LABORATORIUM METROLOGII

Podobne dokumenty
1. Wprowadzenie: dt q = - λ dx. q = lim F

wymiana energii ciepła

Pomiar współczynnika przewodzenia ciepła ciał stałych

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY

Instrukcja do laboratorium z fizyki budowli.

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

ĆWICZENIE 2 BADANIE TRANSPORTU CIEPŁA W WARUNKACH STACJONARNYCH

Czym jest prąd elektryczny

WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY INSTYTUT POJAZDÓW MECHANICZNYCH I TRANSPORTU

BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE

Modelowanie w projektowaniu maszyn i procesów cz.7

BADANIE WYMIENNIKÓW CIEPŁA

WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODZENIA CIEPŁA W MATERIAŁACH POROWATYCH (oprac. dr inż. Jacek Banaszak)

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Przedmowa Przewodność cieplna Pole temperaturowe Gradient temperatury Prawo Fourier a...15

Analiza natężenia przepływu ciepła przez materiały stałe dla jednowymiarowych ustalonych warunków przepływów ciepła- zastosowanie równania Fouriera.

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

Przemiany energii w zjawiskach cieplnych. 1/18

Instrukcja stanowiskowa

NAGRZEWANIE ELEKTRODOWE

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW

PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE

WYDZIAŁ LABORATORIUM FIZYCZNE

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH

LABORATORIUM - TRANSPORT CIEPŁA I MASY II

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Laboratorium. Hydrostatyczne Układy Napędowe

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

i elementy z półprzewodników homogenicznych część II

mgr Anna Hulboj Treści nauczania

Wyznaczanie współczynnika przewodnictwa

Regulacja dwupołożeniowa (dwustawna)

ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM

Politechnika Poznańska

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

BADANIE PARAMETRÓW PROCESU SUSZENIA

Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych

Badanie zależności temperatury wrzenia wody od ciśnienia

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego. Schemat punktowania zadań

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

INSTRUKCJA LABORATORYJNA NR 3-WPC WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODZENIA CIEPŁA MATERIAŁÓW BUDOWLANYCH

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

POMIAR PRZEWODNOŚCI CIEPLNEJ IZOLATORÓW

Natężenie prądu elektrycznego

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne

Skuteczność izolacji termicznych

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego

ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA

Przenikanie ciepła obliczanie współczynników przenikania ciepła skrót wiadomości

LABORATORIUM Z FIZYKI TECHNICZNEJ

TEMAT: BADANIE ZJAWISKA PRZEWODNICTWA CIEPLNEGO W CIAŁACH STAŁYCH

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną

PRZENIKANIE CIEPŁA W CHŁODNICY POWIETRZNEJ

WYZNACZANIE WSPÓŁCZYNNIKA ROZSZERZALNOŚCI CIEPLNEJ METODĄ ELEKTRYCZNĄ

Analiza korelacyjna i regresyjna

Stanowiska laboratoryjne przeznaczone do przeprowadzania doświadczeń w zakresie przepływu ciepła

ĆWICZENIE NR 4 WYMIENNIK CIEPŁA

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

WYZNACZANIE STRAT CIEPŁA PRZEWODÓW IZOLOWANYCH

Centralny Ośrodek Chłodnictwa COCH w Krakowie Sp. z o.o Kraków. ul. Juliusza Lea 116. Laboratorium Urządzeń Chłodniczych

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

Różne dziwne przewodniki

Przedmiotowy system oceniania (propozycja)

Dobór materiałów konstrukcyjnych cz.13

Pomiar przewodności cieplnej i elektrycznej metali

POMIAR PRZEWODNOŚCI CIEPLNEJ I ELEKTRYCZNEJ METALI

WYDZIAŁ LABORATORIUM FIZYCZNE

GKM-S GRZEJNIKI KONWEKTOROWE

Przykładowe kolokwium nr 1 dla kursu. Przenoszenie ciepła ćwiczenia

Politechnika Poznańska. Zakład Mechaniki Technicznej

WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PODCZAS KONWEKCJI WYMUSZONEJ GAZU W RURZE

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metoda Elementów Skończonych

Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu

Ćwiczenie 4: Wymienniki ciepła. Wyznaczanie współczynnika przenikania ciepła.

WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA

GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

WPŁYW GRADIENTU TEMPERATURY NA WSPÓŁCZYNNIK PRZEWODZENIA CIEPŁA

INSTRUKCJA DO ĆWICZEŃ

Wymagania edukacyjne Fizyka klasa 2

MECHANIKA PŁYNÓW LABORATORIUM

Transkrypt:

LABORATORIUM METROLOGII POMIARY PRZEWODNOŚCI CIEPLNEJ CIAŁ STAŁYCH Cel ćwiczenia: zapoznanie z metodami pomiaru współczynnika przewodzenia ciepła, oraz jego wyznaczenie metodą stacjonarną. 1

WPROWADZENIE Zjawisko przepływu ciepła, nazywane również wymianą ciepła zachodzi wszędzie tam, gdzie występują różnice temperatury. Z punktu widzenia fizycznych mechanizmów wyróżnia się trzy sposoby wymiany ciepła: przewodzenie, konwekcję i promieniowanie. Każdy z tych mechanizmów ma swoją specyfikę widoczną w zapisie matematycznym. Przewodzenie ciepła jest to wymiana ciepła pomiędzy bezpośrednio stykającymi się częściami jednego ciała lub różnych ciał. Polega ono na przekazywaniu energii wewnątrz ośrodka materialnego z miejsc o temperaturze wyższej do miejsc o temperaturze niższej, przy czym poszczególne cząstki rozpatrywanego układu nie wykazują większych zmian położenia. Ten sposób wymiany ciepła jest charakterystyczny przede wszystkim dla ciał stałych. W cieczach i gazach przewodzenie ciepła w czystej postaci występuje niezmiernie rzadko. Mechanizm przewodzenia ciepła jest dość skomplikowany i zależy od stanu skupienia ciała przewodzącego ciepło. W gazach i cieczach ciepło przenosi się głównie poprzez bezładne zderzenia cząsteczek. W ciałach stałych przewodzenie ciepła polega przede wszystkim na przenoszeniu energii przez swobodne elektrony oraz drgania atomów w siatce krystalicznej. Przewodzenie ciepła opisuje prawo Fouriera, zgodnie z którym gęstość strumienia cieplnego jest proporcjonalna do gradientu temperatury mierzonego wzdłuż kierunku przepływu ciepła. Matematycznie prawo to można wyrazić następująco: &q dt = λ (1) dx Znak minus w równaniu (1) wynika stąd, iż ciepło przepływa z miejsca o temperaturze wyższej do miejsca o temperaturze niższej, a więc odcinkowi dx mierzonemu wzdłuż kierunku przepływu ciepła odpowiada ujemna wartość przyrostu temperatury -dt. Współczynnik proporcjonalności λ figurujący w równaniu prawa Fouriera, będący własnością fizyczną ciała nazywamy współczynnika przewodzenia ciepła (lub przewodnością cieplną), a jego wymiar W/(m K) wynika z równania (1). Przewodność cieplna różnych ciał, czyli ich zdolność do przekazywania energii wewnętrznej, której miarą jest współczynnik λ, nie jest wielkością stałą. Zależy ona od rodzaju ciała, jego struktury, gęstości, ciśnienia, temperatury, niekiedy wilgotności i od wielu innych czynników. Z tego też powodu wartość współczynnika przewodzenia ciepła mieści się w bardzo szerokich granicach. We wszelkiego rodzaju obliczeniach przewodzenia ciepła najbardziej istotna jest wiedza na temat jego zmian w funkcji temperatury. Współczynnik przewodzenia gazów, przy umiarkowanych ciśnieniach mieści się w granicach 0,005 0,5 W/(m K) i jest rosnącą funkcją temperatury. Współczynnik przewodzenia ciepła cieczy, za wyjątkiem ciekłych metali mieści się w granicach 0,09 0,7 W/(m K). Tak niewielkie wartości współczynnika λ dla płynów, wynikają z samej natury mechanizmu przewodzenia ciepła, który polega na zderzeniach chaotycznie poruszających się cząstek i ich dyfuzji. Zgodnie z kinetyczną teorią gazów, współczynnik przewodzenia ciepła jest proporcjonalny do średniej prędkości cząstek i do średniej drogi swobodnej pomiędzy kolejnymi zderzeniami. Dlatego też współczynnik λ z reguły rośnie w funkcji temperatury. W cieczach dochodzi dodatkowo transport ciepła poprzez drgania podłużne. Wartości liczbowe współczynnika przewodzenia ciepła ciał stałych zawierają się w bardzo szerokich granicach, od 0,02 do 420 [W/(mK)]. W tym przypadku występują dwa zasadnicze mechanizmy przewodzenia ciepła: ruch swobodnych elektronów, które zachowują się jak gaz i drgania atomów wokół ich stanu równowagi. W czystych metalach decyduje ruch elektronów. Przewodność cieplna metali maleje ze wzrostem temperatury. Najlepszym 2

przewodnikiem ciepła jest srebro, dalej miedź, złoto i aluminium. Czystość metalu wywiera decydujący wpływ na wartość współczynnika λ. Na przykład czysta miedź ma przewodność cieplną 395 [W/(m K)], lecz ślady arsenu powodują jej spadek do wartości 140 [W/(mK)]. Podobnie stopy metali mają zwykle znacznie mniejsze wartości przewodności cieplnej niż czyste składniki wchodzące w ich skład. W dielektrykach, gdzie decydują drgania atomów, współczynnik przewodzenia ciepła jest znacznie niższy. Współczynnik λ materiałów izolacyjnych i budowlanych mieści się w granicach 0,02 2,97 [W/(m K)]. Materiały te są przeważnie porowate, a puste przestrzenie wypełnione są powietrzem które, jeśli pory nie są zbyt duże, i że nie występuje w nich konwekcja, spełnia rolę izolatora. Wynika z tego, że im mniejszy jest ciężar właściwy takiego materiału, tym niższa jest jego przewodność cieplna. Oczywiście, zbyt duże zwiększenie porowatości powoduje powstawanie w porach konwekcji, co zwiększa przewodzenie ciepła. Bardzo istotnym czynnikiem wpływającym na przewodzenie cieplne materiałów porowatych jest ich wilgotność. Materiał wilgotny, w porównaniu z materiałem suchym, posiada znacznie większą przewodność cieplną. Jest to bardzo istotne ze względu na konieczność chronienia tych materiałów przed wpływem wilgoci. Ciała stałe bezpostaciowe wykazują wzrost przewodzenia cieplnego ze wzrostem temperatury, przy czym wartość przewodności cieplnej w bardzo niskich temperaturach jest mała. METODY POMIARU WSPÓŁCZYNNIKA λ Istotę pomiarów przewodności cieplnej opisać można na dwa różne sposoby, które wzajemnie się uzupełniają. Z jednej strony pomiary tej wielkości polegają na możliwie ścisłym zdefiniowaniu rozpatrywanego ośrodka i warunków w jakich się on znajduje oraz określeniu wartości współczynnika λ z określonym błędem pomiaru. Z drugiej strony można stwierdzić, iż eksperymentalne wyznaczanie przewodności cieplnej polega w ogólności na rozwiązaniu zagadnienia brzegowego dla badanej próbki, a następnie w oparciu o temperatury zmierzone w ściśle określonych punktach rozpatrywanej próbki, obliczeniu współczynnika λ. W badanym ośrodku wprowadza się zaburzenie termiczne i obserwuje się pole temperatury. Wyznaczanie przewodności cieplnej polega więc na rozwiązaniu zagadnienia inwersyjnego przewodzenia ciepła znane jest pole temperatury i warunki brzegowe, a wyznacza się własności ośrodka w którym odbywa się przewodzenie. Jeśli rozważane zagadnienie brzegowe dotyczy stanu ustalonego, mówimy wtedy o stacjonarnych metodach pomiarowych. W przypadku, gdy podczas pomiarów rozpatruje się nieustalone zagadnienie brzegowe, mamy wtedy do czynienia z metodami niestacjonarnymi (dynamicznymi). Metody stacjonarne charakteryzują się stosunkowo wysoką dokładnością, jednak posiadają jedną bardzo istotną wadę. Jest nią mianowicie bardzo długi czas pomiarów, dochodzący nawet do kilkunastu godzin. Jednak, pomimo tego, są to metody wzorcowe. Główne trudności przy stosowaniu tych metod sprowadzają się do utrzymania założonych warunków brzegowych na powierzchniach próbki. Metody dynamiczne charakteryzują się krótkimi czasami badań, jednak dokładność uzyskiwanych wyników nie jest zbyt wysoka. Należy jednak podkreślić, że istnieje możliwość wielokrotnego obliczania wartości współczynnika λ na podstawie jednego pomiaru niestacjonarnego. Wymaga to jednak bardziej rozbudowanego aparatu matematycznego. Przed przystąpieniem do realizacji eksperymentów, szczególną uwagę należy zwrócić na problem ścisłej identyfikacji badanego ośrodka. Należy niezwykle dokładnie określić jego skład chemiczny, strukturę wewnętrzną oraz warunki w których prowadzony jest pomiar temperatura, ciśnienie, wilgotność. Nieprecyzyjne zdefiniowanie badanego ośrodka, nawet 3

przy bardzo poprawnie przeprowadzonym eksperymencie, czyni pomiar całkowicie bezwartościowym. Brak dokładnej identyfikacji jest przyczyną najczęstszych i największych Sposób realizacji pomiarów współczynnika λ określa metoda pomiaru, dla której następnie buduje się odpowiednie stanowisko eksperymentalne. Wybór metody pomiaru często uwarunkowany jest posiadaną aparaturą - metody niestacjonarne wymagają bogatszego oprzyrządowania. Ponadto, wpływ na wybór metody ma również rodzaj i wielkość badanej próbki oraz wymagana dokładność pomiarów. Przewodność cieplną oznacza się najczęściej w stanie ustalonym metodą płyty, rury lub kuli. W stanie nieustalonym wyznacza się przeważnie dyfuzyjność cieplną a. Przewodności cieplnej na drodze eksperymentalnej na ogół nie udaje się wyznaczyć z błędem mniejszym niż ± 1%. Przy badaniach ciał stałych, za dopuszczalny uważany jest błąd rzędu ± 5%. Natomiast w przypadku ciał niejednorodnych, o złożonej strukturze, dopuszcza się nawet błąd wynoszący 10 20%. STANOWISKO POMIAROWE Do pomiarów współczynnika przewodzenia ciepła wykorzystane zostanie stanowisko badawcze działające na zasadzie aparatu Poensgena. Składa się ono z następujących elementów: komory pomiarowej, układu grzewczego oraz układu pomiaru temperatury. Ogólny widok stanowiska przedstawia rys.1. Rys. 1. Stanowisko do pomiarów przewodności cieplnej. Badana próbka umieszczana jest w komorze pomiarowej, którą stanowi stalowa skrzynka wykonana z blachy o grubości 12mm o wymiarach wewnętrznych 100x400x400mm (rys. 2). Od góry komora zakończony jest kołnierzem, do którego w razie konieczności mocowana jest pokrywa. Na rys. 3 pokazano komorę z umieszczoną w jej wnętrzu próbką pomiarową w postaci złoża stalowych prętów. 4

Rys. 2. Korpus komory pomiarowej widziany od góry. Rys.3. Korpus komory umieszczoną z próbką w postaci złoża prętów. 5

Najważniejszą częścią opisywanego stanowiska, jest układ grzejny. Składa się ona z następujących elementów: grzejnika głównego, grzejnika osłonowego, autotransformatora, regulatora zasilania grzejnika osłonowego, watomierza, układu pomiaru temperatury. Rozstawienie grzejników w stosunku do badanej próbki pokazano na rys. 4. Grzejniki: główny A i osłonowym B znajdują się jeden nad drugim, a oddziela je 30mm warstwa ceramicznej włókniny izolacyjnej. badana próbka A 1 C termoelementy B 2 Rys. 4. Schemat układu grzejnego: A grzejnik główny, B grzejnik pomocniczy, C warstwa izolacji, 1-2 punkty pomiaru temperatury Zastosowanie w układzie grzewczym grzejnika osłonowego pozwala uzyskać w badanej próbce jednokierunkowy przepływ ciepła. Jego działanie powoduje, że całe ciepło generowane w grzejniku głównym jest kierowane w kierunku badanej próbki. Warunek ten zostaje spełniony, gdy przeciwległe powierzchnie grzejników głównego i osłonowego, po uzyskaniu w układzie stanu ustalonego będą mieć tę samą temperaturę, czyli inaczej mówiąc, jeśli miedzy punktami 1 i 2 z rysunku 4 nie będzie różnicy temperatury. Spełnienie tego warunku wymaga zainstalowania w układzie grzejnym regulatora mocy zasilania grzejnika osłonowego. Jego zadaniem jest dobieranie mocy grzejnika osłonowego w taki sposób, aby sygnały napięciowe termoelementów mierzących temperaturę w punktach 1 oraz 2 były jednakowe. Dodatkowo, aby w układzie pomiarowym wymusić jednokierunkowy przepływ ciepła, powierzchnie boczne obydwu grzejników oraz komory pomiarowej zaizolowano dziesięciocentymetrową warstwą włókniny ceramicznej. Podstawowe wielkości jakie należy mierzyć podczas badań aparatem Poensgena wynikają z równania Fouriera dla przewodzenia ciepła przez ściankę płaską: gdzie: λ 2 ( t t ) = l Δt Q& λ = F d g (2) h h Q & - strumień ciepła przepływający przez próbkę, W; h grubość próbki w kierunku przepływu ciepła, m; F powierzchnia przez którą przewodzone jest ciepło, m 2 ; l - długość boku badanej próbki, m; t d, t g - temperatury dolnej i górnej powierzchni próbki, C. 6

Po przekształceniu równania (2), otrzymuje się zależność na współczynnik przewodzenia ciepła: Q& h λ = l 2 (3) Δt Stąd wielkości jakie należy zmierzyć podczas realizacji pomiarów to: strumień ciepła przepływający przez próbkę, wymiary próbki, temperatury na jej powierzchniach zewnętrznych. Strumień ciepła w przypadku grzałki rezystancyjnej jest równy mocy zasilającego ją prądu. Inaczej mówiąc, cała moc elektryczna dostarczana do grzejnika zamienia się w nim na ciepło. Stąd wartość Q & wyznaczano mierząc moc prądu zasilającego grzejnik główny. Temperatury na powierzchniach próbki mierzone są za pomocą termoelementów płaszczowych NiCr NiAl o średnicy zewnętrznej płaszcza 0,5mm, które poprzez elektroniczny przełącznik połączone są z cyfrowym miernikiem temperatury. Układ ten pozwalał na bezpośredni pomiar temperatury z dokładnością 0,1 C do 400 C, a powyżej tej temperatury z dokładnością 1 C. METODYKA POMIARÓW W trakcie zajęć badaniom poddawana będzie próbka w postaci płaskiego złoża stalowych prętów. Wartości współczynnika przewodzenia ciepła badanego złoża określona zostanie metodą stacjonarną. Metoda ta polega na uzyskaniu w nagrzewanej próbce stacjonarnego, jednowymiarowego pola temperatury. W chwili uzyskania w badanej próbce stanu ustalonego, należy odczytać z watomierza strumień ciepła przepływający przez próbkę oraz temperatury na powierzchniach próbki. Następnie należy obliczyć średnie temperatury dolnej i górnej powierzchni próbki. PRZEBIEG ĆWICZENIA W celu wykonania ćwiczenia należy: 1. Zestawić stanowisko pomiarowe. 2. Włączyć układ grzewczy stanowiska, 3. Ustawić moc elektryczną za pomocą autotransformatora, 5. Po uzyskaniu w badanej próbce stanu ustalonego dokonać pomiarów temperatury. ZAGADNIENIA DO OPRACOWANIA Podstawowe zależności opisujące wymianę ciepła. Przewodzenie ciepła. Przewodzenie cieplne ciał stałych. Metody pomiaru współczynnika przewodzenia ciepła, w tym metody stacjonarne. Budowa stanowiska pomiarowego i metodyka badań. 7