Eksploatacja trójfunkcyjnych reaktorów katalitycznych - dezaktywacja termiczna. Maintenance of three way catalytic converter - thermal deactivation

Podobne dokumenty
RESEARCH OF OXYGEN SENSOR SIGNALS IN THREE WAY CATALITIC CONVERTER FOR OBD II NEEDS

EKOLOGIA I OCHRONA ŚRODOWISKA W TRANSPORCIE LABORATORIUM Ćwiczenie 5. Temat: Ocena skuteczności działania katalitycznego układu oczyszczania spalin.

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

PROBLEMY EKSPLOATACJI 201

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

NITRIC OXIDE TRAPS AS REDUCTION METHOD OF SPARK IGNITION ENGINE EMISSION

OTMAR VOGT, JAN OGONOWSKI *, BARBARA LITAWA. Streszczenie

BADANIA SYMULACYJNE I EKSPERYMENTALNE UTLENIAJĄCEGO REAKTORA KATALITYCZNEGO SYSTEMU FILTRA CZĄSTEK STAŁYCH W PROGRAMIE AVL BOOST

10. Analiza dyfraktogramów proszkowych

Badanie katalizatorów technikami temperaturowo-programowanymi

COMPARATIVE ANALYSIS OF NITRIC OXIDE-TRAPS REACTORS PROPERTIES WITH MAGNESIUM OXIDE AND BAR ALUMINATES

Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU

Ocena moŝliwości redukcji NO X amoniakiem na reaktorach platynowych

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

COMPARATIVE ANALYSIS OF REMOVAL OF NO X IN THE PRESENCE OF HYDROCARBONS ON OXIDES BASED CATALYSTS IN THE EXHAUST GAS OF DIESEL ENGINE

Wpływ składu mieszanki gazu syntetycznego zasilającego silnik o zapłonie iskrowym na toksyczność spalin

IDENTYFIKACJA FAZ W MODYFIKOWANYCH CYRKONEM ŻAROWYTRZYMAŁYCH ODLEWNICZYCH STOPACH KOBALTU METODĄ DEBYEA-SCHERRERA

Ćwiczenie 26 KATALITYCZNE ODWODNIENIE HEPTANOLU

Ocena wpływu dawki amoniaku na poziom konwersji NO X w platynowym reaktorze SCR

Wpływ motoryzacji na jakość powietrza

Wpływ rodzaju paliwa gazowego oraz warunków w procesu spalania na parametry pracy silnika spalinowego mchp

Zjawiska powierzchniowe

57 Zjazd PTChem i SITPChem Częstochowa, Promotowany miedzią niklowy katalizator do uwodornienia benzenu

Mgr inŝ. Wojciech Kamela Mgr inŝ. Marcin Wojs

Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa

STECHIOMETRIA SPALANIA

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013

LABORATORIUM PODSTAW SILNIKÓW I NAPĘDÓW SPALINOWYCH. Ćwiczenie 6 DIAGNOSTYCZNE POMIARY TOKSYCZNYCH SKŁADNIKÓW SPALIN

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

KONWERSJA ZWIĄ ZKÓW SZKODLIWYCH PRZEZ KATALIZATOR PODCZAS ZIMNEGO URUCHAMIANIA I ROZGRZEWANIA SILNIKA O ZS

Pozyskiwanie wodoru na nanostrukturalnych katalizatorach opartych o tlenki żelaza

WPŁYW SKŁADU MIESZANKI NA EMISJĘ SZKODLIWYCH SKŁADNIKÓW SPALIN PODCZAS ZASILANIA SILNIKA GAZEM ZIEMNYM

LABORATORIUM PODSTAW SILNIKÓW I NAPĘDÓW SPALINOWYCH ĆWICZENIE NR 3: DIAGNOSTYCZNE POMIARY SKŁADNIKÓW TOKSYCZNYCH SPALIN WPROWADZENIE

KRZEPNIĘCIE KOMPOZYTÓW HYBRYDOWYCH AlMg10/SiC+C gr

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Pracownia. Cwiczenie 23

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

DOBÓR KSZTAŁTEK DO SYSTEMÓW RUROWYCH.SZTYWNOŚCI OBWODOWE

KATALITYCZNE ODWODORNIENIE HEPTANU

LABORATORIUM MECHANIKI PŁYNÓW

prędkości przy przepływie przez kanał

BUDOWA DRÓG - LABORATORIA

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18

Badanie katalizatorów technikami temperaturowo-programowanymi

Wpływ promieniowania na wybrane właściwości folii biodegradowalnych

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH

Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06

Polecenie 3. 1.Obliczenia dotyczące stężenia SO 2 zmierzonego w emitorze kotłowni. Dane:

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

SILUMIN OKOŁOEUTEKTYCZNY Z DODATKAMI Cr, Mo, W i Co

Analiza dynamiki fali gazowej 1. wytwarzanej przez elektrodynamiczny impulsowy zawór gazowy

Plan i kartoteka testu sprawdzającego wiadomości i umiejętności uczniów

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

STATYCZNA PRÓBA ROZCIĄGANIA

Laboratorium Diagnostyki Pokładowej Pojazdów. Badania symulacyjne reaktora katalitycznego. Opracowanie: Marcin K. Wojs

SILUMIN NADEUTEKTYCZNY Z DODATKAMI Cr, Mo, W i Co

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY PODEUTEKTYCZNYCH STOPÓW UKŁADU Al-Si

Mieszanka paliwowo-powietrzna i składniki spalin

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

PODGRZEWANY REAKTOR KATALITYCZNY PODCZAS ZIMNEGO ROZRUCHU SILNIKA O ZS

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej!

Kryteria oceniania z chemii kl VII

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

WPŁYW REDUKCJI MONOLITYCZNEGO KATALIZATORA 2%Pd/Al 2 O 3 NA JEGO AKTYWNOŚĆ I STABILNOŚĆ PRACY W UTLENIANIU METANU Z POWIETRZA WENTYLACYJNEGO KOPALŃ

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE

WPŁYW SPOSOBU PREPARATYKI NA AKTYWNOŚĆ UKŁADÓW La Mg O. THE EFFECT OF PREPARATION OF La Mg O CATALYSTS ON THEIR ACTIVITY

STECHIOMETRIA SPALANIA

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

Kontrola procesu spalania

Józef Nita, Artur Borczuch Politechnika Radomska Instytut Eksploatacji Pojazdów i Maszyn ul. Chrobrego Radom tel.

CHARAKTERYSTYKI PRACY SILNIKA HCCI ZASILANEGO BIOGAZEM

OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

Laboratorium Niskoemisyjnych Silników Spalinowych. Ćwiczenie 5. Badania symulacyjne reaktora katalitycznego

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

CENTRUM CZYSTYCH TECHNOLOGII WĘGLOWYCH CLEAN COAL TECHNOLOGY CENTRE. ... nowe możliwości. ... new opportunities

Blachy i druty z metali szlachetnych

SPOSÓB POMIARU EMISJI ZANIECZYSZCZEŃ GAZOWYCH ORAZ ZADYMIENIA SPALIN PODCZAS PRZEPROWADZANIA BADANIA TECHNICZNEGO POJAZDU

Układy zasilania samochodowych silników spalinowych. Bartosz Ponczek AiR W10

OCENA PORÓWNAWCZA WYNIKÓW OBLICZEŃ I BADAŃ WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA OKIEN

ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE. Wyznaczanie granicznej intensywności przedmuchów w czasie rozruchu

FOTOELEKTRYCZNA REJESTRACJA ENERGII PROMIENIOWANIA KRZEPNĄCEGO STOPU

BADANIA POKRYWANIA RYS W PODŁOŻU BETONOWYM PRZEZ POWŁOKI POLIMEROWE

ZAGROŻENIA GAZOWE CENTRALNA STACJA RATOWNICTWA GÓRNICZEGO G

system monitoringu zanieczyszczeń gazowych i pyłów w powietrzu atmosferycznym, z zastosowaniem zminiaturyzowanych stacji pomiarowych

Wtrącenia niemetaliczne w staliwie topionym w małym piecu indukcyjnym

Pobieranie próbek gazowych

VIII Podkarpacki Konkurs Chemiczny 2015/2016

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(97)/2014

Logistyka - nauka. Wpływ zastosowania paliwa z dodatkiem etanolu do zasilania silników spalinowych na skład spalin

PRZECIWZUŻYCIOWE POWŁOKI CERAMICZNO-METALOWE NANOSZONE NA ELEMENT SILNIKÓW SPALINOWYCH

Załącznik nr. 1 do Zapytania Ofertowego - Szczegółowy Opis Przedmiotu Zamówienia

WYDZIAŁ CHEMICZNY POLITECHNIKI WARSZAWSKIEJ KATEDRA TECHNOLOGII CHEMICZNEJ. Laboratorium PODSTAWY TECHNOLOGII CHEMICZNEJ

Transkrypt:

Prof nzw dr hab inż Stanisław W Kruczyński Institute of Vehicles Warsaw University of Technology ul Narbutta 84, 02-524 Warsaw, Poland e-mail: skruczyn@simrpwedupl Eksploatacja trójfunkcyjnych reaktorów katalitycznych - dezaktywacja termiczna Maintenance of three way catalytic converter - thermal deactivation Słowa kluczowe: eksploatacja reaktorów katalitycznych, dezaktywacja termiczna, dyspersja metali szlachetnych Key words: maitennance of catalytic converter, thermal deactivation, precious metal dispersion Streszczenie: W pracy opisano procesy dezaktywacji trójfunkcyjnych reaktorów katalitycznych spalin ze szczególnym uwzględnieniem dezaktywacji termicznej Przedstawiono wyniki badań rektora nowego i reaktora starzonego w pięciogodzinnym teście termicznym Oceniono konwersję tlenku węgla, węglowodorów i tlenków azotu Wyznaczono wartości temperatury zapłonu katalizatora poszczególnych substancji szkodliwych dla katalizatora nowego i starzonego Wyniki pomiarów konwersji skorelowano z wynikami badań fizyko-chemicznych zmian struktury katalizatora podczas testu starzeniowego Abstract: The present paper gives a description of deactivation processes of three way exhaust gas catalytic converters, with special consideration of thermal deactivation Test results of new (or fresh ) and aged reactor during five-hours thermal test are presented Conversion of carbon monoxide, hydrocarbons and nitric oxides is evaluated Ignition temperatures of catalyst of individual noxious matters are determined, as well for new as for aged catalyst Results of conversion measurements are correlated with results of physical and chemical tests of catalyst structure changes during ageing test 1 Wstęp Współczesne reaktory katalityczne wykonywane są w oparciu o monolit ceramiczny, bądź metalowy na który różnymi technikami nałożone są kolejne warstwy spełniające różne funkcje Składają się one z ponad 5-ciu różnych tlenków metali i 2-3 rodzajów metali szlachetnych Sprawność ograniczania emisji tlenku węgla, węglowodorów i tlenków azotu w pełni sprawnego systemu katalitycznego pracującego w stanie ustalonym w odpowiednich temperaturach i przy składzie mieszanki bliskim stechiometrycznemu przekracza 90% Długotrwała eksploatacja reaktora powoduje jego starzenie i nieunikniony proces dezaktywacji warstwy katalitycznej Następują zmiany struktury i składu chemicznego złoża katalitycznego przy jednoczesnym nakładaniu się warstw różnych związków chemicznych blokujących dostęp do katalizatora Dezaktywacja reaktora katalitycznego spalin może być wynikiem różnorodnych procesów, które można podzielić na następujące grupy [3]: 1 Procesy chemiczne w tym adsorpcja prekursorów trucizn i postępujące zatrucie polegające na zmianach struktury powierzchni i blokadzie chemicznej miejsc aktywnych

2 Procesy termiczne w tym zmiany struktury nośnika i krystalitów metali, spiekanie, utlenianie i tworzenie stopów metali szlachetnych oraz parowanie metali 3 Procesy mechaniczne w tym powstanie naprężeń w wyniku szoków termicznych oraz wstrząsy powodujące tarcie i kruszenie monolitów i nośnika W trakcie normalnej pracy reaktora katalitycznego procesy dezaktywacji mogą przebiegać według wszystkich wymienionych wyżej mechanizmów Przy obecnym poziomie technologii wykonania i eksploatacji reaktorów katalitycznych spalin udział procesów dezaktywacji przez procesy mechaniczne jest mały Dominuje dezaktywacja termiczna połączona z dezaktywacją chemiczną [1] 2 Badania dezaktywacji termicznej katalizatora Badania przeprowadzono na stanowisku do badań katalizatorów zbudowane w oparciu o elektryczny piec rurowy W piecu zainstalowano komorę katalizatora wykonaną ze stali żaroodpornej, do której grzaną drogą gazową doprowadzane są gazy spalinowe z silnika Rover 14 Próbki spalin z przed i z za katalizatora są pobierane do zestawu analizatorów spalin Temperatury spalin mierzone są za pomocą termoelementów przed i za katalizatorem Spaliny pobierane za katalizatorem były schładzane, i po wykropleniu wilgoci przepływały przez zestaw rotametrów Do badań wykorzystano reaktor katalityczny katalizator Pd/Rh - Al 2 O 3 /CeO 2 wykonany w oparciu o monolit metalowy (ilość kanalików 62 1/cm 2 ) o wkładzie metali szlachetnych 1,46 g Pt/dm 3 i 0,3 g Rh/dm 3 do samochodu małolitrażowego Do celów badawczych z reaktora samochodowego wykonano modelowy katalizator badawczy o średnicy = 30 mm i długości l = 90 mm, który umieszczono w piecu rurowym Procedurę starzenia prowadzono gazami spalinowymi [4] o składzie stechiometrycznym (CO 2 = 14,3%, CO = 0,56%, O 2 = 0,65%, HC = 213 ppm, NOx = 2500 ppm) przez 5 godzin w temperaturze 900 C z wydatkiem odpowiadających względnej objętościowej prędkości przepływu SV = 6000 h -1 Przed procedurą starzenia i po jej zakończeniu przeprowadzono serię badań której celem było określenie zależności konwersji składników spalin w zależności od temperatury procesu katalitycznego Wyniki badań uzupełniono badaniami wybranych właściwości powierzchni katalizatora w tym badania porowatości, dyspersji palladu i rentgenowskie badania strukturalne Badania przedstawiono według następujących metodyk i przedstawiono w następującej kolejności 1 Badania struktury porowatej powierzchni katalizatora przed i po starzeniu przeprowadzono aparatem ASAP 2010 Badaniom poddano fragmenty katalizatora (folia stalowa pokryta obustronnie warstwą tlenkową z naniesionymi metalami szlachetnymi) Wyniki pomiarów odniesiono do 1 g masy katalizatora 2 Rentgenowskie badania strukturalne wykonano na dyfraktometrze rentgenowskim Rigaku Denki w geometrii odbiciowej Bragg-Brentano z wykorzystaniem promieniowania CuK oraz filtr Ni Badaniom poddano katalizator w postaci proszku wyizolowanego z katalizatorów nowych i starzonych 3 Badania dyspersji metali szlachetnych przeprowadzono metodą chemisorpcji wodoru Badaniom poddano proszek uprzednio wyizolowany z katalizatorów nowych i starzonych Do końcowych oznaczeń wymiarów krystalitów i stopnia ich dyspersji konieczna jest znajomość stężeń metali szlachetnych w badanych katalizatorach które określono metodą płomieniowej AAS 4 Badania konwersji gazów przeprowadzono przy stałym przepływie gazów o składzie stechiometrycznym regulowanym w pętli zamkniętej czujnikiem tlenu odpowiadającym względnej objętościowej prędkości przepływu spalin SV = 12000 h -1 w

3 Wyniki badań warunkach pracy silnika odpowiadających prędkości obrotowej n = 2500 obr/min, oraz mocy efektywnej N e = 25 kw Mierzono stężenia składników spalin przed i za katalizatorem w zależności od temperatury procesu katalitycznego, oraz obliczano konwersję składników spalin, a następnie wyznaczano temperaturę zapłonu katalizatora T 50 ( temperatura odpowiadająca 50% konwersji składnika) Ad 1 Wyniki badań oznaczeń powierzchni właściwej (model BET) oraz powierzchni i objętości porów (model BJH) dla katalizatora nowego i starzonego zestawiono w tabeli 1 Wynikiem procesu dezaktywacji temperaturowej katalizatora jest utrata jego powierzchni aktywnej Stwierdzono spadek pola powierzchni (BET) i powierzchni porów (BJH) do około 35% wartości początkowej Objętość porów zmniejszyła się do około 85% wartości początkowej przy wzroście średniej średnicy porów z wartości około 110 Å do wartości 240 Å Takie efekty są wynikiem zanikania w pierwszej kolejności porów o relatywnie niskich średnicach Wyniki badań pola powierzchni, oraz powierzchni i objętości mikroporów Results of tests concerning surface area and surface and volume of micro pores Tabela 1 Wyszczególnienie Jednostka miary Katalizator nowy Katalizator starzony Pole powierzchni - model BET 22,3 7,74 Powierzchnia porów - model BJH (adsorpcja) m 2 /g 23,3 8,9 Powierzchnia porów - model BJH (desorpcja) 25,3 9,5 Objętość porów - model BJH (adsorpcja) cm 3 0,068 0,056 /g Objętość porów - model BJH (desorpcja) 0,06 0,055 Średnia średnica porów - model BET 72,82 120,1 Średnia średnica porów - model BJH (adsorpcja) Å 117,1 250,0 Średnia średnica porów - model BJH (desorpcja) 107,6 232,o Ad 2 Wyniki badań rentgenowskich w postaci dyfraktogramu katalizatora Pd/Rh- Al 2 O 3 /CeO 2 przed testem starzeniowym (linia górna) i po teście starzeniowym (linia dolna) przedstawiono wg [5] na rysunku 1 W preparacie nowego katalizatora Pd/Rh identyfikowano mieszaninę -Al 2 O 3 oraz CeO 2 Nie identyfikowano faz metalicznych (oprócz podłoża warstw) W preparacie katalizatora Pd/Rh po teście starzeniowym identyfikowano nadal - Al 2 O 3, jak również dobrze wykrystalizowaną fazę CeAlO 3 Oszacowania wielkości krystalitów tej fazy otrzymane przy zastosowaniu wzoru Scherrera i połówkowej szerokości refleksu, wynosiła dla różnych refleksów 340 do 400 Å W preparacie tym obserwowano również pojawienie się refleksu (111) od fazy Pd (lub bogatego w Pd stopu) Niewielkie natężenie obserwowanych refleksów faz metalicznych oraz ich nakładanie się z dominującymi natężeniami refleksów od faz tlenkowych nie pozwalają na inną ocenę, prócz stwierdzenia, że fazy są identyfikowalne Zmierzona grubość warstw naniesionych na podłoże wynosiła ok 0,045 mm, przy czym warstwy po teście wykazywały pewną nierówność grubości (w granicach 0,005 mm)

Pd-Rh, proszek 24000 22000 CeO 2 20000 18000 16000 14000 12000 10000 8000 CeAlO 3 Al 2 O 3 La-Al-O po tescie 6000 4000 2000 0 Pd Rh przed testem 10 20 30 40 50 60 70 80 90 2 ( Cu K ) Rys1 Dyfraktogram [5] katalizatora Pd/Rh - Al 2 O 3 /CeO 2 przed testem starzeniowym (linia dolna) i po teście starzeniowym (linia górna) Fig1 Diffraction pattern [5] of Pd/Rh - Al 2 O 3 /CeO 2 catalyst (powder) before ageing test (lower line) and after ageing test (upper line) Ad 3 Badania dyspersji metali poprzedzone temperaturowo programowaną redukcją (TPR) i temperaturowo programowaną desorpcją (TPD) przeprowadzono metodą chemisorpcji wodoru Pomiary te prowadzono metodą impulsową Do strumienia argonu wprowadzano zaworem kilka impulsów wodoru aż do momentu nasycenia powierzchni Brak chemisorpcji wodoru przejawiał się przechodzeniem przez próbkę jednakowych pików, obserwowanych na ekranie rejestratora Wodór chemisorbowany jest w postaci monowarstwy na powierzchni metalu Chemisorpcja wodoru na metalach grup 8-10 (a więc zarówno na palladzie, jak i rodzie) zachodzi z dysocjacją, stąd przyjmuje się, że jeden atom chemisorbowanego wodoru H przypada na jeden atom powierzchniowy metalu (H (ads) ads / M pow = 1, gdzie M = Pd, Rh) Przykładowy, typowy obraz chemisorpcji (rysunek 2) wygląda następująco, 1-szy impuls wodoru jest częściowo zaadsorbowany, natomiast następne impulsy przechodzą całkowicie przez próbkę i mogą być przyjmowane jako wzorcowe Różnica pól pod impulsem pierwszym, a średnim polem pod następnymi impulsów jest miarą ilości zaadsorbowanego wodoru Znając wielkości wprowadzonych do strumienia argonu impulsów wodoru, obliczono z równania gazu doskonałego ilość moli wodoru zaadsorbowanego przez próbkę katalizatora Następnie przyjmując, że wodór jest adsorbowany jedynie przez powierzchniowe atomy metalu oraz przyjmując model adsorpcji: 1 atom wodoru na 1 atom metalu, obliczono średni rozmiar krystalitów i dyspersję metalu w katalizatorze Wyniki pomiarów według [2] zamieszczono w tabeli 2

Pd + Rh nowy mv czas, sek Rys 2 Przykładowy proces chemisorbcji wodoru na nowym katalizatorze Pd/Rh Poprzez A 1, A 2, A 3 i A 4 oznaczono pola pod poszczególnymi impulsami wodoru Fig 2 Example of hydrogen chemical adsorption process on new Pd/Rh catalyst A 1, A 2, A 3 and A 4 mean areas under individual hydrogen pulses Zestawienie wyników pomiarów dyspersji metali wg [2] Results of metal dispersion measurements according to [2] Tabela 2 katalizator masa kat / ilość moli metalu w próbce ilość moli zaadsorbowanego H 2 chemisorpcja po TPR chemisorpcja po TPD dyspersja, D% pomiar po TPR pomiar po TPD średnia wielkość krystalitu [Å] Pd-Rh nowy; Pd-Rh starzony 025157 g/ 13735e -6 0875e -6 1180e -6 1274 1718 91 031443 g/ 16839e -6 0591e -6 0269e -6 702 319 268 Wyniki pomiarów wielkości krystalitów metalu metodą chemisorpcji wodoru (patrz tabela x) trzeba interpretować bardzo ostrożnie gdyż mogą być zniekształcone przez różne czynniki Czynniki te to: - krystality metalu mogą być otoczoną warstwą nośnika, uniemożliwiającą adsorpcję wodoru Wobec tego wyliczona zostanie mniejsza dyspersja, a więc większe krystality metalu, - metal w zastosowanych katalizatorach, już w stanie wyjściowym, może być dekorowany innymi składnikami, a dodatkowo w katalizatorze starzonym, na powierzchni metalu mogą istnieć depozyty węglowe pochodzące z procesu

Konwersja THC [%] Konwersja [%] polimeryzacji produktów katalizowanej reakcji Sytuacja ta może utrudniać adsorpcję wodoru, co w efekcie spowoduje wyliczenie zbyt dużych wartości wielkości krystalitów metalu Ad 4 Wyniki pomiarów i obliczeń konwersji tlenku węgla, węglowodorów i tlenków azotu w funkcji temperatury dla katalizatora nowego i katalizatora po teście starzeniowym przedstawiono na rysunkach 3, 4 i 5 1 0,8 Pd-Rh nowy Pd-Rh starzony 0,6 0,4 0,2 0 100 200 300 400 Temperatura [ o C] Rys 3 Konwersja tlenku węgla w zależności od temperatury dla katalizatora nowego i katalizatora starzonego Fig 3 Carbon monoxide conversion as function of temperature, for new and aged converter 100% 80% Pd-Rh nowy Pd-Rh starzony 60% 40% 20% 0% 100 200 300 400 Temperatura [ o C]

Konwersja NO x [%] Rys 4 Konwersja węglowodorów w zależności od temperatury dla katalizatora nowego i katalizatora starzonego Fig 4 Conversion of hydrocarbons as function of temperature, for new and aged converter 100% 80% Pd-Rh starzony Pd-Rh nowy 60% 40% 20% 0% 100 200 300 400-20% Temperatura [ o C] Rys 5 Konwersja tlenków azotu w zależności od temperatury dla katalizatora nowego i katalizatora starzonego Fig 5 Conversion of nitric oxides as function of temperature for new and aged converter Na rysunku 6 zestawiono obliczone dla poszczególnych substancji szkodliwych temperatury konwersji 50% dla katalizatora nowego i katalizatora po teście starzeniowym

Temperatura [ o C] 320 310 reaktor nowy reaktor starzony 300 290 280 270 260 250 CO THC NO x Substancje szkodliwe Rys 6 Porównanie temperatur 50% konwersji CO, THC i NO X dla katalizatora nowego i katalizatora starzonego Fig 6 Temperature comparison for 50% conversion of CO, THC and NO X for new and aged converter W efekcie procesu dezaktywacji termicznej katalizatora stwierdzono wyraźne zwiększenie temperatury 50% konwersji dla każdej substancji szkodliwej, które wyniosło odpowiednio dla tlenku węgla, węglowodorów i tlenków azotu odpowiednio 10 C, 10 C i 35 C 4 Wnioski 1 W wyniku testu dezaktywacji termicznej niekorzystnie zmniejszyła się porowatość katalizatora, przy czym zniszczeniu uległy głównie pory małe i średnie Zmniejszyła się całkowita objętość porów, jak również całkowita powierzchnia porów 2 W katalizatorze po teście dezaktywacji stwierdzono obecność dobrze wykrystalizowanej fazy CeAlO 3 mogącej przyczyniać się do spadku pojemności magazynowania tlenu w warstwie tlenkowej nośnika Oszacowane wielkości krystalitów tej fazy otrzymane przy zastosowaniu wzoru Scherrera i połówkowej szerokości refleksu, wynosiły dla różnych refleksów od 340 do 400 Å W preparacie tym obserwowano również pojawienie się refleksu od fazy Pd (lub bogatego w Pd stopu) mogącego świadczyć o tworzeniu się stopu Pd-Rh 3 Dezaktywacja termiczna spowodowała wyraźne zwiększenie średnich wymiarów krystalitów metali szlachetnych Pomimo zastrzeżeń co do dokładności tej metody można stwierdzić że spadek dyspersji metali jest niezaprzeczalny i może być istotny dla aktywności reaktora 4 Dezaktywacja termiczna badanego katalizatora spowodowała zwiększenie temperatury konwersji 50 % wszystkich substancji szkodliwych od około 10 C do około 30 C co może skutkować istotnym wzrostem emisji CO, HC i NO X podczas badań w testach homologacyjnych obejmujących zimny rozruch silnika

Literatura 1 Birgerson H, Boutonnet M, Jaras S, Ericson L Deactivation and regeneration of spent three way automotive exhaust gas catalysts Topics in Catalysis New York 2004 30/31: 433-437 2 Bonarowska M Research dispersion catalysts Pd/Rh i Pt/Rh on Al 2 O 3 ICHF PAN Unpublished Warsaw 1999 [In polish] 3 Kruczyński S Three Way Catalytic Converter ITE Radom 2004 [In polish] 4 Lassi U, Hietikko M, Rahkamaa-Tolonen K, Kallinen k, Savimaki A, Harkonen M, Laitinen R, Keisiki R Deactivation correlations over Pd/Rh monoliths: role of gas phase composition Topics in Catalysis New York 2004 30/31: 457-462 5 Pielaszek J X-Ray structural analysis of catalysts Pd/Rh i Pt/Rh ICHF PAN Unpublished Warsaw 1999 [In polish]