -http://milw0rm.com/author/668 -http://www.h07.int.pl 0x00 [INTRO] Do właściwego zrozumienia treści tego
Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek <dunstan@freebsd.czest.pl>
Praktyczne aspekty wykorzystania nowoczesnej kryptografii Wojciech A. Koszek Wprowadzenie Kryptologia Nauka dotycząca przekazywania danych w poufny sposób. W jej skład wchodzi
Wstęp do programowania 1
Wstęp do programowania 1 Struktury Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Struktura dla dat - przykład #include struct Date { int y; short m; short
Komunikacja międzyprocesowa. Krzysztof Banaś Systemy rozproszone 1
Komunikacja międzyprocesowa Krzysztof Banaś Systemy rozproszone 1 Komunikacja międzyprocesowa Dla funkcjonowania systemów rozproszonych konieczna jest sprawna komunikacja pomiędzy odległymi procesami Podstawowym
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 4. Podstawowe biblioteki. Pętle. Operatory inkrementacji, dekrementacji, przypisania. Instrukcje goto, continue, break. Operacje na plikach.
// Potrzebne do memset oraz memcpy, czyli kopiowania bloków
ZAWARTOŚCI 3 PLIKOW W WORDZIE: MAIN.CPP: #include #include #include pamięci // Potrzebne do memset oraz memcpy, czyli kopiowania bloków #include "Rysowanie_BMP.h" using
Zaawansowane operacje wejścia/wyjścia
Zaawansowane operacje wejścia/wyjścia Witold Paluszyński witold.paluszynski@pwr.edu.pl http://www.kcir.pwr.edu.pl/ witold/ Copyright c 2002 2003 Witold Paluszyński All rights reserved. Blokowanie operacji
3 Przygotował: mgr inż. Maciej Lasota
Laboratorium nr 3 1/8 Język C Instrukcja laboratoryjna Temat: Instrukcje warunkowe, pętle. 3 Przygotował: mgr inż. Maciej Lasota 1) Instrukcje warunkowe. Instrukcje warunkowe pozwalają zdefiniować warianty
Przykład aplikacji UDP
#include #include #include /* atoi */ #include /* htons, ntohs... */ #include /* memset */ #include /* inet_ntoa */ #include
Tworzenie aplikacji rozproszonej w Sun RPC
Tworzenie aplikacji rozproszonej w Sun RPC Budowa aplikacji realizowana jest w następujących krokach: Tworzenie interfejsu serwera w języku opisu interfejsu RPCGEN Tworzenie: namiastki serwera namiastki
Łukasz Przywarty Wrocław, r. Grupa: WT/N 11:15-14:00. Sprawozdanie z zajęć laboratoryjnych: OpenSSL - API
Łukasz Przywarty 171018 Wrocław, 17.01.2013 r. Grupa: WT/N 11:15-14:00 Sprawozdanie z zajęć laboratoryjnych: OpenSSL - API Prowadzący: mgr inż. Mariusz Słabicki 1 / 5 1. Treść zadania laboratoryjnego W
Semafor ustaw_semafor(key_t nazwa, int start); Semafor usun_semafor(semafor sem); void signal(semafor sem); void wait(semafor sem);
Semafory przypomnienie semafory służą ochronie dostępu procesów do sekcji krytycznej; na semaforach dostępne są dwie operacje: podniesienie semafora signal, opuszczenie semafora wait opuszczony semafor
Zaawansowane operacje wejścia/wyjścia
Zaawansowane operacje wejścia/wyjścia Witold Paluszyński witold.paluszynski@pwr.edu.pl http://www.kcir.pwr.edu.pl/ witold/ Copyright c 2002 2003 Witold Paluszyński All rights reserved. Niniejszy dokument
Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik
Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym
Co nie powinno być umieszczane w plikach nagłówkowych:
Zawartość plików nagłówkowych (*.h) : #include #define ESC 27 dyrektywy dołączenia definicje stałych #define MAX(x,y) ((x)>(y)?(x):(y)) definicje makr int menu(char* tab[], int ilosc); struct
Wstęp do programowania
Wstęp do programowania Przemysław Gawroński D-10, p. 234 Wykład 1 8 października 2018 (Wykład 1) Wstęp do programowania 8 października 2018 1 / 12 Outline 1 Literatura 2 Programowanie? 3 Hello World (Wykład
Programowanie z użyciem RPC
Programowanie z użyciem RPC 1. Zastosowanie modelu zdalnie wywoływanych procedur. 2. Biblioteka RPC. 3. Podział programu na część lokalną i zdalną. 4. Narzędzie rpcgen. 5. Generowanie programu rozproszonego.
Programowanie proceduralne INP001210WL rok akademicki 2015/16 semestr letni. Wykład 6. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2015/16 semestr letni Wykład 6 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411b Plan wykładu Operacje wejścia-wyjścia Dostęp do plików Struktury
Zaawansowane operacje wejścia/wyjścia
Zaawansowane operacje wejścia/wyjścia Witold Paluszyński witold.paluszynski@pwr.edu.pl http://www.kcir.pwr.edu.pl/ witold/ Copyright c 2002 2003 Witold Paluszyński All rights reserved. Niniejszy dokument
TCP - receive buffer (queue), send buffer (queue)
BSD sockets c.d. TCP - receive buffer (queue), send buffer (queue) Z każdym gniazdem sieciowym są skojarzone: Bufor do odbierania danych (ang. receive buffer) Przychodzące dane są umieszczane w buforze
Wykład VI. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik
Wykład VI Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Operacje na plikach Operacje na plikach Aby móc korzystać z pliku należy go otworzyć w odpowiednim
Shared memory and messages. Functions. process 0. process 1. program 0. program 0. data 0. data 1. program 1. data 0. data 1.
Shared memory and messages Shared memory vs message passing Shared memory - C functions Shared memory - example program Message queues - C functions Message queues - example program process 0 process 1
Programowanie z wykorzystaniem gniazd
Plan wykładu 1. Programowanie z wykorzystaniem gniazd usługa TIME, usługa ECHO, 2. Popularne aplikacje TCP/IP poczta elektroniczna cz. 1 protokół SMTP, 1 Programowanie z wykorzystaniem gniazd Utworzenie
Łącza nienazwane(potoki) Łącza nienazwane mogą być używane tylko pomiędzy procesami ze sobą powiązanymi.
Przykład: $ ls more Łącza nienazwane(potoki) Łącza nienazwane mogą być używane tylko pomiędzy procesami ze sobą powiązanymi. Tworzenie łącza #include int pipe(int filedes[2]); Przykład: int
Laboratorium Systemów Operacyjnych. Ćwiczenie 4. Operacje na plikach
Laboratorium Systemów Operacyjnych Ćwiczenie 4. Operacje na plikach Wykonanie operacji wymaga wskazania pliku, na którym operacja ma zostać wykonana. Plik w systemie LINUX identyfikowany jest przez nazwę,
Instrukcja instalacji winbgim
Instrukcja instalacji winbgim 1. Przegląd instalacji Instalacja winbgim polega na przekopiowaniu w odpowiednie miejsca dwóch plików: pliku biblioteki, zawierającego m.in. skompilowane funkcje (libbgi.a),
Gniazda BSD. Procesy w środowisku sieciowym. Gniazda podstawowe funkcje dla serwera. Gniazda podstawowe funkcje dla klienta
Procesy w środowisku sieciowym! Obsługa! Protokół! Numery portów i ogólnie znane adresy! Połączenie (asocjacja) i gniazdo (półasocjacja)! Model klient-serwer " Serwer - bierne otwarcie kanału " Klient
Czy procesor musi się grzać?
Czy procesor musi się grzać? Np. dodawanie 2 liczb 1-bitowych. Możliwych stanów początkowych: cztery Możliwych stanów końcowych: dwa to można opisać jako zmianę entropii zmiana entropii = (stała Boltzmanna)
Oprogramowanie i wykorzystanie stacji roboczych. Wykład 4
Wykład 4 p. 1/1 Oprogramowanie i wykorzystanie stacji roboczych Wykład 4 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Obsługa sieci Wykład
Obsługa plików Procesy
Obsługa plików Procesy Systemy Operacyjne 2 laboratorium Mateusz Hołenko 15 października 2011 Plan zajęć 1 Obsługa plików 1 Pliki w systemie Linux i-węzły deskryptory plików 2 Operacje na plikach 3 Operacje
PROGRAMOWANIE SYSTEMÓW CZASU RZECZYWISTEGO
PROGRAMOWANIE SYSTEMÓW CZASU RZECZYWISTEGO LABORATORIUM Temat: QNX Neutrino Interrupts Mariusz Rudnicki 2016 Wstęp W QNX Neutrino wszystkie przerwania sprzętowe przechwytywane są przez jądro systemu. Obsługę
Gniazda BSD implementacja w C#
BSD implementacja w C# Implementacja w C#: Przestrzeń nazw: System.Net.Sockets Klasa: public class Socket : IDisposable Implementacja w C#: Konstruktor: public Socket( AddressFamily addressfamily, SocketType
Podstawy informatyki. Informatyka stosowana - studia niestacjonarne. Grzegorz Smyk. Wydział Inżynierii Metali i Informatyki Przemysłowej
Podstawy informatyki Informatyka stosowana - studia niestacjonarne Grzegorz Smyk Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie, rok
Dariusz Chaberski. UMK Toruń
przykłady w języku ANSI C Dariusz Chaberski UMK Toruń 1 rekurencja funkcji int silnia(int arg){ if(arg==1) return 1; return arg*silnia(arg-1); int liczba; printf("podaj liczbe: "); scanf("%d", &liczba);
ISO/ANSI C - funkcje. Funkcje. ISO/ANSI C - funkcje. ISO/ANSI C - funkcje. ISO/ANSI C - funkcje. ISO/ANSI C - funkcje
Funkcje (podprogramy) Mianem funkcji określa się fragment kodu, który może być wykonywany wielokrotnie z różnych miejsc programu. Ogólny zapis: typ nazwa(argumenty) ciało funkcji typ określa typ danych
Lab 8. Tablice liczbowe cd,. Operacje macierzowo-wektorowe, memcpy, memmove, memset. Wyrażenie warunkowe.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 8. Tablice liczbowe cd,. Operacje macierzowo-wektorowe, memcpy, memmove, memset. Wyrażenie warunkowe. 1. Wektory i macierze: a. Przykład
Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński
Wykład 4 Protokoły SSL i TLS główne slajdy 26 października 2011 Instytut Informatyki Uniwersytet Jagielloński 4.1 Secure Sockets Layer i Transport Layer Security SSL zaproponowany przez Netscape w 1994
Etap 2 - Budowa interfejsu. typedef struct ELEMENT* stos; struct ELEMENT { dane Dane; stos Nastepny; }; struct kolejka { stos Poczatek, Koniec; };
Wykład 6_2 Abstrakcyjne typy danych kolejki. Implementacja za pomocą tablicy i rekurencyjnej struktury danych czyli listy wiązanej Etap 1 - Opis ADT Nazwa typu: Kolejka elementów Własności typu: Potrafi
5. Algorytmy serwera
5. Algorytmy serwera 5.1. Typy serwerów Serwer iteracyjny (ang. iterative server) obsługuje zgłoszenia klientów sekwencyjnie, jedno po drugim. Serwer współbieżny (ang. concurrent server) obsługuje wiele
Zdalne wywołanie procedur. Krzysztof Banaś Systemy rozproszone 1
Zdalne wywołanie procedur Krzysztof Banaś Systemy rozproszone 1 RPC Komunikacja za pomocą gniazd jest wydajna, gdyż korzystamy z funkcji systemowych niewygodna, gdyż musimy wyrażać ją za pomocą jawnego
TIN Techniki Internetowe zima
TIN Techniki Internetowe zima 2016-2017 Grzegorz Blinowski Instytut Informatyki Politechniki Warszawskiej Plan wykładów 2 Intersieć, ISO/OSI, protokoły sieciowe, IP 3 Protokół IP i prot. transportowe:
Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1
Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Wprowadzenie Procesory graficzne GPU (Graphics Processing Units) stosowane są w kartach graficznych do przetwarzania grafiki komputerowej
ISO/ANSI C - funkcje. Funkcje. ISO/ANSI C - funkcje. ISO/ANSI C - funkcje. ISO/ANSI C - funkcje. ISO/ANSI C - funkcje
Funkcje (podprogramy) Mianem funkcji określa się fragment kodu, który może być wykonywany wielokrotnie z różnych miejsc programu. Ogólny zapis: typ nazwa(argumenty) ciało funkcji typ określa typ danych
Optymalizacja szelkodów w Linuksie
Optymalizacja szelkodów w Linuksie Michał Piotrowski Artykuł opublikowany w numerze 4/2005 magazynu hakin9. Zapraszamy do lektury całego magazynu. Wszystkie prawa zastrzeżone. Bezpłatne kopiowanie i rozpowszechnianie
5 Przygotował: mgr inż. Maciej Lasota
Laboratorium nr 5 1/6 Język C Instrukcja laboratoryjna Temat: Funkcje, parametry linii poleceń, typ wyliczeniowy. 5 Przygotował: mgr inż. Maciej Lasota 1) Parametry linii poleceń. Język C oprócz wprowadzania
Dzisiejszy wykład. Wzorce projektowe. Visitor Client-Server Factory Singleton
Dzisiejszy wykład Wzorce projektowe Visitor Client-Server Factory Singleton 1 Wzorzec projektowy Wzorzec nazwana generalizacja opisująca elementy i relacje rozwiązania powszechnie występującego problemu
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19. Lab 9. Tablice liczbowe cd,. Operacje na tablicach o dwóch indeksach.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 9. Tablice liczbowe cd,. Operacje na tablicach o dwóch indeksach. 1. Dynamiczna alokacja pamięci dla tablic wielowymiarowych - Przykładowa
Programowanie I C / C++ laboratorium 03 arytmetyka, operatory
Programowanie I C / C++ laboratorium 03 arytmetyka, operatory Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-02-19 Typ znakowy Typ znakowy Typ wyliczeniowy # include
BEZPIECZEOSTWO SYSTEMU OPERO
BEZPIECZEOSTWO SYSTEMU OPERO JAK OPERO ZABEZPIECZA DANE? Bezpieczeostwo danych to priorytet naszej działalności. Powierzając nam swoje dane możesz byd pewny, że z najwyższą starannością podchodzimy do
Sygnały. 7. Sygnały (2005/2006)
Sygnały Sygnał jest to informacja dla procesu, że wystąpiło jakieś zdarzenie. Sygnały mogą być wysyłane: z procesu do innego procesu (grupy procesów) z procesu do siebie samego z jądra do procesu Sygnały