Rezonansowe jądrowego rozpraszanie promieniowania synchrotronowego czyli: Druga młodość efektu Mössbauera 1
AGH T. Ślęzak W. Karaś K. Matlak M. Ślęzak M. Zając IKiFP Kraków N. Spiridis K. Freindl D. Wilgocka-Ślęzak ESRF Grenoble R. Rüffer A.I. Chumakov S. Stankov Uni. Wien B. Sepiol G.Vogl M. Rennhofer M. Sladecek IKS Leuven B. Laenens INP Kraków K. Parliński J. Łażewski NMP4-CT-2003-001516 DYNASYNC Dynamics in Nano-scale Materials Studied with Synchrotron Radiation 2
Efekt Mössbauera w synchrotronie Koherentne elastyczne rozpraszanie jądrowe: 20 lat później: Pola nadsubtelne na powierzchni Fe NIS Anty-Efekt Mössbauera..i jeszcze coś 3
Mössbauer spectroscopy: Recoilless, resonance adsorption of γ-radiation structural, chemical and electronic information on a local scale (mainly 57 Fe) 4
Conventional (energy-domain) MS I=1/2 E=E 0 (1 ±v/c) I=3/2 57 Fe Only one transition is excited at the same time, therefore the resultant spectrum is the incoherent sum of the indivitual transitions (the intensities are added). 5
Tunable source of EM radiation in Mössbauer transition range v E = ± E ± c µev 6
Hyperfine splitting of nuclear levels Γ 5 nev e - E hf 100 nev E = 14.413 kev E hf 100 nev 57 Fe is hf spectroscopy with SR possible? hf spectroscopy in energy domain requires a tuneable source of X-rays with energy monochromatization ~5 nev (feasible is 0.5 mev) 7
Hyperfine spectroscopy with SR? -YES however not in energy - but in time-domain - Nuclear Resonance Scattering of SR - NRS Reproduced from: R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation, Springer 2004 8
9
Ψ f Ψ i D-NRS GI-NRS Al CEMS SRPAC NIS NFS 10
Methodology Prompt scattering: electronic Delayed scattering: nuclear 11
Nuclear Resonance Scattering of SR - NRS Nuclear Inelastic Scattering of SR - NIS (precisely Inelastic Nuclear Resonant Adsorption) E i E 0 E i =E 0 ± E Intensity E phonon 0 e - phonon annihilation E 14.4 kev Phonon creation #2 Detectors #1-40 -20 0 20 40 E(meV) log(counts) 20 40 60 80 100 120 140 Time / ns 12
Instrumentation ID 18, ESRF Grenoble High Resolution Monochromator e - Storage ring High-heat-load monochromator Resonant sample undulator focussing collimation 13
High-heat heat-load premonochromator and high-resolution nested monochromator Si (4 2 2) high heat load monochromator Si (1 1 1) Si (12 2 2) Si (12 2 2) Si (1 1 1) E=14.413 kev high resolution monochromator Si (4 2 2) E: 300 ev 3 ev 2.5 mev 0.5 mev 14
Mössbauer isotopes with used in synchrotron-based experiments R. Röhlsberger et al. Phys. Rev. B 67, 245412 (2003) 15
Instrumentation ID 18, ESRF Grenoble High Resolution Monochromator e - Storage ring High-heat-load monochromator Resonant sample undulator focussing collimation 16
Instrumentation ID 18, ESRF Grenoble SR-beam Fast detector #2 NRS chamber on 2-circle goniometer Fast detector #1 17
1.2 mm 0.8 mm Dodatkowe ogniskowanie 90 µm 60 µm 3 10 8 fotonów/s K-B multilayers 15 µm 15 µm 18
Nuclear Resonance Scattering of SR - NRS Nuclear Inelastic Scattering of SR - NIS (precisely Inelastic Nuclear Resonant Adsorption) E i E 0 E i =E 0 ± E Intensity E phonon 0 e - phonon annihilation E 14.4 kev Phonon creation #2 Detectors #1-40 -20 0 20 40 E(meV) log(counts) 20 40 60 80 100 120 140 Time / ns 19
Nuclear Resonance Scattering of SR - NRS 57 Fe Mössbauer isotope τ 0 = 141 ns e - E 14.4 kev I e =3/2 I g =1/2 20 delayed intensity ~ e -t/ τ 0 Quantum beats Decoherency by diffusion (accelerated decay) Log (Intensity) time [ns]
Geometry of GI-NRS 21
Orientation of the hyperfine field (the Smirnov figures ) z z B E y x B E z B y x E y x k k k Intensity (arb. units, log. scale) 0 50 100 150 200 Time after excitation (ns) 1 2 3 4 5 6 22
23
Depth selectivity 20 40 60 80 100 120 140 160 time [ns] 24
4.0 3.5 3.0 2.5 2.0 20 40 60 80 100 120 140 160 t [ns] 4.0 3.5 3.0 2.5 2.0 1.5 20 40 60 80 100 120 140 160 t [ns] 25
Model systemfe(110)/w(110) [110] - Large lattice mismatch ~10% -layer-by-layer growth - Pseudomorphic 1 st (?) and 2 nd (??) Fe atomic layer - Complex strained Fe structure beyond 2 nd AL - Complex magnetic structure with several transitions [001] Film thickness in AL 45 20 10 3 2 1 90 Å 200x200nm 2 200x200nm 2 200x200nm 2 26
Surface magnetism 57 Fe(110) probe layer Epitaxial 56 Fe(110) film 20 Atomic Layers (AL) 10 3 B hf =32.5 T QS=0.10 mm/s 10 2 B hf =32.0 T QS=0.18 mm/s 10 2 10 1 W(110) single crystal 10 4 B hf =34.2 T QS=0 20 40 60 80 100 120 140 Time / ns 10 3 20 40 60 80 100 120 140 Time / ns 27 J.Korecki, U.Gradmann, Phys. Rev. Lett. 55(1985)2491.
NRS movie growth of Fe on W(110) 57 Fe 1-28 ML 57 Fe UHV Beam Fast detector 28
Fe/W(110) interface Sample: log(intensity) 33T 20T 20 40 60 80 100 120 140 time [ns] AFM order at the Fe/W(110) interface 29
Nuclear Resonance Scattering of SR - NRS Nuclear Inelastic Scattering of SR - NIS (precisely Inelastic Nuclear Resonant Adsorption) E i E 0 E i =E 0 ± E Intensity E phonon 0 phonon annihilation Phonon creation -40-20 0 20 40 E(meV) e - E 14.4 kev #2 Detectors #1 log(counts) 20 40 60 80 100 120 140 Time / ns 30
Analiza danych doświadczalnych Widmo NIS Cząstkowe DOS-y dla Fe g(e,s) r d q r r g( E, ˆ) s = V ω q 2 0 δ [ E h ( )] ˆ ) 3 j q s ˆ ej ( j (2π ) S(E) 10 5 Pik elastyczny Anihilacja fononu Kreacja fononu 10 4 10 3 10 2 k r photon êx Geometria poślizgu ˆ s ˆ ez 0 ê z êy ˆ s = Metoda nieczuła na wibracje normalne r k k photon photon -60-40 -20 0 20 40 60 E(meV) Fononowe DOS-y g(e) bezparametrowo S S ( E ) 1 ( E ) = f ( ) + ( ) + ( LM δ E S E S E n n =2 = E E g ( E ) ( βe 1 e ) R 1 ) 31
Intensity 2000 1500 1000 500 25000 2000 1500 1000 500 15000 1000 500 Od widm NIS do gęstości stanów - magnetyt T=296K T=140K T=120K 10000 800 T=100K 600 400 200 10000 800 T=25K 600 400 200 0-80 -60-40 -20 0 20 40 60 80 E (mev) B. Handke et al. Phys. Rev. B 2005 0.06 0.04 0.02 0.00 0.04 0.02 0.00 0.04 0.02 0.00 0.04 0.02 0.00 T=296K T=140K T=120K T=100K 0.04 T=25K 0.02 0.00 0 10 20 30 40 50 60 70 80 energy (mev) DOS (1/meV) 32
Monowarstwowa sonda 57 Fe w epitaksjalnej warstwie Fe(110) na W(110) 57 Fe(110) probe layer Epitaxial 56 Fe(110) film 20 Atomic Layers (AL) W(110) single crystal _ [110] [001] 100x100nm 2 75 ev 33
10 3 10 2 Widma czasowe Surface 0.06 0.04 Fononowe DOS-y (cząstkowe: warstwowe i kierunkowe) Surface Counts 10 1 10 3 10 2 10 1 10 4 B HF = 31.10 T QS = 0.83 mm/s (QS=4*ε) B HF = 32.25 T QS = 0.02 mm/s Sub-Surface Very deep Phonon density of states / mev -1 0.02 0.00 0.06 0.04 0.02 0.00 0.06 0.04 [001] [1-10] Sub-Surface Very deep 10 3 B HF = 32.88 T QS = 0.00 mm/s 20 40 60 80 100 120 140 Time / ns 0.02 0.00 0.06 Interface 0.04 0.02 Dynasync, submitted 0.00 0 10 20 30 40 50 E(meV) 34
Modelowanie Phonon DOS / mev -1 0.06 0.04 0.02 along [001] along [1-10] 0.00 0 10 20 30 40 50 E(meV) J. Łażewski, J. Korecki, K.Parliński, Phys. Rev. B, 2007 35
Czy przybliżenie Debye pracuje na powierzchni? DOS (mev -1 ) 10-2 10-3 10-4 Surface Sub-surface "Very" deep Bulk Phonon DOS / mev -1 0.015 0.010 0.005 S S-1 D Bulk 10-5 0.000 1 E(meV) 10 0 30 60 90 E 2 (mev 2 ) Dynasync, submitted 36
Właściwości termo-elastyczne [1-10] [001] Kierunek wiązki X <x 2 > [Å] <γ> [N/m] Entropia [k B /atom] S S-1 D Bulk [1-10] [001] E 0.083 0.084 0.069 0.065 0.065 T 0.077 0.082 0.066 0.064 0.064 E 138.1 128.7 160.8 166.2 172.2 T 132.0 119.7 185.3 174.0 171.2 E 3.50 3.61 3.20 3.13 3.09 T 3.46 3.63 2.99 3.04 3.09 Stała siłowa r 2 M r 2 2 ln(f γ(s) =< ω > M = g(e,s)e de x = 2 h 2 k LM ) Dynasync, submitted Wnioski: brak widocznego tłumienia fononów powierzchnia jest harmoniczna. powierzchniowe drgania normalne są miękkie 37
Synchrotronowe zaburzone korelacje kątowe SRPAC detector Al 38
SRPAC dynamika w fazie ciekłej (f LM 0) Organic glass (DBP) (Tg = 178 K) doped with 5% (mol) of ferrocene Relaxation damps beats: SRPAC damping rate ~rotational dynamics NIS damping rate ~ rotational + translational dynamics 39
40
10 18 Sensitivity (No. of atoms) 10 16 10 14 10 12 10 10 10 8 10 6 10 4 10 2 10 0 foil monolayer single atoms 10 nm 1980 2000 2020 2040 2060 Year 41
42