WYKŁAD. Jednostka prowadząca: Wydział Techniczny. Kierunek studiów: Elektronika i telekomunikacja

Podobne dokumenty
Program wykładu Technika Mikrofalowa

Zasady i kryteria zaliczenia: Treści programowe: Literatura podstawowa:

GRUPA A. 1. Klistron dwuwnękowy jest lampą elektronową wzmacniającą czy generującą? Wzmacniającą (pomogł dla dobekfooto)

PRZEWODNIK PO PRZEDMIOCIE

Podstawy elektroniki i miernictwa

Zał. nr 4 do ZW 33/2012 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI

Falowodowe magiczne T Gałęziowy sprzęgacz hybrydowy przedstawiony na rys jest jedną z najprostszych form rozgałęzienia hybrydowego 90.

KARTA MODUŁU KSZTAŁCENIA

WYKŁAD. Jednostka prowadząca: Wydział Techniczny. Kierunek studiów: Elektronika i telekomunikacja. Nazwa przedmiotu: Sieci komputerowe

PRZEWODNIK PO PRZEDMIOCIE

MIKROFALOWEJ I OPTOFALOWEJ

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

PRZEWODNIK PO PRZEDMIOCIE

Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI

KARTA PRZEDMIOTU. Podstawy elektroniki i miernictwa, kod: B4. Stacjonarne - wykład 15 h, ćw. audytoryjne 15 h, ćw. laboratoryjne 15 h

Podstawowe informacje o module

Filtry aktywne filtr środkowoprzepustowy

Podstawowe informacje o przedmiocie (niezależne od cyklu) Podstawy elektroniki. Kod Erasmus Kod ISCED Język wykładowy

WZMACNIACZ OPERACYJNY

WYKŁAD. Jednostka prowadząca: Wydział Techniczny. Kierunek studiów: Elektronika i telekomunikacja. Nazwa przedmiotu: Język programowania C++

PRZEWODNIK PO PRZEDMIOCIE

Liniowe stabilizatory napięcia

Łukasz Januszkiewicz Technika antenowa

Laboratorium z Układów Elektronicznych Analogowych

PRZEWODNIK PO PRZEDMIOCIE

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 15

Załącznik Nr 5 KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Podstawy elektroniki i elektrotechniki. 2. KIERUNEK: Logistyka

Wykład Ćwiczenia Laboratorium Projekt Seminarium Zaliczenie

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Podstawy elektroniki i elektrotechniki

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy konstrukcji maszyn Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Procesy i systemy dynamiczne Nazwa przedmiotu SYLABUS A. Informacje ogólne

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Przedmiot realizowany do roku akademickiego 2013/2014

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

PRZEWODNIK PO PRZEDMIOCIE

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

KARTA PRZEDMIOTU. Techniki przetwarzania sygnałów, D1_3

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO

Elektronika. Wzmacniacz tranzystorowy

Filtry aktywne filtr górnoprzepustowy

Egzamin / zaliczenie na ocenę*

Stacjonarne Wszystkie Katedra Fizyki dr Medard Makrenek. Inny / Techniczny Obowiązkowy Polski Semestr szósty. Semestr letni Statystyka, Fizyka I Nie

PRZEWODNIK PO PRZEDMIOCIE

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia. Podstawy elektrotechniki i elektroniki Rodzaj przedmiotu: Język polski

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.

PRZEWODNIK PO PRZEDMIOCIE

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni (ZZU) Egzamin

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE

Mechanika i budowa maszyn Studia drugiego stopnia. [Współrzędnościowa technika pomiarowa] Rodzaj przedmiotu: [Język polski/j

Analiza właściwości filtra selektywnego

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

PRZEWODNIK PO PRZEDMIOCIE

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Grafika inżynierska - opis przedmiotu

3. Umiejętność obsługi prostych przyrządów optycznych (UMIEJĘTNOŚĆ)

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

KARTA MODUŁU KSZTAŁCENIA

Energetyka I stopień ogólnoakademicki stacjonarne. kierunkowy. obowiązkowy. polski semestr 1 semestr zimowy

Elektroniczne przyrządy pomiarowe Kod przedmiotu

WYMAGANIA DOTYCZĄCE ZALICZENIA ZAJĘĆ

Metrologia. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę*

PRZEWODNIK PO PRZEDMIOCIE

TRANZYSTORY BIPOLARNE

Kierunek studiów Elektrotechnika Studia I stopnia. Geometria i grafika inżynierska Rok:

POLITECHNIKA POZNAŃSKA

EiT_S_I_AUK1. przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski semestr II

PRZEWODNIK PO PRZEDMIOCIE

Metrologia. Wzornictwo Przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

PRZEWODNIK PO PRZEDMIOCIE

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy automatyki Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

Karta (sylabus) przedmiotu

KARTA MODUŁU / KARTA PRZEDMIOTU

PRZEWODNIK PO PRZEDMIOCIE

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Projektowanie systemów mechatronicznych Rodzaj przedmiotu:

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

- 1 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

PRZEWODNIK PO PRZEDMIOCIE

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

SYLABUS/KARTA PRZEDMIOTU

Pomiary wielkości nieelektrycznych Kod przedmiotu

STUDIA I STOPNIA STACJONARNE ELEKTROTECHNIKA

Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego

Maszyny Elektryczne I Electrical Machines I. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. kierunkowy obowiązkowy polski Semestr IV

Egzamin / zaliczenie na ocenę*

KARTA MODUŁU / KARTA PRZEDMIOTU

Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia II stopnia. Wybrane zagadnienia budowy pojazdów Rodzaj przedmiotu: Język polski

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE ZARZĄDZANIE I INŻYNIERIA PRODUKCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

ELEKTRONIKA. Generatory sygnału prostokątnego

PRZEWODNIK PO PRZEDMIOCIE

EiT_S_I_TF_AEwT Teoria filtrów Theory of Filters

KARTA MODUŁU / KARTA PRZEDMIOTU

Z-ID-604 Metrologia. Podstawowy Obowiązkowy Polski Semestr VI

PRZEWODNIK PO PRZEDMIOCIE

Transkrypt:

Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Elektronika i telekomunikacja Nazwa przedmiotu: Technika bardzo wielkich częstotliwości Charakter przedmiotu: kierunkowy, obowiązkowy Typ studiów: inŝynierskie I-go stopnia, stacjonarne/niestacjonarne Formy dydaktyczne i terminarz: Forma przedmiotu Wykład Ćwiczenia Laboratorium Projekt Seminarium Rok studiów/semestr 3/5 3/5 Liczba godzin w semestrze 30/18 30/18 Forma zaliczenia Egzamin zal.na ocenę Liczba punktów ECTS 2/2 3/3 WYKŁAD Wymagania wstępne: Brak wymagań wstępnych. Cele kształcenia: Celem przedmiotu jest przekazanie studentowi wiedzy dotyczącej techniki wielkich i bardzo wielkich częstotliwości, analizy i projektowania elementów i układów b. w. cz. oraz miernictwa mikrofalowego. Uczestnictwo w wykładzie umoŝliwi studentowi poznanie podstawowych pojęć i problematyki związanej z obwodami i układami pracującymi w zakresie wielkich i bardzo wielkich częstotliwości, analizą, projektowaniem i techniką pomiarów mikrofalowych. Wiedzą tą posługiwać się będą studenci rozwiązujący w ramach zajęć projektowych zadania projektowe i problemowe, waŝne w praktyce inŝynierskiej, a takŝe studenci podejmujący się rozwiązania określonego zadania inŝynierskiego z zakresu techniki b. w. cz. w ramach pracy dyplomowej. Wykład wprowadza w problematykę techniki mikrofalowej. Po określeniu zakresu częstotliwości, omówieniu specyfiki, właściwości i zastosowań techniki mikrofalowej, przedstawiane są następujące zagadnienia: linie i falowody, opis układów za pomocą falowych macierzy rozproszenia i transmisji, dopasowanie impedancji, elementy i układy pasywne, generatory i wzmacniacze tranzystorowe, wzmacniacze z sumowaniem mocy, technika Mikrofalowych Układów Scalonych (MUS) i Systemów Mikro-Elektro-Mechanicznych (MEMS), oraz podstawowe pomiary mikrofalowe. Metody dydaktyczne: Wykład prowadzony w zasadzie z wykorzystaniem rzutnika multimedialnego. Istotne zagadnienia, wymagające szczegółowych wyjaśnień, prezentowane są metodą tradycyjną, z wykorzystaniem kredy i tablicy. Materiały do wykładu przygotowane w formie elektronicznej udostępniane są studentom na pierwszym wykładzie.

Zasady i kryteria zaliczenia: Pozytywny wynik egzaminu pisemnego w pierwszym terminie lub egzaminu ustnego w drugim terminie. Egzamin pisemny składa się z opisu wybranych zagadnień problemowych i odpowiedzi w postaci testu sprawdzającego wiadomości szczegółowe. Na egzaminie ustnym student odpowiada na trzy pytania z listy podstawowych zagadnień problemowych, przedstawionej i udostępnionej studentom na pierwszym wykładzie. Treści programowe: 1. Zakres częstotliwości, specyfika, właściwości i zastosowania techniki b.w.cz. w telekomunikacji, nauce, medycynie, przemyśle i urządzeniach powszechnego uŝytku. Oddziaływanie pola b.w.cz. na organizmy Ŝywe. 2. Linie transmisyjne i falowody parametry obwodowe i falowe. Technologia i podstawowe parametry prowadnic współosiowych, falowodowych i zintegrowanych. Struktury mikropaskowe, koplanarne i szczelinowe. 3. Fala stojąca, współczynnik odbicia, transformacja impedancji wraz z długością linii. Wykres Smitha i dopasowanie impedancji. Układy dopasowujące wąskoi szerokopasmowe. 4. Opis macierzowy układów wielowrotowych. Falowe macierze rozproszenia i transmisji. Interpretacja fizyczna parametrów rozproszenia. Związki pomiędzy parametrami rozproszenia wynikające z symetrii, wzajemności i bezstratności. 5. Elementy i układy pasywne b.w.cz. przesuwniki fazy, sprzęgacze kierunkowe i dzielniki mocy, układy niewzajemne izolatory i cyrkulatory ferrytowe. 6. Filtry mikrofalowe. Rozwiązania układowe, przykładowe projekty i konstrukcje. 7. Zintegrowane układy półprzewodnikowe mikrofalowe generatory, wzmacniacze tranzystorowe i mieszacze. Wzmacniacze z klasycznym obwodowym i przestrzennym sumowaniem mocy. 8. Hybrydowe i monolityczne mikrofalowe układy scalone. Układy mikro-elektromechaniczne. Najnowsze osiągnięcia. 9. Technika fal milimetrowych. 10. Podstawowe metody i techniki pomiarów w zakresie b.w.cz. Literatura podstawowa: 1. Dobrowolski J., Technika wielkich częstotliwości. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1998, 2001. 2. Szóstka J., Mikrofale. Układy i systemy. WKŁ, Warszawa 2006. 3. Rosłoniec S., Liniowe obwody mikrofalowe. Metody analizy i syntezy. WKŁ, Warszawa 1999. Literatura uzupełniająca: 1. Litwin R., Suski M., Technika mikrofalowa. WNT, Warszawa 1972. 2. Galwas B., Mikrofalowe generatory i wzmacniacze tranzystorowe. WKŁ, Warszawa 1991. 3. Galwas B., Miernictwo mikrofalowe. WKŁ, Warszawa 1985. 4. Edwards T., Foundations for microstrip circuit design. John Wiley & Sons, 1992. 5. Pozar D. M., Microwave Engineering. John Wiley & Sons, 1998. 6. Dobrowolski J., Monolityczne mikrofalowe układy scalone. Modelowanie, projektowanie, pomiary. WNT, Warszawa 1999. Efekty kształcenia: Poznanie i zrozumienie podstawowych zjawisk falowych zachodzących w liniach transmisyjnych i falowodach, powstawania rozkładu fali stojącej i jej parametrów, takich jak

współczynnik fali stojącej, współczynnik odbicia i transformacja impedancji wraz ze zmianą przekroju linii, w którym wykonywany jest pomiar. Zrozumienie podstawowych technik prowadzenia i rozpraszania fal w liniach transmisyjnych oraz układach pasywnych i aktywnych b. w. cz. Umiejętności i kompetencje w zakresie: interpretacji fizycznej obliczanych lub mierzonych parametrów rozproszenia ogólnie wielowrotowego układu mikrofalowego; projektowania podstawowych elementów i układów b. w. cz. oraz posługiwania się obwodami zastępczymi złoŝonymi z odcinków linii transmisyjnych i elementów o parametrach skupionych w analizie układów b. w. cz. Język wykładowy: polski.

PROJEKT Wymagania wstępne: Brak wymagań wstępnych. Cele kształcenia: Praktyczne opanowanie materiału omawianego na wykładzie poprzez rozwiązanie podstawowych inŝynierskich zadań projektowych i problemowych. Poznanie moŝliwości oferowanych przez profesjonalny software wspomagający projektowanie wybranych elementów i układów mikrofalowych, a takŝe zdobycie umiejętności posługiwania się nim w praktyce inŝynierskiej. Samodzielne rozwiązanie dwóch zadań projektowych oraz przygotowanie i prezentacja wyników wykonanych projektów. Metody dydaktyczne: W ramach projektu studenci rozwiązują dwa wybrane zadania inŝynierskie z zakresu techniki b. w. cz. z wykorzystaniem opisanych w literaturze metod analizy, projektowania i symulacji obwodowych i elektromagnetycznych, w tym technik CAD. Zasady i kryteria zaliczenia: Warunkiem zaliczenia projektu są pozytywne oceny z dwóch wykonanych projektów i prezentacji uzyskanych wyników. Treści programowe: 1. Prezentacja przykładowych, dostępnych programów komputerowych, wspomagających analizę i projektowanie prostych elementów i złoŝonych układów mikrofalowych. 2. Przykładowe projekty i rozwiązania zadań inŝynierskich z wykorzystaniem dostępnego oprogramowania. 3. Samodzielne rozwiązanie zadania projektowego polegającego na analizie i zaprojektowaniu układu pasywnego b. w. cz. (obwodu dopasowującego, filtru mikrofalowego, sprzęgacza kierunkowego, dzielnika mocy, przesuwnika fazy). Przykładowymi tematami pierwszego projektu są następujące zadania inŝynierskie: 3.1 Zaprojektować obwód dopasowujący impedancję Z L = (100 j50) Ω do linii o impedancji charakterystycznej Z o = 50 Ω, f o = 3 GHz. Parametry obwodu dobrać wykorzystując Serenadę/Smith Tool. Wykreślić charakterystykę częstotliwościową reflektancji mierzonej na wejściu układu linia transmisyjna obwód dopasowujący o parametrach rozłoŝonych impedancja Z L w prostokątnym układzie współrzędnych i na wykresie Smitha. Obliczyć i zmierzyć teŝ straty powrotu, współczynniki odbicia i fali stojącej oraz stosunek mocy wydzielonej w obciąŝeniu przed i po dołączeniu obwodu dopasowania impedancyjnego. 3.2 Zaprojektować szeregowy i równoległy obwód rezonansowy RLC o częstotliwości rezonansowej f o = 10 GHz i dobroci Q o = 10 000, sprzęŝony reakcyjnie z torem transmisyjnym. Posługując się Serenadą wykreślić krzywe reflektancji i transmitancji w układzie współrzędnych prostokątnych i na wykresie biegunowym. Współczynnik sprzęŝenia obwodu rezonansowego z linią transmisyjną β = 0.1 w pierwszym wariancie i β = 2 w drugim. 3.3 Stworzyć schemat ideowy gałęziowego sprzęgacza kierunkowego wykonanego techniką idealnych linii transmisyjnych, zaprojektowanego przy następujących danych: Z o = 50 Ω, f o = 5 GHz, Z 1 = 70.71 Ω, Z 2 = 50 Ω. Wykreślić charakterystyki częstotliwościowe sprzęgacza ( S ii, S ij w mierze db oraz róŝnicowych przesunięć fazy Arg S ji - Arg S ki w stopniach). Przyjmując, Ŝe sprzęgacz ma być zrealizowany na

laminacie ULTRALAM 2000 o parametrach ε r = 2.4, h = 30 mils, t = ½ oz, Cu, tan δ = 0.0004 i korzystając z opcji Transmission Line, obliczyć wymiary sprzęgacza w technice linii mikropaskowych, stworzyć schemat ideowy sprzęgacza i zdjąć jego charakterystyki częstotliwościowe. Porównać z charakterystykami sprzęgacza zrealizowanego w technice linii idealnych. 4. Samodzielne rozwiązanie zadania projektowego polegającego na zaprojektowaniu układu aktywnego (mikrofalowego oscylatora tranzystorowego, wzmacniacza, regulowanego prądowo tłumika/ modulatora/ przełącznika z diodami PIN, mieszacza mikrofalowego), optymalizacji parametrów projektowanego układu i wyznaczeniu wynikowych charakterystyk częstotliwościowych. Przykładowymi tematami projektu drugiego są następujące zadania inŝynierskie: 4.1 Stworzyć schemat układu absorpcyjnego tłumika z diodami PIN włączonymi między dwa sprzęgacze 3 db/90 opisane zmierzonymi parametrami rozproszenia plikiem sprzęgacz.s4p i wyprowadzić wyniki analizy układu. Wykreślić charakterystyki częstotliwościowe tłumika w zaleŝności od prądu diody PIN jako parametru rodziny krzywych i skomentować wyniki analizy. 4.2 Zaprojektować tranzystorowy wzmacniacz wąskopasmowy przy następujących warunkach: tranzystor bezwzględnie stabilny (k f o >1), obwody na wejściu i wyjściu tranzystora dopasowują tranzystor na minimum szumów i maksymalne wzmocnienie w warunkach dopasowania szumowego, linie transmisyjne idealne. Wykreślić charakterystyki częstotliwościowe wzmacniacza ( S 11, S 22, S 21 i współczynnika szumów NF w mierze db) w zakresie częstotliwości ± 20% wokół częstotliwości środkowej, a takŝe okręgi na płaszczyźnie Γ S i Γ L stałych wzmocnień i stałych wartości współczynnika szumów. Zbadać stabilność wzmacniacza w całym zakresie częstotliwości i wykreślić przykładowe okręgi stabilności. Skomentować wyniki. Literatura podstawowa: 1. Serenade 8.5 Design Environment (Serenade Student Version 8.5), Ansoft New Jersey, http://www.ansoft.com. 2. Sonnet Tutorial, Version Lite 9, Electromagnetic Solver, Sonnet Software, Inc., http://www.sonnetsoftware.com/. 3. Dobrowolski J., Technika wielkich częstotliwości. Zadania. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1996. 4. Rosłoniec S., Liniowe obwody mikrofalowe. Metody analizy i syntezy. WKŁ, Warszawa 1999. Literatura uzupełniająca: 1. Ansoft Designer SV, version 2.2.0, March 2005 (lub późniejsza), Copyrigth 1984-2005, Ansoft Corporation, http://ansoft.com 2. Encyklopedia techniki mikrofalowej na stronie http://www.microwaves101.com/. 3. Edwards T., Foundations for Microstrip Circuit Design. John Wiley & Sons, 1992. 4. Pozar D. M., Microwave Engineering. John Wiley & Sons, 1998. 5. Dobrowolski J., Monolityczne mikrofalowe układy scalone. Modelowanie, projektowanie, pomiary. WNT, Warszawa 1999. Efekty kształcenia: Poznanie zasady działania i właściwości podstawowych elementów i układów b.w.cz. realizowanych w róŝnych technikach falowodów prostokątnych, falowodów dielektrycznych, planarnych symetrycznych i niesymetrycznych linii paskowych, linii koplanarnych i szczelinowych poprzez wykonanie pełnych analiz, szczegółowych obliczeń

projektowych i symulacji komputerowych, a takŝe przygotowanie dokumentacji dwóch projektów. Osoby prowadzące: dr hab. inŝ. Krzysztof Sachse dr inŝ. Włodzimierz Pawlak