Dr inŝ. BoŜena Skotnicka-Zasadzień Dr hab. inŝ. Witold Biały, prof. nzw. w Pol. Śl.

Podobne dokumenty
NARZĘDZIA ZARZĄDZANIA JAKOŚCIĄ W OCENIE AWARYJNOŚCI GÓRNICZYCH URZĄDZEŃ TECHNICZNYCH

INNOWACYJNE ZASTOSOWANIE NARZĘDZI INŻYNIERII JAKOŚCI W PRZEMYŚLE WYDOBYWCZYM

Narzêdzia in ynierii jakoœci w analizie awaryjnoœci œcianowych kompleksów wydobywczych

Przyczyny powstawania awarii elektrycznych kompleksu ścianowego i ich skutki

Przyczyny powstawania awarii elektrycznych

Ogólny zarys koncepcji rachunku ABC w kopalni węgla kamiennego

Kompleksowe rozwiązania dla górnictwa

TRADYCYJNE NARZĘDZIA ZARZĄDZANIA JAKOŚCIĄ

Raport 8D (cykl Deminga, Ishikawa, 5 WHY)

POLITECHNIKA OPOLSKA

Kompatybilność elektromagnetyczna i bezpieczeństwo funkcjonalne w górnictwie wprowadzenie. mgr inż. Mirosław Krzystolik

POLITECHNIKA OPOLSKA

METO T D O Y O C O ENY J A J KOŚ O CI

Informacje ogólne. Oficjalne przejęcie kopalni Silesia przez inwestora koncern EPH 9 grudnia 2010

POLITECHNIKA OPOLSKA

ZARZĄDZANIE JAKOŚCIĄ ĆWICZENIA

Sprawozdanie ze stażu naukowo-technicznego

KONTROLING I MONITOROWANIE ZLECEŃ PRODUKCYJNYCH W HYBRYDOWYM SYSTEMIE PLANOWANIA PRODUKCJI

Jakość wyrobów i usług. Tomasz Poskrobko

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA PROJEKTAMI W PRZEDSIĘBIORSTWIE

PRZEWODNIK PO PRZEDMIOCIE. Bezpieczeństwo i higiena pracy

Nowe narzędzia zarządzania jakością

W 30 C 30 Rodzaj : Symbol : Semestr : Grupa : Nr w siatce studiów : Data opracowania : 2012

Rachunek kosztów działań sterowany czasem (Time-Driven ABC)

Analiza ryzyka nawierzchni szynowej Iwona Karasiewicz

14 ANALIZA EFEKTYWNOŚCI ZASTOSOWANIA METODY FMEA W MAŁYM PRZEDSIĘBIORSTWIE PRZEMYSŁOWYM

KOSZTY JAKOŚCI JAKO NARZĘDZIE ZARZĄDZANIA JAKOŚCIĄ

KOMITET NAUKOWO-TECHNICZNY

ZAKRES AKREDYTACJI JEDNOSTKI CERTYFIKUJĄCEJ WYROBY Nr AC 023

Rok akademicki: 2013/2014 Kod: RAR AS-s Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Politechnika Częstochowska Wydział Zarządzania Instytut InŜynierii Produkcji

Systemowe zarządzanie jakością : koncepcja systemu, ocena systemu, wspomaganie decyzji / Piotr Miller. Warszawa, Spis treści

5.2. PODEJMOWANIE DECYZJI - DIAGRAM ISHIKAWY WYKRES OŚCI RYBY (ang. fishbone diagram) WYKRES PRZYCZYNA-SKUTEK (ang. cause-effect diagram)

Laboratorium 8. Zarządzanie ryzykiem.

NARZĘDZIA KOMPLEKSOWEGO ZARZĄDZANIA JAKOŚCIĄ

Małopolska Agencja Rozwoju Regionalnego S.A.

Zarządzanie i inżynieria jakości / Adam Hamrol. Warszawa, Spis treści

Podstawowe zasady projektowania w technice

Rys. 1. Obudowa zmechanizowana Glinik 15/32 Poz [1]: 1 stropnica, 2 stojaki, 3 spągnica

Klaster Maszyn Górniczych

ANALIZA WYPADKÓW ZWIĄZANYCH Z ZAGROŻENIEM METANOWYM W KOPALNIACH WĘGLA KAMIENNEGO W LATACH

ANALIZA WADLIWOŚCI WYROBU Z WYKORZYSTANIEM NARZĘDZI ZARZĄDZANIA JAKOŚCIĄ

Gospodarka odpadami wydobywczymi z punktu widzenia organów nadzoru górniczego

Wydział Górnictwa i Geoinżynierii

ANALIZA EFEKTYWNOŚCI WYKORZYSTANIA ZESTAWU MASZYN GÓRNICZYCH

Zarządzanie systemami produkcyjnymi

Wpływ przestoi technicznych i postoi górniczych na dyspozycyjny czas pracy przodka ścianowego. 1. Wstęp EKSPLOATACJA I NIEZAWODNOŚĆ

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

ZAKRES AKREDYTACJI JEDNOSTKI CERTYFIKUJĄCEJ WYROBY Nr AC 023

Tabela odniesień efektów kierunkowych do efektów obszarowych (tabela odniesień efektów kształcenia)

Załącznik Nr 5 do Zarz. Nr 33/11/12

PRZEWODNIK PO PRZEDMIOCIE

Rachunek kosztów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010. Alicja Konczakowska 1

SYMULACJA SYSTEMU TRANSPORTOWEGO W KOPALNI WĘGLA KAMIENNEG

ZASTOSOWANIE WYBRANYCH NARZĘDZI DO ANALIZY PRZYCZYN AWARII MASZYNY W PRZEDSIĘBIORSTWIE PRODUKCYJNYM

ZAKRES AKREDYTACJI JEDNOSTKI CERTYFIKUJĄCEJ WYROBY Nr AC 023

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Obciążenia dynamiczne bębnów łańcuchowych w stanach awaryjnych przenośnika ścianowego

PRZEWODNIK PO PRZEDMIOCIE

PYTANIA EGZAMINACYJNE DLA STUDENTÓW STUDIÓW STACJONARNYCH I NIESTACJONARNYCH I-go STOPNIA

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH - LAB. Wprowadzenie do zajęć

INŻYNIERIA I MARKETING dlaczego są sobie potrzebne?

Praca dyplomowa. Autor: Magdalena Karaś. Opiekun pracy: dr inż. Stanisław Zając

POLITECHNIKA OPOLSKA

RACHUNKOWOŚĆ ZARZĄDCZA

ZMECHANIZOWANE OBUDOWY ŚCIANOWE

Program DSA Monitor - funkcje

Management Systems in Production Engineering No 4(8), 2012

MONITOROWANIE PODSTAWOWYCH PARAMETRÓW PROCESÓW PRODUKCYJNYCH W KOPALNI WĘGLA KAMIENNEGO

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Koncepcja systemu zarządzania jakością w dużym projekcie informatycznym zgodnie z normą ISO/IEC 9001:2008

STRATEGICZNE ZARZĄDZANIE KOSZTAMI

Egzamin za szkolenia Audytor wewnętrzny ISO nowy zawód, nowe perspektywy z zakresu normy ISO 9001, ISO 14001, ISO 27001

Instytut Technik Innowacyjnych EMAG

PL B1. INSTYTUT TECHNIKI GÓRNICZEJ KOMAG, Gliwice, PL BUP 07/14. DARIUSZ MICHALAK, Bytom, PL ŁUKASZ JASZCZYK, Pyskowice, PL

AUTOMATYZACJA PROCESÓW DYSKRETNYCH Jarosław BRODNY, Sara ALSZER, Jolanta KRYSTEK, Sławomir DUDA Politechnika Śląska

Innowacyjność, Jakość, Zarządzanie

WYDAJNOŚĆ I CZAS PRACY KOPAREK WIELONACZYNIOWYCH W KOPALNIACH WĘGLA BRUNATNEGO W POLSCE. 1. Wprowadzenie. Zbigniew Kasztelewicz*, Kazimierz Kozioł**

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych.

DOSKONALENIE SYSTEMU JAKOŚCI Z WYKORZYSTANIEM MODELU PDCA

DOSKONALENIE PROCESU PRODUKCYJNEGO W PRZEDSIĘBIORSTWIE PRZEMYSŁOWYM Z ZASTOSOWANIEM METOD PROJEKTOWANIA JAKOŚCI

Systemy zarządzania jakością Kod przedmiotu

KARTA PRZEDMIOTU. 1) Nazwa przedmiotu: Projekt inżynierski. 2) Kod przedmiotu: SIG-EZiZO/47

PRZEWODNIK PO PRZEDMIOCIE

Proces produkcyjny realizowany w przodkach ścianowych kopalń węgla kamiennego w Polsce w ujeciu logistycznym

6. Charakterystyka systemu eksploatacji pokładów grubych z dennym wypuszczaniem urobku.

Computer maintenance managing systems (CMMs) in mining machinery and equipment exploitation

Proven solutions. Global reach. Smart technology. Grupa FAMUR 2018

Analiza pracy maszyny urabiającej w wyrobisku ścianowym

System informacji warsztatowej do serwisowania, napraw i diagnozy układów klimatyzacji samochodowej

Zarządzanie eksploatacją w elektroenergetyce

Perspektywy rozwoju Polskiej Grupy Górniczej sp. z o.o.

Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08

Metoda Pięciostopniowego Programu Poprawy Jakości na przykładzie Samsung Electronics Poland Manufacturing Sp. z o.o.

Marian Turek. Techniczna i organizacyjna restrukturyzacja kopalń węgla kamiennego

Podstawowe techniki doskonalenia jakości

Instytut Technik Innowacyjnych EMAG

Management Systems in Production Engineering No 4(20), 2015

Analiza czasu pracy maszyn przy zbrojeniu ścian wydobywczych

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Transkrypt:

Dr inŝ. BoŜena Skotnicka-Zasadzień Dr hab. inŝ. Witold Biały, prof. nzw. w Pol. Śl. Instytut InŜynierii Produkcji Politechnika Śląska Ul. Roosevelta nr 26, 41-800 Zabrze, Polska E-mail: bozena.skotnicka@polsl.pl wbialy@polsl.pl Analiza moŝliwości wykorzystania narzędzia Pareto-Lorenza do oceny awaryjności urządzeń górniczych Słowa kluczowe: zarządzanie jakością, diagram Pareto-Lorenza, awaryjność urządzeń Streszczenie. W artykule przedstawiono ogólną klasyfikację narzędzi zarządzania jakością stosowanych w róŝnych gałęziach przemysłu. Spośród tych narzędzi został wybrany diagram Pareto- Lorenza, za pomocą którego przestawiono analizę awaryjności urządzeń górniczych biorących udział w procesie wydobywczym kopalni. Analizie poddano kombajn, przenośnik zgrzebłowy, przenośnik taśmowy, kruszarkę oraz obudowę. 1. Wprowadzenie Większość kopalń węgla kamiennego posiada Zintegrowany System Zarządzania Jakością i tylko w ramach oceny funkcjonowania tego systemu, czasami stosowane są narzędzia zarządzania narzucone przez dokumentacje, a słuŝące do oceny doskonalenia jakości w przedsiębiorstwie. Zmieniająca się sytuacja gospodarcza w kraju, konkurencja, a takŝe coraz większe wymagania odbiorców (klientów) kopalni, wymuszają na kierownictwie poszukiwanie nowych sposobów na poprawę procesu produkcyjnego (wydobywczego) [10]. W procesie wydobywczym węgla kamiennego duŝe znaczenie ma monitorowanie urządzeń górniczych, a takŝe analiza awaryjności maszyn i urządzeń biorących udział w tym procesie. 2. Charakterystyka narzędzi zarządzania jakością Narzędzia zarządzania jakością słuŝą do zbierania i przetwarzania danych związanych z róŝnymi aspektami jakości. Najczęściej wykorzystywane są do nadzorowania (monitorowania) całego cyklu produkcyjnego, począwszy od projektowania, poprzez wytwarzanie, aŝ do kontroli po zakończonym procesie produkcyjnym. Narzędzia zarządzania jakością dzielą się na tradycyjne (stare) i nowe. W tabelach 1 i 2 przedstawiono zakres zastosowania tradycyjnych i nowych narzędzi zarządzania jakością. Narzędzie przyczynowo skutkowy Ishikawy (diagram rybiej ości) Arkusze kontrolne Histogram Tabela 1. Zakres zastosowania starych narzędzi zarządzania jakością Zakres stosowania Do rozwiązywania problemów jakościowych, w których występuje rozbudowany łańcuch przyczyn Stanowi metodę rejestrowania pomysłów Odkrywa nieujawnione związki pomiędzy przyczynami Pomaga odkryć źródło problemu Przy zbieraniu danych odnoszących się do częstotliwości, problemów i wad w trakcie procesu produkcyjnego i innych Przy zbieraniu danych Przy standaryzowaniu listy działań Obrazowe przedstawienie przebiegu procesów lub zjawisk ekonomicznych w czasie

Pareto-Lorenza Wykresy korelacji Karty kontrolne Schemat blokowy Wizualne przedstawienie informacji o przebiegu procesów Pokazanie zmienności zjawisk lub stanów Wyeliminowanie zjawisk o największej częstotliwości występowania Wyeliminowanie przyczyn tworzenia największych kosztów Analizowanie wagi i częstości występowania problemów UmoŜliwia graficzną prezentację siły relacji między zmiennymi Do identyfikowania potencjalnych źródeł niezgodności W celu stwierdzenia czy dwa skutki mogą być spowodowane tą samą przyczyną Do oceny stabilności procesu w długich okresach Do określania czy w danym momencie proces jest pod kontrola, czy nie W celu zidentyfikowania obszarów moŝliwego doskonalenia W celu zapobiegania produkcji wyrobów wadliwych W celu sprawowania bieŝącej kontroli nad procesem W celu zobrazowania następstwa czynności w procesie Dla znalezienia powiązań pomiędzy czynnościami Dla łatwiejszego określania następstwa wykonywanych działań Stwarza moŝliwość łatwiejszej analizy przebiegu, eliminacji niepotrzebnych czynności Źródło: opracowanie własne na podstawie [9]. Narzędzie relacji pokrewieństwa systematyki matrycowy Matrycowa analiza danych Wykres programowy procesu decyzji PDPC strzałkowy Tabela 2. Zakres zastosowania nowych narzędzi zarządzania jakością Zakres stosowania Rozwiązanie trudności z określeniem współzaleŝności skutku i przyczyny. Wskazanie współzaleŝności między przyczynami wywołującymi dany skutek. Próbuje się odnaleźć zaleŝności między przyczynami zarysowanymi w diagramie pokrewieństw. Analizowane zagadnienia są zbyt obszerne lub zbyt chaotyczne, aby w prosty sposób mogły zostać zdefiniowane. Konieczne jest poparcie dla określonego rozwiązania, koncepcji, projektu. Celem jest wyjaśnienie i umotywowanie stanowiska. Poszukiwane jest narzędzie pomocne po sesji burzy mózgów. Chcemy rozwiązać konkretny problem (przypomina wtedy diagram Ishikawy). Przedstawiamy kolejne etapy działań w analizowanym procesie. Pomaga zrozumieć relacje miedzy poszczególnymi grupami w diagramie. SłuŜy do komunikowania tych relacji. Poszukiwanie nisz rynkowych. Analizy marketingowe. Pokazanie istotnych zaleŝności ze względu na wybrane cechy produktu. Do badania ewentualnych sytuacji, które mogą zajść po wdroŝeniu nowego planu działań, niosącego za sobą ryzyko niepowodzenia. Podczas wdraŝania skomplikowanych planów działań. Podczas wdraŝania planów z narzuconymi wymaganiami czasowymi. Planowanie całościowego projektu lub procesu z uwzględnieniem zadań i zasobów. Analiza czasu realizacji projektu. Przydzielanie zasobów na realizację projektu. Monitorowanie realizacji projektu. Ponowne planowanie przebiegu projektu przy uwzględnieniu zmian. Źródło: opracowanie własne na podstawie [9]. W tabeli 1 przedstawiono tradycyjne narzędzia zarządzania jakością i ich zakres zastosowania, natomiast w tabeli 2 przedstawiono nowe narzędzia zarządzania jakością oraz zakres ich zastosowania. W niniejszym artykule do oceny awaryjności urządzeń górniczych wykorzystano jedno z tradycyjnych narzędzi zarządzania jakością diagram Pareto-Lorenza.

Pareto-Lorenza jest narzędziem umoŝliwiającym uporządkowanie czynników wpływających na badane zjawisko. Za pomocą tego graficznego obrazu moŝna przedstawić zarówno względny jak i bezwzględny rozkład rodzajów błędów, problemów i ich przyczyn (rys. 1) [5]. Rys. 1. Pareto-Lorenza W diagramie Pareto-Lorenza pole pod wykresem zostało podzielone na trzy obszary: Obszar A w przypadku 20% populacji grupujących 80% skumulowanych wartości cechy. Obszar B w przypadku kolejnych 30% populacji grupujących następne 10% skumulowanych wartości cech. Obszar C w przypadku pozostałej populacji 50% która grupuje 10% skumulowanej wielkości cechy. W praktyce diagram Pareto-Lorenza znajduje zastosowanie do grupowania poszczególnych problemów i ich przyczyn, aby w pierwszej kolejności rozwiązać te problemy, które dla danego przedsiębiorstwa są najistotniejsze [11]. 3. Analiza problemu W przemyśle górniczym diagram Pareto-Lorenza znajduje zastosowanie do monitorowania i kontroli urządzeń górniczych (kombajn ścianowy, przenośnik zgrzebłowy, przenośnik taśmowy, kruszarki oraz urządzenia zasilania i sterowania), które stanowią waŝny element procesu wydobywczego na kopalni. W przypadku tych urządzeń istotna jest ocena awaryjności i niezawodności, a takŝe wykazanie które z wykrytych przyczyn powodujących awaryjność powinny być jako pierwsze wyeliminowane [4, 16]. Konstruowanie diagramu Pareto-Lorenza do kontroli i monitorowania urządzeń górniczych dzieli się na następujące etapy: Zbieranie informacji (skompletowanie danych o awaryjności urządzeń górniczych w poszczególnych etapach procesu wydobywczego), Uszeregowanie zebranych danych (przyporządkowanie poszczególnych awarii do konkretnych urządzeń górniczych takich jak: kombajn ścianowy, przenośnik zgrzebłowy, przenośnik taśmowy, kruszarka, obudowa zmechanizowana), Obliczenie skumulowanych wartości procentowych (ustalenie skumulowanych wartości procentowych dla poszczególnych wyróŝnionych awarii), Sporządzenie diagramu Pareto-Lorenza,

Interpretacja sporządzonego diagramu Pareto-Lorenza. 3.1. Charakterystyka awaryjności maszyn i urządzeń górniczych Awarie występujące w kopalniach węgla kamiennego moŝna podzielić ze względu na przyczyny ich powstania, na: górnicze, gdzie główną przyczyną są: wstrząsy górotworu, odpad stropu, pompowanie wody, rozbijanie brył, przekroczenie CH 4 itp. Ogólnie moŝna stwierdzić, Ŝe są one niezawinione przez człowieka; techniczne powstają wówczas, gdy uszkodzeniu ulegną urządzenia i maszyny pracujące w procesie wydobywczym do takich maszyn zaliczamy: kombajny, przenośniki, zmechanizowane obudowy ścianowe oraz kruszarki; organizacyjne niezaleŝne od panujących warunków górniczych i eksploatacji maszyn. Do tych awarii zaliczamy np.: brak doprowadzenia wody, brak zasilania elektrycznego. Ze względu na rodzaj awarii, wyróŝniamy: mechaniczne, elektryczne, hydrauliczne. Dla dokładniejszej analizy zaistniałej awarii w danej maszynie górniczej moŝna jeszcze dokonać podziału na konkretne miejsce powstania tej awarii np.: ramiona i organy urabiające, układy trakcyjne, układy hydrauliki, układ elektryczny oraz kadłub [3]. W polskim górnictwie węglowym eksploatacja pokładów węglowych odbywa się systemami ścianowymi za pomocą maszyn urabiających pracujących na zasadzie skrawania [1, 7, 8]. Dlatego teŝ, jednym z istotnych obszarów działalności kopalń jest eksploatacja urządzeń (maszyn) [6]. Działanie to powinno polegać na między innymi na kontroli racjonalnego oraz efektywnego uŝytkowania i obsługiwania urządzeń w procesie eksploatacji [14]. Systemy techniczne kopalń węgla kamiennego charakteryzują się: znacznym rozproszeniem, złoŝonością, ograniczeniem obszaru pracy wielkością wyrobisk podziemnych. Głównym zadaniem słuŝb utrzymania ruchu jest zapewnienie ciągłości pracy eksploatowanych (w danej chwili) maszyn i urządzeń. Konsekwencją tych działań jest ograniczenie kosztów utrzymania ruchu maszyn i urządzeń, a tym samym obniŝenie kosztów produkcji, czyli działania zakładu górniczego. W przypadku wystąpienia zakłóceń w tym procesie generowane są ogromne straty [13]. W procesie wydobywania kopaliny, głównym elementem jest ciąg urabiania, w którym moŝna wyszczególnić następujące etapy [2, 3]: proces urabiania, transport poziomy, transport pionowy. Śledząc ciąg urabiania moŝemy stwierdzić, Ŝe jest to system szeregowy. Awaria jednego z wymienionych ogniw powoduje wyłączenie pozostałych elementów tego ciągu. Jako Ŝe, w procesie wydobywania węgla kamiennego (kopalin uŝytecznych) ciąg urabiania jest podstawowym elementem wpływającym na wielkość wydobycia, a tym samym związane z tym procesem koszty, przeanalizowano awaryjność tego podstawowego elementu [2, 3]. Przeanalizowano awaryjność wszystkich ścian pracujących na jednej z kopalń węgla kamiennego Kompanii Węglowej S.A. w roku 2009. W trakcie analizy wyróŝniono około 400

rodzaje awarii. W tabeli 3 przedstawiono przykładowe awarie, które wystąpiły w urządzeniach (maszynach) górniczych. Tabela 3. Przykładowe rodzaje awarii i przyczyny ich wystąpienia Rodzaj awarii Urządzenie Przykładowe uszkodzenia Uszkodzony kabel do kombajnu Uszkodzony układak kabla Awarie mechaniczne Awarie elektryczne Awarie hydrauliczne Awarie organizacyjne Kombajn ścianowy Kombajn ścianowy Kombajn ścianowy Kombajn ścianowy Wymiana układu zabezpieczającego Uszkodzona chłodnica dolnego ramienia KB Uszkodzony kabel wodny Brak sterowania Niesprawny elektrycznie kabel do KB Spalony bezpiecznik pompy hydraulicznej Uszkodzony wąŝ wodny do KB Uszkodzone uszczelnienie wodne górnej głowicy KB Wymiana węŝa wodnego Brak wody do KB Brak prądu na ścianie Brak ciśnienia na ścianie Brak sterowania Uszkodzone wkładka sprzęgłowa Awarie mechaniczne Przenośnik zgrzebłowy Zatarte łoŝysko prawej przekładni Awarie elektryczne Awarie organizacyjne Awarie mechaniczne Awarie elektryczne Awarie organizacyjne Awarie mechaniczne Awarie elektryczne Przenośnik zgrzebłowy Przenośnik zgrzebłowy Przenośnik taśmowy Przenośnik taśmowy Przenośnik taśmowy Kruszarki Kruszarki Uszkodzony zespół dławików na styczniku napędu górnego Uszkodzony panel sterujący Brak sterowania uszkodzony bezpiecznik Brak wody Brak zasilania Uszkodzone sprzęgło Wymiana przekładni Brak sterowania Wymiana bezpiecznika Brak sterowania hamulca Brak prądu na odstawie Brak zasilana Wymiana topników Urwany bijak Brak sterowania Brak zasilania Awarie mechaniczne Obudowa Wymiana węŝa w magistrali ciśnieniowej Uszkodzony wąŝ Awarie elektryczne Obudowa Brak sterowania pomp Awarie organizacyjne Obudowa Uszczelnienie rurociągu 3.2 Praktyczne wykorzystanie diagramu Pareto-Lorenza do oceny awaryjności urządzeń górniczych

Do analizy awaryjności urządzeń górniczych wykorzystano jedno z tradycyjnych narzędzi zarządzania jakością diagram Pareto-Lorenza. Pareto-Lorenza został skonstruowany według następujących etapów: 1. Zebrano dane związane z rodzajem awarii następujących urządzeń górniczych: kombajnów ścianowych, przenośników zgrzebłowych, przenośników taśmowych, kruszarek oraz obudów zmechanizowanych, 2. Przyporządkowano poszczególne awarie do konkretnych urządzeń górniczych, 3. Obliczono skumulowane wartości procentowe (ustalenie skumulowanych wartości procentowych dla poszczególnych wyróŝnionych awarii), dokonano tego wykorzystując następujące wzory: 100 PIE j = (1) IE SPIE j = PIE j + PIE j-1 (2) 100 IAj PIA j = (3) IE = IA i 1 j SPIA j = PIA j + PIA j-1 (4) gdzie: PIE j procentowa ilość elementów, SPIE j skumulowana procentowa ilość elementów, IE liczba elementów, PIA j procentowa ilość awarii, SPIA j skumulowana procentowa ilość awarii, IA liczba awarii. W tabeli 4 przedstawiono dane dotyczące rodzaju urządzeń górniczych, skumulowaną procentową ilość poszczególnych urządzeń, liczba awarii jakie wystąpiły w poszczególnym urządzeniu, procentową ilość awarii oraz skumulowaną procentową ilość awarii. Numer urządzenia Rodzaj urządzenia Skumulowana procentowa ilość elementów Tabela 4. Awaryjność urządzeń górniczych Skumulowana Liczba Procentowa procentowa awarii ilość awarii ilość awarii j SPIE IA PIA SPIA 1 Kombajn ścianowy 20 193 43 43 2 Przenośnik zgrzebłowy 40 110 24 67 3 Przenośnik taśmowy 60 94 21 88 4 Kruszarka 80 28 6 94 5 Obudowa 100 27 6 100 Na rysunku 2, przedstawiono diagram Pareto-Lorenza dla awaryjności ciągu urabiania, w jednej z kopalń Kompani Węglowej S.A.

Rys. 2 Pareto-Lorenza 4. Podsumowanie Z analizy diagramu Pareto-Lorenza wynika, Ŝe największą ilość awarii (88%) powodują trzy urządzenia (maszyny) górnicze, a mianowicie: kombajny ścianowe, przenośniki zgrzebłowe, przenośniki taśmowe. Pozostałe urządzenia takie jak: kruszarki i obudowy zmechanizowane powodują tylko 12% awarii. Biorąc pod uwagę udział procentowy trzech znaczących urządzeń (maszyn) górniczych (kombajnów, przenośników zgrzebłowych i przenośników taśmowych) moŝna stwierdzić, iŝ łącznie 60% rodzajów urządzeń (maszyn), powoduje aŝ 88% awarii. Awaryjność kompleksu ścianowego ma wpływ na efektywność, koncentrację wydobycia w ostateczności przekłada się na wynik finansowy kopalni. Ze wstępnych analiz (tabela 3), oraz prac [2, 3], wynika, Ŝe największy udział w awariach tych trzech urządzeń (maszyn) mają awarie mechaniczne. Wynika stąd, Ŝe te trzy rodzaje urządzeń (maszyn) górniczych powinny być poddane szczególnej analizie. Analiza powinna wskazać na główne przyczyny wystąpienia awarii oraz sposoby i środki a takŝe działania zapobiegawcze jakie naleŝy podjąć aby zdecydowanie zmniejszyć awaryjność tych elementów kompleksu wydobywczego. Osoby monitorujące i kontrolujące pracę kombajnów, przenośników zgrzebłowych, przenośników taśmowych powinny w szczególny sposób zadbać o stan techniczny tych urządzeń i starać się zapobiegać wystąpieniu awarii. Autorzy w dalszych opracowaniach przedstawią przyczyny awarii oraz skutki dla kopalni, jakie są wynikiem powstawania awarii tych urządzeń (maszyn), a które mają największy wpływ na przestoje ciągu urabiania, czyli maszyny urabiające (kombajny) oraz urządzenia odstawy (przenośniki zgrzebłowe oraz taśmowe). Literatura 1. Biały W. Wybrane metody badania urabialności węgla. Eksploatacja i Niezawodność 2001; 5: 36-40.

2. Biały W, Bobkowski G. MoŜliwości wykorzystania narzędzi komputerowych w gospodarce remontowej kopalń węgla kamiennego. Mechanizacja i Automatyzacja Górnictwa 2005; 4: 42-51. 3. Biały W. Awaryjność górniczych urządzeń technicznych w procesie wydobywczym. Problemy Bezpieczeństwa w Budowie i Eksploatacji Maszyn i Urządzeń Górnictwa Podziemnego. Praca zbior. pod red. K. Krauze. Lędziny: Centrum Badań i Dozoru Górnictwa Podziemnego Sp. z o. o., 2010: 73-85. 4. DuŜy S. Elementy zarządzania jakością w procesie drąŝenia wyrobisk korytarzowych w kopalni węgla kamiennego. Gospodarka Surowcami Mineralnymi 2007; 23(Zeszyt Specjalny nr 2): 71-80. 5. Franik T. Monitorowanie podstawowych parametrów procesów produkcyjnych w kopalni węgla kamiennego. Komputerowo zintegrowane zarządzanie. Praca zbior. pod red. R. Knosali, Opole: Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją, 2009: 286-295. 6. Jonak J. Use of artificial intelligence automation of rock cutting. Journal of Mining Science 2002; 3(38): 270-277. 7. Jonak J, Gajewski J. Wybrane problemy diagnostyki i monitorowania pracy górniczych przenośników taśmowych. Eksploatacja i Niezawodnosc Maintenance and Reliability, 2006; 4: 74-79. 8. Krauze K. Urabianie skał kombajnami ścianowymi. Śląsk sp. z o.o. Katowice: Wydawnictwo Naukowe, 2000. 9. Krzemień E. Zintegrowane zarządzanie aspekty towaroznawcze: jakość, środowisko, technologia, bezpieczeństwo. Katowice: Wydawnictwo Śląsk, 2003. 10. Łucki Z. Zarządzanie w górnictwie naftowym i gazownictwie. Kraków: Wydawnictwo UNIVERSITAS, 2005. 11. Łuczak J, Matuszak-Flejszman A. Metody i techniki zarządzania jakością. Kompendium wiedzy. Poznań: Quality Progress, 2007.

12. Uzgören N, Elevli S, Elevil B, Önder U. Analiza niezawodności mechanicznych uszkodzeń koparek zgarniakowych. Eksploatacja i Niezawodnosc Maintenance and Reliability, 2008; 4: 23-29. 13. Orlacz J.: Wprowadzenie do zagadnień niezawodności i trwałości maszyn i urządzeń górniczych. Gliwice: Wydawnictwo Politechniki Śląskiej, 1999. 14. Peter F. Rethinking Pareto analysis maintenance applications of logarithmic scatterplots. Journal of Quality i Maintenance Engineering, 2001; 4(7): 252-263. 15. Wang Z, Huang H-Z, Du X. Projektowanie niezawodności z wykorzystaniem kilku strategii utrzymania. Eksploatacja i Niezawodnosc Maintenance and Reliability, 2009; 4: 37-44. 16. Wolniak R, Skotnicka B. Metody i narzędzia zarządzania jakością teoria i praktyka. Gliwice: Wydawnictwo Politechniki Śląskiej, 2007.