WIRTUALNE STANOWISKA W LABORATORIUM PODSTAW METROLOGII

Podobne dokumenty
st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Laboratorium Podstaw Elektrotechniki i Elektroniki

Pomiar podstawowych wielkości elektrycznych

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Laboratorium Podstaw Elektrotechniki i Elektroniki

BADANIE ELEMENTÓW RLC

Podstawy elektroniki i metrologii

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu

Uśrednianie napięć zakłóconych

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

Państwowa Wyższa Szkoła Zawodowa

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:

Politechnika Białostocka

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD

Pomiar mocy czynnej, biernej i pozornej

Zaznacz właściwą odpowiedź

Sprzęt i architektura komputerów

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:

Podstawy elektroniki i miernictwa

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu

Ćwiczenie: "Mierniki cyfrowe"

Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

PRZEWODNIK PO PRZEDMIOCIE

Energetyka I stopień ogólnoakademicki stacjonarne. kierunkowy. obowiązkowy. polski semestr 1 semestr zimowy

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

Ćwiczenie 15. Sprawdzanie watomierza i licznika energii

Miernictwo I INF Wykład 13 dr Adam Polak

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

Pomiar podstawowych parametrów liniowych układów scalonych

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE

Państwowa Wyższa Szkoła Zawodowa

METROLOGIA EZ1C

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Elektroniczne przyrządy pomiarowe Kod przedmiotu

WZMACNIACZ OPERACYJNY

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych

Katedra Elektrotechniki Teoretycznej i Informatyki

Ćw. 15 : Sprawdzanie watomierza i licznika energii

Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:

Ćwiczenia tablicowe nr 1

Pomiar indukcyjności.

Wprowadzenie do programu MultiSIM

POLITECHNIKA POZNAŃSKA KATEDRA STEROWANIA I INŻYNIERII SYSTEMÓW

ELEMENTY ELEKTRONICZNE

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki

I= = E <0 /R <0 = (E/R)

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

Modelowanie przetworników pomiarowych Kod przedmiotu

Ćw. 0 Wprowadzenie do programu MultiSIM

Ćwiczenie 7 POMIARY CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Opracowała: A. Szlachta

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

Pomiary podstawowych wielkości elektrycznych prądu stałego i przemiennego

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Data oddania sprawozdania BADANIA ODBIORNIKÓW TRÓJFAZOWYCH

2. Narysuj schemat zastępczy rzeczywistego źródła napięcia i oznacz jego elementy.

POMIARY TEMPERATURY I

Przetworniki AC i CA

Bierne układy różniczkujące i całkujące typu RC

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

Badanie wzmacniacza niskiej częstotliwości

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Politechnika Lubelska Katedra Automatyki i Metrologii. Laboratorium Podstaw Miernictwa Elektrycznego.

Laboratorium Podstaw Elektrotechniki i Elektroniki

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia. Podstawy elektrotechniki i elektroniki Rodzaj przedmiotu: Język polski

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

Spis treści 3. Spis treści

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

Politechnika Białostocka

Filtry aktywne filtr środkowoprzepustowy

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Źródła zasilania i parametry przebiegu zmiennego

Systemy pomiarowe Measurement systems. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Katedra Elektrotechniki Teoretycznej i Informatyki

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora

Ćwiczenie 4 Badanie wpływu napięcia na prąd. Wyznaczanie charakterystyk prądowo-napięciowych elementów pasywnych... 68

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

2.Rezonans w obwodach elektrycznych

Transkrypt:

Materiały XXXVI Międzyuczelnianej Konferencji Metrologów MKM 04 _ Akademia Górniczo-Hutnicza Katedra Metrologii WIRTUALNE STANOWISKA W LABORATORIUM PODSTAW METROLOGII W pracy przedstawiono narzędzie system WSLM - do tworzenia wirtualnych stanowisk laboratoryjnych w Laboratorium Metrologii Katedry Metrologii AGH w Krakowie. Założeniem było, aby zbudowane w systemie WSLM wirtualne stanowiska laboratoryjne stawiały przed studentami wszystkie te zadania i problemy, z którymi mogą spotkać się podczas rzeczywistych zajęć laboratoryjnych a więc: połączenie układu pomiarowego, dobór przyrządów (rodzaj, klasa, zakres) i wykonanie eksperymentu. W systemie zaprojektować można także konkretne stanowiska laboratoryjne (gotowe układy pomiarowe) i umożliwić studentom dostęp do nich (dobór przyrządów i wykonanie eksperymentu) poprzez sieć Internetu. VIRTUAL LABORATORY EXERCISES FOR METROLOGY STUDENT LABORATORY The paper presents a tool - the WSLM system - for creating virtual laboratory exercises for the Laboratory of Metrology at the Department of Measurement and Instrumentation, AGH University of Science and Technology, Cracow. The assumption was to create virtual exercises, that would put all the same problems on the board students would have encountered during real courses: assembling a circuit, pick the correct instruments (taking into account the type, class and range of instrument) and conduct an experiment. The system also allows design of actual measuring arrangements and gives students the possibility to access them via Internet. 1. WSTĘP W tradycyjnym modelu kształcenia wykorzystuje się bezpośredni kontakt ucznia z wykładowcą i podręcznik jako element samokształcenia. Nowe technologie ogromnie wzbogaciły narzędzia kształcenia i samokształcenia oraz zwiększyły ich efektywność. Wśród nich, Internet odgrywa rolę szczególną, choć jeszcze nie do końca uświadamianą, w jak silnym stopniu może on wpłynąć na technologię edukacji. W Katedrze Metrologii AGH w latach 000-003 opracowano oprogramowanie wspomagające Laboratorium Metrologii. Częścią tego oprogramowania jest moduł umożliwiający studentom, poprzez sieć Internetu, przeprowadzenie samooceny polegającej na poddaniu się kolokwium w postaci testu. Przygotowano testy ze wszystkich realizowanych w Laboratorium Metrologii 16 ćwiczeń laboratoryjnych.[3,4] W 00 roku rektorzy siedmiu polskich uczelni technicznych podpisali porozumienie o powołaniu Wirtualnej Politechniki. Wirtualna Politechnika jest otwartą i dostępną dla wszystkich Wirtualną Przestrzenią Kształcenia przez Internet, utworzoną na bazie narzędzi

366 teleinformatycznych. Celem Wirtualnej Politechniki jest wprowadzenie w życie zasady, że zaliczenie przedmiotu prowadzonego przez Internet jest równoważne zaliczeniu przedmiotu prowadzonego w tradycyjny sposób, jeżeli tylko programy obu przedmiotów i wymagania egzaminacyjne były identyczne. Wymaga to więc także stworzenia wirtualnych, dostępnych poprzez Internet, laboratoriów z przedmiotów technicznych. W niniejszej pracy przedstawiono narzędzie system WSLM - do tworzenia wirtualnych stanowisk laboratoryjnych w Laboratorium Metrologii Katedry Metrologii AGH w Krakowie. Założeniem było, aby zbudowane w systemie WSLM wirtualne stanowiska laboratoryjne stawiały przed studentami wszystkie te zadania i problemy, z którymi mogą spotkać się podczas rzeczywistych zajęć laboratoryjnych a więc: połączenie układu pomiarowego, dobór przyrządów (rodzaj, klasa, zakres) i wykonanie eksperymentu. W systemie zaprojektować można także konkretne stanowiska laboratoryjne (gotowe układy pomiarowe) i umożliwić studentom dostęp do nich (dobór przyrządów i wykonanie eksperymentu) poprzez sieć Internetu.. STRUKTURA SYSTEMU WSLM - WIRTUALNEGO STANOWISKA DLA LABORATORIUM METROLOGII System WSLM składa się z dwóch części: głównej projektowej, przeznaczonej dla nauczyciela organizującego i prowadzącego laboratorium, oraz części klienckiej przeznaczonej dla studenta wykonującego ćwiczenia. Na rys. 1. przedstawiono schemat systemu WSLM. Podstawową częścią systemu WSLM jest stanowisko projektowe. Jako stanowisko projektowe może być wykorzystany jeden lub kilka z komputerów znajdujących się w Laboratorium Metrologii. WSLM stanowisko projektowe można zainstalować także na dowolnym komputerze połączonym, poprzez sieć lokalną bądź sieć Internetową z Laboratorium Metrologii. Projektant np. prowadzący zajęcia laboratoryjne, ma do dyspozycji Graficzny Interfejs Użytkownika systemu WSLM, zapewniający możliwość modelowania obwodów elektrycznych dla konkretnego ćwiczenia laboratoryjnego. W części projektowej systemu WSLM zaimplementowano także algorytmy obliczeniowe, które umożliwiają przetestowanie, symulację komputerową, stworzonych modeli ćwiczeń laboratoryjnych. Ważnym elementem systemu WSLM jest serwer WWW, na którym - w bazie projektów mogą być umieszczane modele kolejnych ćwiczeń laboratoryjnych. Do serwera WWW mogą być podłączone komputery znajdujące się w Laboratorium Metrologii. Istnieje również możliwość połączenia się z serwerem WWW poprzez sieci LAN i WAN. Studenci biorący udział w ćwiczeniach laboratoryjnych i / lub studenci pragnący samodzielnie podnosić swój poziom wiedzy w zakresie metrologii, mogą - wykorzystując dowolną przeglądarkę internetową - uruchomić na swoich komputerach projekty zamieszczone na serwerze. Projekty na komputerach klienckich dostępne są w postaci

Wirtualne stanowiska w Laboratorium Podstaw Metrologii 367 apletów. Oznacza to, iż każdy student ma możliwość przeprowadzania symulacji określonego obwodu, czyli możliwość obserwacji napięć i prądów oraz możliwość zmiany wartości elementów i bez możliwości ingerencji w strukturę obwodu. MS Windows LAN LABORATORIUM METROLOGII Serwer WWW Stanowisko projektowe WAN Linux TCP/IP MacOS Stanowiska laboratoryjne Rys. 1. Struktura systemu WSLM 3. MODELE ELEMENTÓW OBWODÓW ELEKTRYCZNYCH W PROGRAMIE WSLM Każdy program komputerowy służący do analizy obwodów elektrycznych zawiera w sobie zestaw modeli elementów układu, ściśle określony przez zadania postawione przed nim w trakcie jego projektowania. Ponieważ celem autorów niniejszej pracy było stworzenie wirtualnych stanowisk metrologicznych, dlatego też w projekcie ograniczono się do zamodelowania tylko tych elementów, które występują w ćwiczeniach wykonywanych Laboratorium Metrologii Katedry Metrologii AGH. W systemie WSLM istnieje więc możliwość użycia modeli elementów, które są niezbędne do pełnego i prawidłowego wykonania ćwiczeń laboratoryjnych opartych na obwodach prądu stałego i zmiennego jednoi trójfazowych.

368 Matematyczny model obiektu fizycznego jest tworzony z wielkości fizycznych opisujących elementarne właściwości obiektu [1,]. Wielkości wejściowe i wyjściowe obiektu są powiązane równaniem: F(x, y; a) = 0, (1) gdzie: x = [x 1, x,,x j ] T - wektor wielkości wejściowych, y = [y 1, y,,y j ] T - wektor wielkości wyjściowych (odpowiedzi), a = [a 1,ay, ay j ] T - wektor parametrów równania modelu, F = [F 1,Fy, Fy j ] T - wektor operatorów. Kierując się tak przyjętą metodyką, autorzy zamodelowali zestaw elementów dla systemu Wirtualnego Stanowiska Laboratorium Metrologii. Każdy z elementów modelowanych w programie składa się, w ogólnym przypadku z dwóch części: 1. parametrów, które mają wpływ na topologię obwodu ( macierz incydencji elementu ),. funkcji przetwarzania danych wyjściowych z algorytmu rozwiązywania obwodów metodą potencjałów węzłowych. Nie każdy jednak z modelowanych elementów musi posiadać funkcję przetwarzania danych. Elementy takie jak rezystor, kondensator czy cewka indukcyjna mają tylko wpływ na topologię i na rozwiązanie obwodu. Program WSLM zawiera następujące modele elementów występujących w elektrycznych obwodach pomiarowych: rezystor, kondensator, cewka indukcyjna (modele idealne), impedancja RLC, potencjometr, bateria (zasilanie stałoprądowe), źródło napięcia sinusoidalnego, źródło napięcia sinusoidalnego trójfazowego, wyłącznik, przełącznik, odbiornik trójfazowy połączony w trójkąt, odbiornik trójfazowy połączony w gwiazdę, amperomierz, woltomierz analogowy, woltomierz cyfrowy, watomierz i oscyloskop. Wszystkie modele obiektów i generatorów mają charakter idealny. Podobnie modele przyrządów pomiarowych zbudowane są na zasadzie : model idealny pomiaru plus błąd wynikający przypisanej przyrządowi dokładności. Model: Woltomierz analogowy - symbol w programie: Macierz incydencji: 1 R u zacisk krawędzie incydencji a A a = 1 1 1 a gdzie: R u rezystancja wewnętrzna ustroju woltomierza.

Wirtualne stanowiska w Laboratorium Podstaw Metrologii 369 Woltomierz analogowy zamodelowany w programie dokonuje pomiaru wartości napięcia stałego (dla obwodów prądu stałego) i wartości skutecznej napięcia (dla obwodów napięcia zmiennego) między węzłami i 1. Wartość napięcia wyznaczana jest na podstawie następującej zależności: V = V +, () + V +... V 1 N gdzie: V k, k = 1,,, N, - wartość skuteczna napięcia, będąca różnicą potencjałów pomiędzy zaciskami i 1, dla kolejnych częstotliwości źródeł zdefiniowanych w obwodzie. Funkcja przetwarzania wyniku dla woltomierza analogowego przedstawia się następująco: VV = V + rand( V), (3) gdzie: VV wartość wskazywana przez woltomierz, V maksymalny błąd pomiaru woltomierza (wartość bezwzględna), V = ( Klasa miernika Zakres pomiarowy ) / 100, rand ( V) generator losujący liczby z zakresu ± V. Użytkownik modelu musi określić klasę, zakres pomiarowy i rezystancję woltomierza. W podobny sposób zbudowany jest model amperomierza analogowego. W programie WSLM występuje także idealny model woltomierza cyfrowego. Model ten ma dostępne tryby pomiaru wartości stałej napięcia, zmiennej a także zmiennej ze składową stałą. Funkcja przetwarzania wyniku dla tego woltomierza we wszystkich trybach przedstawia się następująco: VV = V + rand( V), (4) gdzie: VV wartość wskazywana przez woltomierz, V wartość napięcia między węzłami i 1 (zależna od trybu pracy), V maksymalny błąd pomiaru miernikiem, V = (a ZP + b WM)/100, a procentowy błąd względem zakresu, ZP zakres pomiarowy, b procentowy błąd względem wielkości mierzonej, WM wartość wielkości mierzonej, rand ( V) generator losujący liczby z zakresu ± V. 4. PRZYKŁADOWE UKŁADY POMIAROWE ZREALIZOWANE W SYSTEMIE WSLM Wykorzystując oprogramowanie WSLM wykonano wirtualne stanowiska do kilku wybranych ćwiczeń laboratoryjnych występujących w Laboratorium Metrologii AGH. W niniejszej pracy zostaną przedstawione dwa przykłady.

370 4.1. Wirtualne stanowisko dla ćwiczenia nr 1 Pomiary impedancji II metody techniczne: Pomiar parametrów R i L cewki metodą trzech woltomierzy W programie WSLM zbudowano schemat obwodu pomiarowego (Rys. ) zgodny ze schematem pomiarowym realizowanym w Laboratorium Metrologii. Rys.. Schemat układu do pomiaru impedancji metodą trzech woltomierzy wykonany w programie WSLM Następnie ustalono parametry elementów obwodu: Rys. 3. Parametry generatora zmiennoprądowego, woltomierzy analogowych, rezystora wzorcowego oraz mierzonej cewki Wzory do obliczenia wartości wielkości mierzonych są następujące: U 1 = I R W, U = I Z, Z = (U /U 1 ) R W, U 3 U1 U cosϕ =, U U 1 (5) U U U R 3 W R = cosϕ = Z cosϕ = 1 I U 1 U, 1 X = Z R, X L = L π f.

Wirtualne stanowiska w Laboratorium Podstaw Metrologii 371 Przeprowadzając symulację działania obwodu, otrzymano następujące wyniki: Rys. 4. Wskazania woltomierzy V 1, V, V 3 Na podstawie uzyskanych na etapie symulacji wyników pomiaru napięć obliczono, zgodnie z przedstawionymi wyżej (5) zależnościami, parametry badanej cewki i porównano, w tabeli 1, z wartościami założonymi. Parametry mierzonej cewki Rzeczywiste R = 57 Ω L = 330 mh Wyznaczone R = 60,60 Ω L = 31 mh 4.. Wirtualne stanowisko dla ćwiczenia nr 7 Zastosowania pomiarowe oscyloskopu pomiary czasu, częstotliwości, fazy i obserwacja charakterystyk: Pomiar częstotliwości metodą porównawczą krzywych Lissajous Tabela 1 W metodzie tej zwanej metodą pośrednią, wykorzystuje się fakt, że jednoczesne wysterowanie toru Y i X oscyloskopu dwoma różnymi sygnałami sinusoidalnymi f y i f x powoduje powstanie na ekranie krzywych zwanych figurami Lissajous. Kształt krzywych zależy od stosunku częstotliwości sygnałów doprowadzonych do obu wejść oscyloskopu oraz od przesunięcia między nimi. Stosunek obu częstotliwości wyznacza się na podstawie liczby przecięć figury z liniami: N x linią poziomą, N y linią pionową na podstawie zależności: f f N y x =. (6) x N y Zmieniając nastawy jednego z generatorów, student ma możliwość obserwacji na wirtualnym oscyloskopie różnych krzywych Lissajous i wyliczać wartość mierzonej częstotliwości. Rys. 5. Schemat układu, w programie WSLM, do pomiaru częstotliwości metodą krzywych Lissajous

37 Rys. 6. Figura Lissajous dla f x = 50 Hz, φ x = 0 ; f y = 100 Hz, φ y = 0. Obraz oscyloskopu w programie WSLM 5. ZAKOŃCZENIE Przeprowadzone testy wykazały konieczność niewielkich zmian i uzupełnień w programie WSLM. Było to przyczyną, że dotychczas nie wykonano wszystkich planowanych wirtualnych stanowisk Laboratorium Metrologii jako apletów Javy. Przeprowadzone testy wykazały natomiast, że można praktycznie w całości, jako wirtualne, wykonać dziewięć następujących ćwiczeń: Pomiary rezystancji metodami technicznymi i mostkowymi; Pomiary impedancji I - metody mostkowe; Pomiary impedancji II - metody techniczne; Pomiary prądów i napięć sinusoidalnych oraz odkształconych; Pomiary mocy czynnej i biernej w obwodach jednofazowych; Zastosowania pomiarowe oscyloskopu - pomiary okresu, częstotliwości, fazy i obserwacja charakterystyk statycznych; Pomiary mocy czynnej i biernej w obwodach trójfazowych; Badanie właściwości dynamicznych przetworników pomiarowych i korekcja dynamiczna; Sprawdzanie błędów amperomierzy i woltomierzy analogowych i cyfrowych. W najbliższym czasie planowana jest realizacja wirtualnej postaci tych ćwiczeń. LITERATURA 1. Leon O. Chua, Pen-Min Lin: Komputerowa Analiza Układów Elektronicznych algorytmy i metody obliczeniowe,wnt, Warszawa 1981. S. Bolkowski: Teoria obwodów elektrycznych, WNT, Warszawa 1998 3. A. Zatorski, A. Rozkrut: Miernictwo elektryczne. Materiały do ćwiczeń laboratoryjnych. Skrypt AGH nr 1190/1990, 1334/199, 1403/1994, 1585/1999, Wydawnictwo AGH 4. A. Zatorski: Metrologia elektryczna. Ćwiczenia laboratoryjne. skrypt nr 13, Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki AGH, Kraków 00 ABSTRACT The paper contains description of component models available in WSLM - system for creating virtual laboratory exercises, and some examples of virtual exercises - the threevoltage method for measuring impedance and frequency measurement using an oscilloscope.