ĆWICZENIE 2 Badania zabezpieczeń o charakterystyce zależnej

Podobne dokumenty
ĆWICZENIE NR 2 BADANIE PRZEKAŹNIKÓW JEDNOWEJŚCIOWYCH O CHARAKTERYSTYCE NIEZALEŻNEJ. Instrukcja skrócona 1

ĆWICZENIE NR 3 BADANIE PRZEKAŹNIKÓW JEDNOWEJŚCIOWYCH - NADPRĄDOWYCH I PODNAPIĘCIOWYCH

KARTA KATALOGOWA. Przekaźnik ziemnozwarciowy nadprądowo - czasowy ZEG-E EE

PRZEKAŹNIK ZIEMNOZWARCIOWY NADPRĄDOWO-CZASOWY

Ćwiczenie 3 Badania zabezpieczeń silników elektrycznych

PRZEKA NIK ZIEMNOZWARCIOWY NADPR DOWO-CZASOWY KARTA KATALOGOWA

ELMAST MASTER 3000 PTC MASTER 4000 PTC ELEKTRONICZNE CYFROWE ZABEZPIECZENIA BIAŁYSTOK SILNIKÓW TRÓJFAZOWYCH NISKIEGO NAPIĘCIA. PKWiU

Poznanie budowy, sposobu włączania i zastosowania oraz sprawdzenie działania wyłącznika różnicowoprądowego i silnikowego.

ELMAST MASTER 3001 MASTER 4001 ELEKTRONICZNE CYFROWE ZABEZPIECZENIA BIAŁYSTOK SILNIKÓW TRÓJFAZOWYCH NISKIEGO NAPIĘCIA. PKWiU

RIT-430A KARTA KATALOGOWA PRZEKAŹNIK NADPRĄDOWO-CZASOWY

ELMAST MASTER 3002 S MASTER 4002 S ELEKTRONICZNE CYFROWE ZABEZPIECZENIA (W SZCZEGÓLNOŚCI AGREGATÓW POMPOWYCH GŁĘBINOWYCH) BIAŁYSTOK

Przekaźnik napięciowo-czasowy

CZAZ GT BIBLIOTEKA FUNKCJI PRZEKAŹNIKI, LOGIKA, POMIARY. DODATKOWE ELEMENTY FUNKCJONALNE DSP v.2

Przekaźniki termiczne

RPz-410 KARTA KATALOGOWA PRZEKAŹNIK MOCY ZWROTNEJ

ELMAST MASTER 1011 S MASTER 1111 S ELEKTRONICZNE CYFROWE ZABEZPIECZENIA BIAŁYSTOK AGREGATÓW POMPOWYCH GŁĘBINOWYCH J E D N O F A Z O W Y C H

ZABEZPIECZENIE NADPRĄDOWO-CZASOWE I ZIEMNOZWARCIOWE KARTA KATALOGOWA

12. DOBÓR ZABEZPIECZEŃ NADPRĄDOWYCH SILNIKÓW NISKIEGO NAPIĘCIA

ELMAST MASTER 3000 MASTER 4000 ELEKTRONICZNE CYFROWE ZABEZPIECZENIA BIAŁYSTOK SILNIKÓW TRÓJFAZOWYCH NISKIEGO NAPIĘCIA. PKWiU

Zakres pomiar. [V] AC/DC AC/DC AC/DC AC/DC AC/DC AC

Cyfrowe zabezpieczenie różnicowe transformatora typu RRTC

ZEG-ENERGETYKA Sp. z o. o Tychy, ul. Biskupa Burschego 7 tel. (032) ; tel./fax (032)

ELMAST MASTER 5001 MASTER 5001 PTC ELEKTRONICZNE CYFROWE ZABEZPIECZENIA BIAŁYSTOK SILNIKÓW TRÓJFAZOWYCH NISKIEGO NAPIĘCIA. PKWiU

ELMAST MASTER 3000 S MASTER 4000 S ELEKTRONICZNE CYFROWE ZABEZPIECZENIA (W SZCZEGÓLNOŚCI AGREGATÓW POMPOWYCH BIAŁYSTOK

ELMAST F S F S F S F S F S F S F S F S F S F S

Zabezpieczenie ziemnozwarciowe kierunkowe o opóźnieniach inwersyjnych.

TIH10A4X nadzór prądu w jednej fazie

Lekcja Zabezpieczenia przewodów i kabli

ELMAST F S F S F S F S ZESTAWY STERUJĄCO-ZABEZPIECZAJĄCE BIAŁYSTOK DO AGREGATÓW POMPOWYCH J E D N O F A Z O W Y C H

Nastawy zabezpieczenia impedancyjnego. 1. WSTĘP DANE WYJŚCIOWE DLA OBLICZEŃ NASTAW INFORMACJE PODSTAWOWE O LINII...

BADANIE CHARAKTERYSTYK CZASOWO-PRĄDOWYCH WYŁĄCZNIKÓW SILNIKOWYCH

MiCOM P211. Zabezpieczenie Silników Trójfazowych KORZYŚCI UŻYTKOWNIKA

KARTA KATALOGOWA ZABEZPIECZENIE NADPRĄDOWO-CZASOWE I ZIEMNOZWARCIOWE. RITz-421

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

URZĄDZEŃ ROZDZIELCZYCH i ELEMENTÓW STACJI ELEKTROENERGETYCZNYCH

Styczniki CI 110 do CI 420 EI

ELMAST F F F ZESTAWY STERUJĄCO-ZABEZPIECZAJĄCE BIAŁYSTOK. PKWiU Dokumentacja techniczno-ruchowa

WERSJA SKRÓCONA ZABEZPIECZENIA W INSTALACJACH ELEKTRYCZNYCH

TRÓJFAZOWY PRZEKAŹNIK NAPIĘCIOWO-CZASOWY

BADANIE WYŁĄCZNIKA SILNIKOWEGO

PRZEKAŹNIK ZIEMNOZWARCIOWY

ELMAST F F F ZESTAWY STERUJĄCO-ZABEZPIECZAJĄCE BIAŁYSTOK. PKWiU Dokumentacja techniczno-ruchowa

RET-430A TRÓJFAZOWY PRZEKAŹNIK NAPIĘCIOWO-CZASOWY KARTA KATALOGOWA

ELMAST MASTER 5000 S MASTER 5000 SR ELEKTRONICZNE CYFROWE ZABEZPIECZENIA (W SZCZEGÓLNOŚCI AGREGATÓW POMPOWYCH BIAŁYSTOK

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

ZEG-E. Zabezpieczenie ziemnozwarciowe

ELMAST F S F S F S F S F S F S F S F S ZESTAWY STERUJĄCO-ZABEZPIECZAJĄCE BIAŁYSTOK

BIBLIOTEKA - definicje bloczków

ELMAST MASTER 3000 SR MASTER 4000 SR ELEKTRONICZNE CYFROWE ZABEZPIECZENIA (W SZCZEGÓLNOŚCI AGREGATÓW POMPOWYCH BIAŁYSTOK

Technik elektryk 311[08] Zadanie praktyczne

ELMAST F S F S F S F S F S F S F S F S ZESTAWY STERUJĄCO-ZABEZPIECZAJĄCE BIAŁYSTOK

ELMAST MASTER 3001 S MASTER 4001 S ELEKTRONICZNE CYFROWE ZABEZPIECZENIA BIAŁYSTOK AGREGATÓW POMPOWYCH TRÓJFAZOWYCH

PL B1. Układ zabezpieczenia od zwarć doziemnych wysokooporowych w sieciach średniego napięcia. POLITECHNIKA WROCŁAWSKA, Wrocław, PL

ELMAST MASTER 5000 IP MASTER 5000 IP M5 ELEKTRONICZNE CYFROWE ZABEZPIECZENIA BIAŁYSTOK

ELMAST MASTER 5003 S MASTER 5003 SR ELEKTRONICZNE CYFROWE ZABEZPIECZENIA BIAŁYSTOK I STEROWNIKI AGREGATÓW POMPOWYCH TRÓJFAZOWYCH. PKWiU

ELMAST F S F S F S F S ZESTAWY ROZRUCHOWO-ZABEZPIECZAJĄCE BIAŁYSTOK DO AGREGATÓW POMPOWYCH J E D N O F A Z O W Y C H

Karta produktu. EH-P/15/01.xx. Zintegrowany sterownik zabezpieczeń

1. Przeznaczenie i zastosowanie przekaźników kierunkowych

Wyłączniki silnikowe - Seria CTI 15

ELMAST F S F S F S F S F S ZESTAWY STERUJĄCO-ZABEZPIECZAJĄCE BIAŁYSTOK

Softstart z hamulcem MCI 25B

ĆWICZENIE NR 5 BADANIE ZABEZPIECZEŃ ZIEMNOZWARCIOWYCH ZEROWO-PRĄDOWYCH

ELMAST F F F ZESTAWY STERUJĄCO-ZABEZPIECZAJĄCE BIAŁYSTOK DO SILNIKÓW T R Ó J F A Z O W Y C H. PKWiU

ELMAST MASTER 5001 S MASTER 5001 SR ELEKTRONICZNE CYFROWE ZABEZPIECZENIA (W SZCZEGÓLNOŚCI AGREGATÓW POMPOWYCH BIAŁYSTOK

OM 100s. Przekaźniki nadzorcze. Ogranicznik mocy 2.1.1

CZAZ TH CYFROWY ZESPÓŁ AUTOMATYKI ZABEZPIECZENIOWEJ STRONY GÓRNEJ TRANSFORMATORA WN/SN KARTA KATALOGOWA

Zabezpieczenie ziemnozwarciowe kierunkowe

Programowanie zabezpieczenia typu: ZTR 5.

Problemy wymiarowania i koordynacji zabezpieczeń w instalacjach elektrycznych

Ministyczniki CI 5-2 do CI 5-12

Ćwiczenie 1 Badanie układów przekładników prądowych stosowanych w sieciach trójfazowych

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH

PRZEKAŹNIK NAPIĘCIOWO-CZASOWY

3.0 FALOWNIKI ASTRAADA DRV

KARTA KATALOGOWA. Przekaźnik napięciowo - czasowy ZEG-E EE

UKŁAD AUTOMATYCZNEJ REGULACJI STACJI TRANSFORMATOROWO - PRZESYŁOWYCH TYPU ARST

ZEG-ENERGETYKA Sp. z o. o Tychy, ul. Biskupa Burschego 7 tel. (032) ; tel./fax (032) zeg-e@zeg-energetyka.com.

Katedra Sterowania i InŜynierii Systemów Laboratorium elektrotechniki i elektroniki. Badanie przekaźników

Rys. 1. Przekaźnik kontroli ciągłości obwodów wyłączających typu RCW-3 - schemat funkcjonalny wyprowadzeń.

Wyłączniki silnikowe PKZ2 przegląd

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

BADANIE PRZEKŁADNIKÓW PRĄDOWYCH

Zabezpieczenia silników

Programowanie automatu typu: ZSN 5R.

L_ALGORITHMS opis zabezpieczeń, układów kontroli i automatyk

Przekaźniki nadzorcze serii PM

Wyłączniki silnikowe - Seria CTI 15

Rys. 1. Przekaźnik kontroli ciągłości obwodów wyłączających typu RCW-3 - schemat funkcjonalny wyprowadzeń.

INSTRUKCJA TERMOSTATU DWUSTOPNIOWEGO z zwłok. oką czasową Instrukcja dotyczy modelu: : TS-3

Laboratorium Urządzeń Elektrycznych

Zgodność z normami. Informacje dotyczące zamawiania. Termiczny przekaźnik przeciążeniowy J7TKN. Objaśnienie elementów oznaczenia

SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA

Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne

INSTRUKCJA OBSŁUGI I KONSERWACJI

J7TKN. Zgodność z normami. Specyfikacja. Termiczny przekaźnik przeciążeniowy. Oznaczenia modelu: Termiczny przekaźnik przeciążeniowy.

Karta produktu. EH-n33-400/6,0/0,5/2/ Stacja transformatorowa

Tabela symboli stosowanych w automatyce przemysłowej Symbol Opis Uwagi

ETICON. Styczniki silnikowe - dane techniczne. Styczniki CEM do 132 kw Dane techniczne CEM Typ 9 CEM 50 CEM 80 CEM 150E CEM 12 CEM 40 CEM 18 CEM 65

1. ZASTOSOWANIE 2. BUDOWA

izaz100 2 / 8 K A R T A K A T A L O G O W A

Transkrypt:

ĆWICZENIE 2 Badania zabezpieczeń o charakterystyce zależnej Wiadomości ogólne Do przekaźników pomiarowych jednowejściowych należą przekaźniki prądowe, napięciowe, częstotliwościowe, temperaturowe i inne. Głównym ich zadaniem jest działanie przy przekroczeniu przez sygnał wejściowy Swe tzw. wartości rozruchowej Gr, która nastawiana jest na skali przekaźnika. W chwili przekroczenia przez sygnał wejściowy wartości rozruchowej Gr przekaźniki przechodzi z tzw. stanu spoczynkowego do stanu działania. Odpowiada temu zmiana stanu na wyjściu przekaźnika z 1 na 0 lub z 0 na 1 w zależności od rodzaju wykorzystanego zestyku. 1 SW S 0 Gr God Rys.1. Zależność sygnału wyjściowego Swy (dwustanowego) od wejściowego Swe (mierzonego dla przekaźnika nadmiarowego (po lewej) i niedomiarowego. Jeśli po zadziałaniu przekaźnika zacznie się zmniejszać wartość sygnału wejściowego, to przy pewnej jego wartości równej nazywanej wartością odpadania God przekaźnik przejdzie ze stanu działania w stan spoczynku. Jak widać charakterystyka Swy(Swe) tworzy pętlę histerezy, a miarą szerokości tej pętli jest tzw. współczynnik powrotu przekaźnika kp wyrażony poniższym wzorem: G k p G Przekaźniki nadmiarowe: Gr > God, kp < 1 Przekaźniki niedomiarowe: Gr < God, kp > 1 Wartość tego współczynnika powinna być możliwie bliska 1. Uzyskanie tego w przekaźnikach elektromechanicznych było trudne ze względu na różniące się rezystancje od r 1

obwodu magnetycznego w stanie zadziałania przekaźnika (minimalna szczelina powietrzna ) i w stanie spoczynkowym (większa szczelina). Oczywiście, w aktualnych rozwiązaniach przekaźników pomiarowych, uzyskanie dużej wartości współczynnika powrotu nie stanowi żadnego problemu. Przekaźniki jednowejściowe, a zwłaszcza przekaźniki prądowe i napięciowe spełniają bardzo ważną rolę w elektroenergetycznej automatyce zabezpieczeniowej. Kryterium wzrostu prądu ponad wartość dopuszczalną dla danego elementu układu elektroenergetycznego jest bowiem w wielu przypadkach wystarczające dla wykrycia stanu zwarcia lub przeciążenia. Stąd szerokie zastosowanie przekaźników nadprądowych w zabezpieczeniach od skutków zwarć i przeciążeń. Przekaźniki nadprądowe są budowane jako elementy bezzwłoczne lub z wewnętrznym opóźnieniem, na ogół zależnym od wartości prądu wejściowego. Zasadniczą właściwością przekaźników nadprądowych jest ich charakterystyka czasowoprądowa, określająca zależność czasu zadziałania przekaźnika od wartości prądu mierzonego. Są cztery rodzaje charakterystyk czasowo-prądowych: a) niezależna, b) zależna, c) częściowo zależna d) stopniowo zależna. Rys.2. Podstawowe charakterystyki t(i) przekaźników nadprądowych 2

Charakterystyka niezależna uzyskiwana jest najczęściej w wyniku współdziałania bezzwłocznego członu prądowego z przekaźnikiem czasowym o nastawialnym opóźnieniu czasowym. W przypadku charakterystyki zależnej, czas działania przekaźnika maleje ze wzrostem prądu zwarciowego. Charakterystyka stopniowo zależna uzyskiwana jest przez współdziałanie przekaźnika nadprądowego zależnego z przekaźnikiem nadprądowym bezzwłocznym. Takie charakterystyki bywają wykorzystane w niektórych rozwiązaniach zabezpieczeń od zwarć międzyfazowych i od przeciążeń silników (np. przekaźnik typu RIz). Charakterystyka elektromechanicznego przekaźnika typu RIz Przekaźnik typu RIz składa się z elementu zwłocznego indukcyjnego połączonego z elementem elektromagnetycznym bezzwłocznym. Posiada charakterystykę rozruchową zależną oraz stopniowo zależną. Człon indukcyjny (rys. 3) składa się z tarczy (3) i elektromagnesu (1) ze zwojem zwartym (2). 4 5 6 3 2 1 M f2 f1 Rys. 3. Uproszczony szkic przekaźnika RIz; 1 elektromagnes, 2 - zwój zwarty, 3- tarcza, 4 ramka, 5 sprężyna, 6 magnes trwały Łożyska tarczy zamieszczono swobodnie w szczelinie elektromagnesu (1). Jeżeli prąd płynący przez cewkę przekaźnika przekroczy ok. 30% wartości prądu rozruchowego, to tarcza zaczyna się obracać. Przekaźnik jednak nie może jeszcze zadziałać, ponieważ ramka (4) jest odciągnięta przez sprężynę (5), wskutek czego ślimak umieszczony na osi tarczy nie jest 3

zazębiony z zębatką. Po osiągnięciu wartości rozruchowej następuje obrót ramki (4) wraz z osadzoną w niej osią tarczy. Obrót ten jest spowodowany działaniem na tarczę dwóch sił: siły f1 wywołanej przez elektromagnes oraz siły hamującej f2 wywołanej przez magnes stały (6). Wraz ze wzrostem wartości prądu wzrastają obroty tarczy, a tym samym siła hamowania f2, która przy określonej wartości prądu powoduje obrót ramki. Zazębia się przy tym z zębatką ślimak, obracający się wraz z tarczą. Obrót ślimaka podnosi zębatkę, która swoim ramieniem przechyla zworę bezzwłocznego elementu elektromagnetycznego. Podczas przechylania zwory zmniejsza się szczelina powietrzna aż do odstępu, przy którym zwora zostaje szybko przyciągnięta, powodując pewne zamknięcie zestyku. Czas, który upływa od chwili zamknięcia zestyku, jest zależny od obrotów tarczy, a tym samym od wartości prądu płynącego przez cewkę przekaźnika. Dla większych wartości prądu rdzeń elektromagnesu nasyca się i ze wzrostem prądu opóźnienie czasowe przekaźnika maleje bardzo nieznacznie. W ten sposób otrzymuje się charakterystykę częściowo zależną (rys. 4). Przez zmianę początkowego położenia zębatki można przesuwać w pewnym zakresie charakterystykę przekaźnika, a więc zmieniać jego opóźnienie czasowe. Nastawione na przekaźniku opóźnienie czasowe odpowiada prądowi rozruchowemu. Dla większych wartości prądu opóźnienie to maleje. Wartość rozruchową prądu można nastawiać bezprzerwowo za pomocą kołka w zakresie 4-10A co 1A lub w zakresie 2-5A co 0.5A przez zmianę liczby zwojów cewki przekaźnika. Człon bezzwłoczny działa, gdy wartość prądu osiągnie określoną krotność nastawionego prądu rozruchowego i wtedy otrzymuje się charakterystykę stopniowo zależną. czas [s] 3 24 20 16 12 8 4 0 1 2 3 3 2 1 4 5 6 7 8 9 10 xis Rys. 4. Charakterystyki czasowo-prądowe przekaźnika RIz-104; 1 dla tn=8s, 2 dla tn=16s, 3 dla tn=24s. 4

Charakterystyka cyfrowego zabezpieczenia silników typu MiCOM P211 prod. AREVA MiCOM P211 (rys. 5) to skuteczne i selektywne zabezpieczenie silnika trójfazowego n/n zrealizowane przy wykorzystaniu kompletnego zestawu zabezpieczeń opartych na pomiarze prądów fazowych silnika. Jako najistotniejszy można tu wymienić człon przeciążeniowy, wykorzystujący matematyczny model cieplny silnika. Człon przeciążeniowy uzupełnia bezpośrednia kontrola temperatury silnika za pomocą czujników PTC, co eliminuje niebezpieczeństwo jego przegrzania, np. przy nadmiernym wzroście temperatury otoczenia. MiCOM P211 zapewnia ochronę silnika przed: skutkami przeciążeń, pracą silnika niedociążonego, pracą z asymetrią prądów fazowych, zanikiem fazy, nadmierną temperaturą silnika PTC, zwarciami doziemnymi (opcja), zwarciami międzyfazowymi, wydłużonym rozruchem lub zablokowanym wirnikiem. Zabezpieczenie umieszczone jest w zwartej obudowie, zapewniającej łatwy montaż. Dostępna jest wersja w obudowie do montażu na szynę DIN 35mm oraz wersja do montażu zatablicowego. W pierwszym przypadku przewody z prądem zasilającym silnik lub przewody obwodów wtórnych, zewnętrznych przekładników prądowych, przeplata się przez otwory w obudowie. W drugim przypadku przewody z prądem są przykręcane do zacisków śrubowych przekładnika i wtedy prąd nominalny silnika (jeżeli nie zastosowano zewnętrznych przekładników) nie powinien przekraczać 6A. 5

Rys. 5. Widok zewnętrzny elektronicznego zabezpieczenia silnikowego typu MiCOM P211. W sytuacji, gdy wartość prądu znamionowego silnika jest poniżej zakresu nastaw zabezpieczenia, można wielokrotnie (w zależności od potrzeb) przepleść przewody fazowe przez wewnętrzne przekładniki prądowe zabezpieczenia. Wówczas nastawa prądu bazowego w zabezpieczeniu powinna być równa prądowi znamionowemu silnika przemnożonemu przez ilość przeplotów przez otwory przekładników prądowych. Rozbudowany zestaw poszczególnych członów zabezpieczeniowych, możliwości wyboru sposobu montażu, dodatkowe funkcje sterownicze jak i programowalne wejścia dwustanowe oraz programowalne przekaźniki wykonawcze, pozwalają na łatwe wykorzystanie MiCOM P211 do zabezpieczania i sterowania szerokiej gamy silników, pracujących w różnorodnych układach. Ułatwieniem jest także możliwość wyboru rodzaju łącznika (stycznik lub wyłącznik). Dodatkową zaletę stanowią funkcje pomiarowe realizowane przez zabezpieczenie. Istnieją mianowicie możliwości odczytów wartości prądów fazowych (10-1000Hz), prądu ziemnozwarciowego, bieżącego stanu cieplnego silnika oraz parametrów ostatniego rozruchu silnika. Pozwala to na doprecyzowanie nastaw zabezpieczenia np. jeżeli producent silnika nie podaje niezbędnych informacji lub są one nieprecyzyjne. MiCOM P211 jest opcjonalnie wyposażony w port komunikacyjny RS485 oraz posiada zaimplementowany protokół ModBUS RTU. Dzięki temu możliwa jest wymiana informacji o bieżącym stanie zabezpieczenia i pomiarach z systemem nadrzędnym, jak też możliwe jest sterowanie silnika nadzorowanego przez MiCOM P211 z poziomu tego systemu. Niżej omówiono tylko funkcję przeciążeniową zabezpieczenia MiCOM P211 6

Ochrona przed skutkami przeciążeń oparta jest na matematycznym modelu cieplnym stanu nagrzania silnika, obliczanym w czasie rzeczywistym, na podstawie wartości skutecznych prądów fazowych silnika, które mierzone są w zakresie częstotliwości 10Hz 1kHz. Uwzględnienie znaczącego wpływu wyższych harmonicznych na nagrzewanie się silnika, zapewnia precyzyjne odwzorowanie jego stanu cieplnego. Model bazuje na stałej czasowej nagrzewania, wprowadzanej do przekaźnika jako parametr t6xib, który określa dopuszczalny czas przepływu prądu równego sześciokrotnej wartości prądu znamionowego silnika (klasa wyłączania). Przykładowe charakterystyki, dla różnego stanu wstępnego nagrzania silnika, przedstawione są na rys. 6. Rys. 6. Przykładowe charakterystyki obciążenia cieplnego silnika. Zadziałanie członu przeciążeniowego następuje w momencie, gdy stan cieplny silnika osiągnie 100%. Krzywa chłodzenia silnika obliczana jest na podstawie innego algorytmu, który jednak korzysta z tego samego parametru t6xib. 7

Rys. 7. Przykładowy przebieg obciążenia cieplnego silnika podczas różnych stanów pracy. Na rys. 7 przedstawiono przykładowy przebieg obciążenia cieplnego silnika, obliczanego przez MiCOM P211 na podstawie mierzonych prądów fazowych. Człon przeciążeniowy może być skonfigurowany tak, aby konieczne było skasowanie go po zadziałaniu lub też kasowanie (zezwolenie na załączenie silnika) może następować automatycznie, po schłodzeniu się silnika do nastawionej wartości. Nastawy modelu cieplnego: prąd bazowy Ib (znamionowy) silnika, czas t6xib (klasa wyłączenia). IB - prąd bazowy, czyli założony znamionowy prąd silnika przepływający przez trzy okna pomiarowe przekładników prądowych MiCOM P211 (jeśli są 2 przeploty to wprowadza się przekładnię prądową 2, a więc powinno się wprowadzić nastawę dwa razy większą niż prąd płynący w obwodzie pomiarowym MiCOM P211), t6xib - maksymalny dopuszczalny czas, w którym dopuszcza się przepływ prądu I=6xIB przez silnik (klasa wyłączania). Czas ten jest określany dla stanu początkowego, w którym silnik jest zimny. W oparciu o t6xib MiCOM P211 oblicza stałe czasowe: THeat = 32 x t6xib (stała nagrzewania) TCool = 4 x THeat (stała chłodzenia) Aktualny stan cieplny jest obliczany z następującego równania: gdzie: i i - aktualny stan cieplny, 2 I mean, i 0,128 0, 128 1 exp i1 exp 1,1 I B THeat THeat (1) 8

i-1 - stan cieplny wyliczony w poprzednim kroku, Imean - (IL1 + IL2 + IL3) / 3, IL1, IL2, IL3 - aktualne wartości skuteczne prądu w fazach L1, L2, L3, Imean,i - aktualna wartość średnia prądu w kroku obliczeń i. Obliczenia przeprowadzane są co 0,128s. Jeśli prąd Imean jest mniejszy lub równy 0,1xIB (stan chłodzenia silnika) MiCOM P211 oblicza stan cieplny według wzoru: i i exp 0,128 THeat 1 (2) MiCOM P211 wyłącza, jeśli aktualny stan obciążenia cieplnego i przekracza 100%. W przypadku, gdy silnik wcześniej był obciążony i następuje załączenie silnika ze stanu cieplnego ΘS, czas do wyłączenia wynosi: t T Heat 2 I Mean 1,1 I B log e 2 I Mean 1 1,1 I B gdzie S stan obciążenia w chwili startu silnika w chwili t=0 (dla stanu zimnego S =0). Jeśli następuje załączenie silnika ze stanu zimnego (ΘS = 0), wówczas czas do wyłączenia wynosi: S (3) t T Heat 2 I Mean 1,1 I B log e 2 I Mean 1 1,1 I B (4) Charakterystyki zależne W zabezpieczeniach, w kryteriach nadrądowym, przeciążeniowym, ziemnozwarciowym, itp. bardzo często, oprócz charakterystyk niezależnych, zaimplementowane są różne 9

charakterystyki zależne, wg różnych standardów. Dwa wiodące standardy to standard IEC oraz IEEE. Norma IEC 60255 definiuje cztery standardowe charakterystyki prądowo-czasowe (rys.8): normalnie zależną (SI Standard Inverse), mocno zależną (VI Very Inverse), bardzo mocno (ekstremalnie) zależną (EI - extremely inverse), charakterystykę z długim czasem zwłoki. Każda z charakterystyk opisana jest wzorem: K t = ( I α TMS I ) 1 r gdzie: t czas wyłączenia, I prąd rzeczywisty (mierzony po stronie wtórnej przekładnika), Ir wartość rozruchowa prądu, TMS indeks czasowy (time multiplier setting), Typ charakterystyki K Normalnie zależna 0,02 0,14 Mocno zależna 1,0 13,5 Bardzo mocno zależna 2,0 80 Z długim czasem zwłoki 1,0 120 10

Rys.8. Przykładowy kształt charakterystyk wg standardu IEC [1] Również w standardzie IEEE można wyróżnić kilka typów charakterystyk (rys.9): MI (Moderately Inverse), VI (Very Inverse), EI (Extremely Inverse), US C08 (Inverse). US CO2 (Short Time Inverse). Każdą z charakterystyk można wyznaczyć ze wzoru: K t = ( ( I α + β) TD I ) 1 r 11

gdzie: t czas wyłączenia, I prąd rzeczywisty (mierzony po stronie wtórnej przekładnika), Ir wartość rozruchowa prądu, TD indeks czasowy (time dial setting (multiplier)), Typ charakterystyki K IEEE MI 0,02 0,114 0,0515 IEEE VI 2,0 0,491 19,61 IEEE EI 2,0 0,1217 28,2 US CO8 2,0 0,18 5,95 US CO2 0,02 0,01694 0,02394 Rys.9. Przykładowy kształt charakterystyk wg standardu IEEE [1] 12

Przebieg ćwiczenia W ramach badań przekaźnika nadprądowego należy wykonać pomiary wartości czasów zadziałania zabezpieczenia (standardy i typy charakterystyk oraz wartości rozruchowe poda prowadzący). Na podstawie badań należy wykreślić odpowiednie charakterystyki. Kilka wybranych, wyznaczonych na laboratorium charakterystyk należy porównać z charakterystykami teoretycznymi wyznaczonymi na podstawie wzorów. [1] http://myelectrical.com/notes/entryid/159/electromechanical-relays 13