ALGORYTMY STEROWANIA NAPĘDEM ELEKTROHYDRAULICZNYM PRZY POMOCY WAHADŁOWEGO DŻOJSTIKA DOTYKOWEGO Z CIECZĄ MR W UKŁADZIE Z SIŁOWYM SPRZĘŻENIEM ZWROTNYM

Podobne dokumenty
ROBOT STEROWANY TRZYOSIOWYM DŻOJSTIKIEM DOTYKOWYM Z CIECZĄ MAGNETOREOLOGICZNĄ

WYKORZYSTANIE LASEROWEGO CZUJNIKA ODLEGŁOŚCI DO ESTYMACJI SIŁY PODCZAS STEROWANIA SERWONAPĘDU ELEKTROHYDRAULICZNEGO DŻOJSTIKIEM DOTYKOWYM

ALGORYTMY STEROWANIA NAP DEM ELEKTROHYDRAULICZNYM PRZY POMOCY WAHAD OWEGO D OJSTIKA DOTYKOWEGO Z CIECZ MR W UK ADZIE Z SI OWYM SPRZ ENIEM ZWROTNYM

Construction and research of control devices with magnetorheological fluids and force feedback summary of research project

WYKORZYSTANIE TRZYOSIOWEGO DŻOJSTIKA DOTYKOWEGO Z CIECZĄ MAGNETOREOLOGICZNĄ I SIŁOWYM SPRZĘŻENIEM ZWROTNYM DO STEROWANIA RAMIONAMI ROBOTA

sterowanie admitancyjne i impedancyjne, ciecz w układzie napęd elektrohydrauliczny dżojstik haptic

Haptyczny interfejs asystujący z cieczą MR

STEROWANIE DWUOSIOWYM PODNOŚNIKIEM ELEKTROHYDRAULICZNYM PRZY POMOCY DŻOJSTIKA DOTYKOWEGO Z CIECZĄ MR

ZASTOSOWANIE CIECZY MAGNETOREOLOGICZNYCH W URZĄDZENIACH DOTYKOWYCH

Haptyczny interfejs asystujący z cieczą MR

ROBOT STEROWANY TRZYOSIOWYM D OJSTIKIEM DOTYKOWYM Z CIECZ MAGNETOREOLOGICZN

Ciecze elektroi. magnetoreologiczne

STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi

Badania symulacyjne odtwarzania sygnału w bezprzewodowym układzie sterowania napędem elektrohydraulicznym z dżojstikiem haptic

REDUKCJA ZJAWISKA CHATTERINGU W ALGORYTMIE SMC W STEROWANIU SERWOMECHANIZMÓW ELEKTROHYDRAULICZNYCH

Badania symulacyjne odtwarzania sygnału w bezprzewodowym układzie sterowania napędem elektrohydraulicznym z dżojstikiem haptic

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna

KONSTRUKCJA I BADANIA HAMULCA WAHADŁOWEGO Z CIECZĄ MAGNETOREOLOGICZNĄ

MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium. Ćwiczenie 2

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie odbiornikiem hydraulicznym z rozdzielaczem typu Load-sensing

ZASTOSOWANIE LINIOWEGO D OJSTIKA DOTYKOWEGO DO STEROWANIA NAP DEM ELEKTROHYDRAULICZNYM

Ćwiczenie: "Silnik prądu stałego"

MODELOWANIE I STEROWANIE Z SIŁOWYM SPRZĘŻENIEM ZWROTNYM ELEKTROHYDRAULICZNEGO MANIPULATORA W ŚRODOWISKU WIRTUALNYM

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.

Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny

Badanie wpływu procesu rozmagnesowywania na pętlę histerezy obrotowego hamulca magnetoreologicznego

BADANIA I MODELOWANIE DRGAŃ UKŁADU WYPOSAŻONEGO W STEROWANY TŁUMIK MAGNETOREOLOGICZNY

BADANIA PNEUMATYCZNEGO SIŁOWNIKA BEZTŁOCZYSKOWEGO

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)

Instrukcja do ćwiczeń laboratoryjnych. Układy rewersyjne

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Urządzenia nastawcze

Próby ruchowe dźwigu osobowego

SPRZĘGŁO MAGNETOREOLOGICZNE O KONSTRUKCJI TARCZOWEJ Z PODMAGNESOWANIEM WYKORZYSTUJĄCYM MAGNES TRWAŁY

HAMULEC ELEKTROMAGNETYCZNY Z CIECZĄ MAGNETOREOLOGICZNĄ 1. WPROWADZENIE

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA

Ćw. 18: Pomiary wielkości nieelektrycznych II

Silniki prądu stałego z komutacją bezstykową (elektroniczną)

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

ĆWICZENIE NR P-8 STANOWISKO BADANIA POZYCJONOWANIA PNEUMATYCZNEGO

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Sprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia

Dobór konstrukcji urządzeń haptic w zależności od wielkości i rodzaju sił występujących w sterowanym układzie

Rozszerzony konspekt preskryptu do przedmiotu Sterowanie napędów i serwonapędów elektrycznych

Uniwersalne elektrohydrauliczne stanowisko dydaktyczno-badawcze

Ćwiczenie EA1 Silniki wykonawcze prądu stałego

Badanie rozkładu pola magnetycznego przewodników z prądem

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego

WYKRYWANIE KOLIZJI W TELEOPERATORZE Z INTERFEJSEM DOTYKOWYM I SYSTEMEM WIZYJNYM

Ćw. 18: Pomiary wielkości nieelektrycznych II

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji

Instrukcja do ćwiczeń laboratoryjnych. Układy ruchu szybkiego

Wprowadzenie. Napędy hydrauliczne są to urządzenia służące do przekazywania energii mechanicznej z miejsca jej wytwarzania do urządzenia napędzanego.

Badanie transformatora

Zasady doboru mikrosilników prądu stałego

Ćwiczenie Nr 2. Temat: Zaprojektowanie i praktyczna realizacja prostych hydraulicznych układów sterujących i napędów

Klasyczny efekt Halla

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu Kierunek Mechanika i Budowa Maszyn Specjalność Samochody i Ciągniki

Autoreferat Rozprawy Doktorskiej

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)

Układy zasilania samochodowych silników spalinowych. Bartosz Ponczek AiR W10

PRACA PRZEJŚCIOWA SYMULACYJNA. Zadania projektowe

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

ELEKTROMAGNETYCZNE PRZETWORNIKI ENERGII DRGAŃ AMORTYZATORA MAGNETOREOLOGICZNEGO

Ćwiczenie HP3. Instrukcja

Analiza możliwości zastosowania magnesów neodymowych w hamulcach urządzeń małej mechanizacji. 1. Wstęp PROJEKTOWANIE I BADANIA

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie)

Ćwiczenie nr 43: HALOTRON

Sterowanie układem zawieszenia magnetycznego

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Dlaczego pompa powinna być "inteligentna"?

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Opis działania. 1. Opis działania Uwagi ogólne

Hamulce elektromagnetyczne. EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

ĆWICZENIE NR 5 Prasa do wtłaczania tulei

SIŁOWNIKI CZUJNIK POZYCJI

Serwomechanizm - zamknięty układ sterowania przemieszczeniem, o strukturze typowego układu regulacji. Wartość wzorcowa porównywana jest z

WYKORZYSTANIE LASEROWEGO CZUJNIKA ODLEG O CI DO ESTYMACJI SI Y W UK ADZIE STEROWANIA NAP DEM ELEKTROHYDRAULICZNYM D OJSTIKIEM DOTYKOWYM

Laboratorium Komputerowe Systemy Pomiarowe

Zajęcia laboratoryjne

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Laboratorium. Hydrostatyczne Układy Napędowe

Materiały pomocnicze do ćwiczeń laboratoryjnych

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych

Od prostego pozycjonowania po synchronizację. Rozwiązania Sterowania Ruchem. Napędy Elektryczne i Sterowania

BUDOWA I TESTOWANIE UKŁADÓW ELEKTROPNEUMATYKI

Zajęcia laboratoryjne

PL B1. Stanowisko do badania nośności dynamicznej łożysk ślizgowych wzdłużnych, smarowanych cieczą magnetyczną

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych

REGADA, s.r.o. o o o o o o

Podstawy Automatyki. Wykład 12 - Układy przekaźnikowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Mikrosilniki prądu stałego cz. 2

P O L I T E C H N I K A W A R S Z A W S K A

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA

Napęd elektryczny. Główną funkcją jest sterowane przetwarzanie energii elektrycznej na mechaniczną i odwrotnie

Transkrypt:

dr inż. Piotr Gawłowicz mgr Marcin Chciuk mgr inż. Paweł Bachman Uniwersytet Zielonogórski ALGORYTMY STEROWANIA NAPĘDEM ELEKTROHYDRAULICZNYM PRZY POMOCY WAHADŁOWEGO DŻOJSTIKA DOTYKOWEGO Z CIECZĄ MR W UKŁADZIE Z SIŁOWYM SPRZĘŻENIEM ZWROTNYM W artykule opisano układ sterowania serwonapędu elektrohydraulicznego z dodatkowym siłowym sprzężeniem zwrotnym. Przedstawiono budowę i zasadę działania hamulca z cieczą magnetoreologiczną i zależność momentu hamującego od prądu. Końcowa część artykułu zawiera wyniki badań doświadczalnych procesu sterowania serwonapędem elektrohydraulicznym za pomocą dżojstika dotykowego z cieczą magnetoreologiczną przy pomocy dwóch różnych algorytmów sterowania. ALGORITHMS OF CONTROL ELECTROHYDRAULIC DRIVE BY SWINGING MOTION HAPTIC JOYSTICK WITH MAGNETHORHEOLOGICAL FLUID AND FORCE FEEDBACK The article describes control system of electrohydraulic servo drive with additional force feedback. The structure of magnetorheological rotary brake and the research of relation between torque and current are presented. The last section forms results based on the research electrohydraulic servo drive s control system with magnetorheological haptic joystick by two different control algorithms. 1. WSTĘP Sterowanie w napędach elektrohydraulicznych stosowanych w różnego rodzaju maszynach często odbywa się w pętli położeniowego sprzężenia zwrotnego. Sprzężenie to realizowane jest w sposób elektryczny lub poprzez operatora, który swoim wzrokiem obserwuje położenie tłoczyska. W tym drugim przypadku problem może pojawić się, gdy sterownie odbywa się w warunkach niedostatecznej widoczności lub w przypadku jej braku. Gdy operator nie może obserwować ruchomej części roboczej sterowanego urządzenia przerwana jest pętla położeniowego sprzężenia zwrotnego (rys. 1), co powoduje brak możliwości precyzyjnego sterowania. Rozwiązaniem, w tym wypadku, mogłoby być dodatkowe siłowe sprzężenie zwrotne wraz z odpowiednio zmodyfikowanym dżojstikiem, umożliwiającym operatorowi odczuwanie siły przekazywanej ze sterowanego urządzenia (dżojstik dotykowy ang. haptic joystick). Urządzenia dotykowe znane są już od lat i wykorzystywane są do przekazywania wrażeń związanych z dotykiem, np. pochodzących z wirtualnej rzeczywistości lub gier komputerowych [1]. Stosowane są też w robotach chirurgicznych [1], a także w układach sterowania samolotów. Istnieje kilka firm produkujących takie urządzenia, m.in. Immersion [5], SensAble [7], Force Dimension [4], które mają w swojej ofercie kilkanaście różnych rodzajów tego typu urządzeń [1]. 1

Położenie zadane Mózg Ręka Dźwignia Potencjometr Urządzenie Ruch części roboczej Dżojstik Człowiek Dźwignia Hamulec MR Czujnik siły Wzrok Sprzężenie zwrotne z udziałem wzroku Siłowe sprzężenie zwrotne Przerwanie sprzężenia Rys. 1. Schemat koncepcji sterowania urządzeniami w układzie z dodatkowym siłowym sprzężeniem zwrotnym. BUDOWA I BADANIA DŻOJSTIKA DOTYKOWEGO W budowie dżojstika dotykowego wykorzystano właściwości cieczy magnetoreologicznej [6], której szczególną cechą jest wzrost jej lepkosprężystych właściwości wraz ze wzrostem działającego na nią pola magnetycznego. Jeżeli ciecz ta umieszczona jest w polu magnetycznym zawieszone w niej cząsteczki ferromagnetyczne zaczynają zachowywać się jak miniaturowe magnesy, układając się wzdłuż linii sił pola magnetycznego i stanowią przeszkodę dla przepływu nośnika [3]. Wykorzystując to zjawisko zaprojektowano i wykonano obrotowy hamulec magnetoreologiczny, którego przekrój i widok pokazane są na rysunku. a) łożysko przewody elektryczne b) uszczelnienie szczelina z cieczą MR cewka linie pola elektromagnetycznego wirnik (stal) korpus (stal) pokrywa Rys.. Przekrój (a) i widok (b) hamulca MR Charakterystyki hamulca przedstawiono na rys. 3. Pierwsza z nich (rys. 3a) pokazuje zależność momentu hamującego od prądu płynącego przez cewkę hamulca, a druga (rys. 3b) dynamikę działania hamulca dla różnych wartości natężenia prądu płynącego przez jego cewkę.

M [Nm] M [Nm] [Nm] a) b) 4 3 3,4 A,3 A, A,15 A,1 A,5 A 1 1,1,,3,4 I [A] 5 1 t t [ms] Rys. 3. Charakterystyki hamulca MR: a) M=f(I); b) M=f(t) dla różnych prądów Na bazie opisanego hamulca wykonano dżojstik, w którym na czas badań w dźwigni umieszczono czujnik siły (rys. 4). Do pomiaru położenia kątowego dżojstika służy potencjometr obrotowy. F j Czujnik siły Hamulec MR Potencjometr pomiar położenia Rys. 4. Widok dżojstika dotykowego (F j siła hamująca dżojstika) Następnie wykonano badania siły hamującej (F j ) dżojstika, dla różnych prądów płynących przez cewkę hamulca magnetoreologicznego. Wyniki tych pomiarów pokazane są na rys. 5. 3

4 1 silownik dzojstik czujnik sily silownik Kd -1 KHMR 1 KP karta zaworu hydraulicznego cewki hamulca MR 1 Fj F [N] 18 16 14 1 1 8 6 4,1,,3,4 I [A] Rys. 5. Charakterystyka dżojstika F j =f(i) (F j siła hamująca dżojstika, I prąd hamulca MR) 3. STEROWANIE NAPĘDEM ELEKTROHYDRAULICZNYM W UKŁADZIE Z DODATKOWYM SIŁOWYM SPRZĘŻENIEM ZWROTNYM I DŻOJSTIKIEM DOTYKOWYM Z CIECZĄ MAGNETOREOLOGICZNĄ Na podstawie badań symulacyjnych opisanych w publikacji [] zauważono, że przy ściskaniu przez siłownik obiektu sprężystego, siła hamująca na dżojstiku wzrasta wraz ze wzrostem siły oporu na siłowniku oraz, że po uderzeniu siłownika w przeszkodę siła na siłowniku gwałtownie wzrasta, powodując wzrost siły hamującej dżojstika, co dla operatora Zawór Siłownik Czujnik siły Liniowy hamulec MR Sterowanie obciążeniem F s y s Położenie siłownika Sterowanie zaworu Siła siłownika PC PC 1 Pomiar Matlab Simulink DasyLab y s F s DaqBoard 31 PCI 1716 F s y s α j F j Siła dżojstika Pozycja dżojstika Prąd HMR Stopień mocy OPA549 Rys. 6. Schemat blokowy układu sterująco pomiarowego α j 4

mogłoby stanowić sygnał, do zatrzymania. Aby potwierdzić wyniki badań symulacyjnych zaprojektowano układ pomiarowy, w którym jako obciążenie siłownika zastosowano liniowy hamulec magnetoreologiczny z możliwością regulacji siły oporu. Do sterowania użyto komputer PC z kartą sterującą PCI 1716 i programem Matlab/Simulink z systemem czasu rzeczywistego (Real Time Workshop). Do pomiarów wykorzystano drugi komputer z kartą pomiarową DaqBoard 3 i programem DasyLab. Schemat blokowy tego układu pokazano na rysunku 6. Widok stanowiska badawczego przedstawia rys. 7. Operator siedzący przed komputerem nie miał możliwości obserwowania ruchu siłownika. W związku z tym, że sterowanie obciążeniem odbywało się poprzez ręczne włączenie odpowiedniego napięcia cewki liniowego hamulca magnetoreologicznego, podczas badań nie było możliwości sprawdzenia działania układu z obciążeniem sprężystym. Siłownik hydrauliczny Indukcyjny pomiar położenia PC Dżojstik PC 1 Czujnik siły Rys. 7. Widok stanowiska pomiarowego Obciążenie regulowane Liniowy hamulec MR Przebadano przypadek, w którym tłoczysko siłownika uderza w przeszkodę. Schemat układu sterowania wykonany w programie Simulink pokazany jest na rys. 8. dzojstik -K- Gain 5 Gain1 silownik 1 silasilo u Abs.8 Gain 1 Rys. 8. Schemat układu sterowania wykonany w programie Simulink 5

Na rys. 9a pokazano charakterystyki położenia i siły dżojstika oraz siłownika w czasie z włączonym siłowym sprzężeniem zwrotnym. Linia oznaczona literą x pokazuje moment zatrzymania dżojstika w chwili, gdy operator wyczuł większy opór dżojstika po uderzeniu siłownika w przeszkodę. Na wykresie widać, że dżojstik i siłownik zatrzymały się niemal w tym samym czasie. Rysunek 9b pokazuje wyniki pomiarów bez dodatkowego siłowego sprzężenia zwrotnego. Przez cały czas pomiaru siła F j równa była sile oporów własnych dżojstika. Na tym wykresie widać, że dżojstik zatrzymał się dopiero w chwili oznaczonej literą y, czyli około,5 sekundy po zatrzymaniu siłownika (linia x). Operator nie wyczuł momentu uderzenia siłownika w przeszkodę. Zatrzymał dżojstik dopiero po zaobserwowaniu innych symptomów spowodowanych wzrostem ciśnienia w układzie hydraulicznym po zatrzymaniu się siłownika (wzrost natężenia dźwięku i wibracji). Różnica czasu zatrzymania dżojstika w obu badanych przypadkach jest niewielka, gdyż ruch roboczy tłoczyska odbywał się zaledwie w zakresie do 6 mm, a operator siedział blisko całego urządzenia i z pewnym prawdopodobieństwem mógł się domyślić, kiedy siłownik może się zatrzymać. Można przypuszczać, że gdyby zakres ruchu i prędkość siłownika były większe, a stanowisko sterowania byłoby bardziej oddalone od napędu, różnice te też byłyby większe. a) 6 4 α j [ ] y s [mm] - -4 F j [N] 4 6 F s [kn] -6 t [s] x b) 6 4 - -4-6 4 6 t [s] α j [ ] y s [mm] F j [N] F s [kn] Rys. 9. Przebiegi czasowe siły i położenia siłownika oraz dżojstika a) przy włączonym siłowym sprzężeniu zwrotnym, b) bez dodatkowego sprzężenia siłowego (F s siła siłownika, F j siła dżojstika, y s położenie siłownika, α j położenie dżojstika) Następnie zaprojektowano i przebadano algorytm, w którym pomijane są opory magnetoreologicznego hamulca obciążającego przy wyłączonym napięciu cewki tego hamulca. Zastosowanie tego algorytmu umożliwia zwiększenie zakresu odczuwanych przez operatora sił występujących na dźwigni dżojstika. Schemat układu sterowania pokazany jest na rys. 1. Doświadczalnie ustalono, że siła oporu hamulca MR użytego jako obciążenie x y 6

siłownika, przy wyłączonym napięciu wynosi,8 kn i w momencie ruchu siłownika jest ona odejmowana od wartości zmierzonej przy pomocy czujnika siły. dzojstik -K- Gain 5 Gain1 silownik 1 silasilo.8 u Abs Constant1 Switch.8 Gain 1 Constant Rys. 1. Schemat układu sterowania z pominięciem oporów MR hamulca obciążającego bez włączonego napięcia wykonany w programie Simulink Rys. 11 pokazuje charakterystyki wykonane podczas sterowania z wykorzystaniem wyżej opisanego algorytmu. Wyniki podobne są do przedstawionych na rys. 9a, z tym, że siła odczuwana na dżojstiku podczas ruchu siłownika hydraulicznego z wyłączonym napięciem magnetoreologicznego hamulca obciążającego jest nieco mniejsza i odpowiada sile oporów własnych dżojstika (jak w przypadku z wyłączonym sprzężeniem zwrotnym rys. 9b). 6 4 α j [ ] y s [mm] - 4 6 F j [N] -4-6 t [s] x F s [kn] Rys. 11. Przebiegi czasowe siły i położenia siłownika i dżojstika dla układu sterowania z pominięciem oporów obciążającego hamulca MR bez włączonego napięcia 4. PODSUMOWANIE Na podstawie przytoczonych w artykule wyników badań można wywnioskować, że podczas pracy napędu elektrohydraulicznego w warunkach ograniczonej widoczności, dżojstik dotykowy i siłowe sprzężenie zwrotne mogą poprawić jakość sterowania położeniem tłoczyska. Stosując dżojstik dotykowy można zarówno wykrywać przeszkody stałe, jak i zmianę siły nacisku na przedmioty sprężyste. Praca w pętli z dodatkowym siłowym sprzężeniem zwrotnym może też zmniejszyć prawdopodobieństwo uszkodzenia urządzeń 7

hydraulicznych, nie dopuszczając do nagłych wzrostów ciśnienia w układzie podczas zderzeń hydraulicznego elementu roboczego z przeszkodą. Może też zapobiec zniszczeniu innych przedmiotów znajdujących się w polu pracy napędu, w które mógłby on ewentualnie uderzyć. LITERATURA [1] Bachman P., Chciuk M.: Zastosowanie cieczy magnetoreologicznych w urządzeniach dotykowych, Seminarium naukowo-techniczne - TECHNICON '5: Targi Nauki i Techniki, Gdańsk 5. [] Bachman, P.; Milecki, A.: MR haptic joystick in control of virtual servo drive, 11th International Conference on Electrorheological Fluids and Magnetorheological Suspensions, Dresden 8. [3] Milecki A., Ławniczak A.: Ciecze elektro- i magnetoreologiczne oraz ich zastosowania w technice, Wydawnictwo Politechniki Poznańskiej, Poznań 1999. [4] http://www.forcedimension.com [5] http://www.immersion.com [6] http://www.lord.com [7] http://www.sensable.com Pracę wykonano w ramach projektu badawczego KBN p.t.: "Konstrukcja i badania urządzeń zadających i dotykowych z cieczami magnetoreologicznymi i z siłowym sprzężeniem zwrotnym" nr 4 T7B 9 8