Przegrody warstwowe z rdzeniami dźwiękochłonnymi z granulatów gumowych

Podobne dokumenty
PROGRAM WIELOLETNI pn. Poprawa bezpieczeństwa i warunków pracy II etap, okres realizacji: lata

ZASTOSOWANIE PŁYTY POLIETYLENOWEJ W DŹWIĘKOCHŁONNO-IZOLACYJNYCH PRZEGRODACH WARSTWOWYCH

WŁAŚCIWOŚCI DŹWIĘKOCHŁONNE I ZASTOSOWANIE GRANULATÓW GUMOWYCH

BADANIA IZOLACYJNOŚCI AKUSTYCZNEJ PRZEGRÓD DWUŚCIENNYCH Z RDZENIAMI DŹWIĘKOCHŁONNYMI Z MATERIAŁÓW ZIARNISTYCH

BADANIA WSPÓŁCZYNNIKA POCHŁANIANIA DŹWIĘKU MATERIAŁÓW ZIARNISTYCH INVESTIGATIONS OF SOUND ABSORPTION COEFFICIENT OF GRANULAR MATERIALS

MATERIAŁY ZIARNISTE W PRZEGRODACH WARSTWOWYCH ZABEZPIECZEŃ PRZECIWHAŁASOWYCH GRANULAR MATERIALS IN LAMINAR PARTITIONS OF NOISE PROTECTION SYSTEMS

KATALOG NOWYCH MATERIAŁÓW DŹWIĘKOCHŁONNYCH PRZYDATNYCH W PROJEKTOWANIU ZABEZPIECZEŃ WIBROAKUSTYCZNYCH

BADANIA WSPÓŁCZYNNIKA POCHŁANIANIA DŹWIĘKU MATERIAŁÓW KOMPOZYTOWYCH INVESTIGATIONS OF THE SOUND ABSORPTION COEFFICIENT OF COMPOSITE MATERIALS

Zintegrowane obudowy dźwiękochłonnoizolacyjne

WŁASNOŚCI DŹWIĘKOCHŁONNE STRUKTUR WARSTWOWYCH Z MATERIAŁEM TYPU PLASTER MIODU

WZORU UŻYTKOWEGO PL Y1. TILIA SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Łódź, PL BUP 05/ WUP 11/12

JAK POPRAWIĆ IZOLACJĘ AKUSTYCZNĄ W BUDYNKACH PRZEMYSŁOWYCH?

IZOLACJA HAL STALOWYCH

ANALIZA I WYKORZYSTANIE DŹWIĘKOCHŁONNYCH WŁAŚCIWOŚCI GRANULATU GUMOWEGO POZYSKANEGO Z RECYKLINGU

Sposób określania tłumienia dźwięków uderzeniowych przez pokrycia podłogowe, zwłaszcza wykładziny elastyczne i stanowisko do realizacji tego sposobu

PolTherma TS PIR I. CHARAKTERYSTYKA OGÓLNA II. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. b. Cechy charakterystyczne. a.

PolTherma DS I. CHARAKTERYSTYKA OGÓLNA I. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. a. Cechy charakterystyczne. a.

DOŚWIADCZALNE WYZNACZENIE WSPÓŁCZYNNIKA POCHŁANIANIA DŹWIĘKU MATERIAŁÓW WŁÓKNISTYCH i WIÓROWYCH BĘDĄCYCH ODPADAMI PRODUKCYJNYMI

Instytut Techniki Budowlanej

Określenie właściwości paneli akustycznych ekranów drogowych produkcji S. i A. Pietrucha Sp z o. o.

PolTherma PS I. CHARAKTERYSTYKA OGÓLNA I. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. a. Cechy charakterystyczne. a.

WYKORZYSTANIE GRANULATU GUMOWEGO W MIESZANKACH MINERALNO-ASFALTOWYCH

DOSTĘPNE DŁUGOŚCI [mm]: minimalna: standardowo 2800 ( dla TS 40 i TS 50 ), 2300 ( dla TS 60 ) 2100 dla pozostałych grubości

CIPREMONT. Izolacja drgań i dźwięków materiałowych w konstrukcjach budowlanych oraz konstrukcjach wsporczych maszyn dla naprężeń do 4 N/mm 2

OPIS PRODUKTU ZASTOSOWANIE SPOSÓB MONTAŻU DOSTĘPNOŚĆ ZGODNOŚĆ. TRANSPORT i PRZECHOWYWANIE ALFA FR BOARD A TDS EW

PolTherma TS EI 30 I. CHARAKTERYSTYKA OGÓLNA I. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. b. Cechy charakterystyczne. a.

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1241

Ściany wykonane w systemie

AKUSTYKA W LEKKIEJ OBUDOWIE HAL. Marek Niemas

Studia wizyjnofoniczne

Dylatacje. Podręcznik A3. Ogniochronne zabezpieczenie szczelin dylatacyjnych

S E M I N A R I U M nt.

GIPS. Okładziny ścienne

Nasyp budowlany i makroniwelacja.

ANALIZA AKUSTYCZNA SALI AUDYTORYJNEJ

Sposoby oceny dźwiękochłonności materiałów izolacyjnych

ORZEŁ SPÓŁKA AKCYJNA

Studia wizyjnofoniczne

METODY OBLICZANIA IZOLACYJNOŚCI AKUSTYCZNEJ STRUKTUR WIELOWARSTWOWYCH THE TRANSMISSION LOSS CALCULATION METHOD OF MULTILAYER STRUCTURES

JAKIE PŁYTY WARSTWOWE WYBRAĆ?

OPIS PRODUKTU ZASTOSOWANIE ZGODNOŚĆ SPOSÓB MONTAŻU. PRZECHOWYWANIE i UTYLIZACJA

Jednostkowe tłumienie dźwięku (na odcinku 1m przewodu): a d. db m. Tłumienie dźwięku na odcinku przewodu o długości L:

SPRAWOZDANIE Z BADAŃ Nr GLA-1130/13

PORADNIK PROJEKTANTA. ROZDZIAŁ V - Izolacja akustyczna

OPIS PRODUKTU -- ZASTOSOWANIE SPOSÓB MONTAŻU. Dostępne średnice: 32mm 355mm Klasa odporności ogniowej: EI EI 240

Izolacje hałasu uderzeniowego EKM Piankowy Polietylen Akustyczny EPS Wełna mineralna

PCA Zakres akredytacji Nr AB 023

ThermaStyle PRO I. CHARAKTERYSTYKA OGÓLNA II. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. b. Cechy charakterystyczne. a.

BADANIE MMA Z DODATKIEM GRANULATU GUMOWEGO. Wykonali: Tomasz Kurc Waldemar Gancarz

'!;: ;i;v;h ;; :;i::: ; i., -,

PŁYTY WARSTWOWE STYL. JAKOŚĆ. FUNKCJA. Dachowe. Ścienne

INSTRUKCJA MONTAŻU. Ostatnia aktualizacja: STRONA 1/5

Nawiewniki szczelinowe

Tłumiki akustyczne prostokątne typ DKP ZASTOSOWANIE OPIS URZĄDZENIA

BADANIA SYMULACYJNE ROZKŁADU CIŚNIENIA AKUSTYCZNEGO W OBIEKTACH O RÓŻNEJ SKALI

Płyty ścienne wielkoformatowe

Nawiewniki wyporowe do wentylacji kuchni

OPIS PRODUKTU ZASTOSOWANIE ZGODNOŚĆ DOSTĘPNOŚĆ. TRANSPORT i PRZECHOWYWANIE INTU FR WRAP L TDS 1

CP.P PODWIESZANE CENTRALE KLIMATYZACYJNE

(13) B1 PL B1 (54) POLSKA. U rząd P atentow y (22) Data zgłoszenia: B32B 21/08 Rzeczypospolitej Polskiej. (73) Uprawniony z patentu:

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

Spis treści. Wstęp 13. Część I. UKŁADY REDUKCJI DRGAŃ Wykaz oznaczeń 18. Literatura Wprowadzenie do części I 22

ThermaBitum FR / Sopratherm B FR I. CHARAKTERYSTYKA OGÓLNA I. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. b. Cechy charakterystyczne

Blacha trapezowa RBT-85

PRUSZYŃSKI Spółka z o.o. Al. Jerozolimskie Warszawa

AKADEMIA GÓRNICZO - HUTNICZA im. Stanisława Staszica w Krakowie

OPIS PRODUKTU ZASTOSOWANIE ZGODNOŚĆ DOSTĘPNOŚĆ. TRANSPORT i PRZECHOWYWANIE. INTU FR WRAP L TDS PK 1.18 Strona 1 z 6

PL B1. Sposób kątowego wyciskania liniowych wyrobów z materiału plastycznego, zwłaszcza metalu

NOVATOP ACOUSTIC Dokumentacja techniczna.

BRUCHAPaneel. Ogniotrwała Ściana WP-F ŁĄCZENIE WIDOCZNE

ORZEŁ S.A. prowadzi działalność na rynku recyklingu opon od 2002 roku. Aktywność ta dotyczy takich obszarów jak:

STYL. JAKOŚĆ. FUNKCJA. PŁYTY WARSTWOWE. Dachowe Ścienne. Wydanie 1/2017.

PolTherma CS I. CHARAKTERYSTYKA OGÓLNA II. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. b. Cechy charakterystyczne. a.

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych

Badania wodoszczelności i przepuszczalności powietrza przez połączenia płyt warstwowych produkowanych przez firmę IZOPANEL

Centralny Ośrodek Chłodnictwa COCH w Krakowie Sp. z o.o Kraków. ul. Juliusza Lea 116. Laboratorium Urządzeń Chłodniczych

Dobór materiałów konstrukcyjnych cz. 4

SPIS TREŚCI. Przedmowa WSTĘP 13

System dwukomponentowy Komponent A Komponent B Stan skupienia Barwa Zapach Lepkość w 25 C [mpas] Gęstość w 20 C [g/cm 3 ]

STANOWISKO DO BADAŃ WŁAŚCIWOŚCI DŹWIĘKOIZOLACYJNYCH PRZEGRÓD O MAŁYCH WYMIARACH THE STAND FOR SOUND INSULATING PROPERTIES OF SMALL SIZE PARTITIONS

Dobór materiałów konstrukcyjnych cz. 15

Temat: Ekran akustyczny z powierzchnią dyfuzyjną

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 818

OPIS PRODUKTU ZASTOSOWANIE ZGODNOŚĆ DOSTĘPNOŚĆ. TRANSPORT i PRZECHOWYWANIE INTU FR WRAP L TDS 1

MAŁOPOLSKA OKRĘGOWA IZBA ARCHITEKTÓW OKRĘGOWY SĄD DYSCYPLINARNY D E C Y Z J A. Okręgowy Sąd Dyscyplinarny Małopolskiej Okręgowej Izby Architektów

(12) OPIS PATENTOWY (19) PL

4. Izolacja akustyczna wełną mineralną ISOVER

raport badań akustycznych

Technologia Materiałów Drogowych ćwiczenia laboratoryjne

Tropic db 35 jest sklasyfikowany w najwyższej - najbezpieczniejszej klasie reakcji na ogień - Euroklasa A1.

Charakterystyka izolacji stosowanych w technice chłodniczej i klimatyzacyjnej

Dylatacje. Dylatacje Ogniochronne zabezpieczenie szczelin dylatacyjnych

Ogniochronne obudowy drewnianych konstrukcji Nośnych

Akustyka przegród budowlanych z izolacją cieplną PAROC

Tropic db 35 jest sklasyfikowany w najwyższej - najbezpieczniejszej klasie reakcji na ogień - Euroklasa A1.

Szybka i tania budowa domu

LEKKIE PRZEGRODY BUDOWLANE. Piotr Olgierd Korycki

OPIS PRODUKTU ZASTOSOWANIE ZGODNOŚĆ DOSTĘPNOŚĆ. TRANSPORT i PRZECHOWYWANIE INTU FR WRAP L TDS 1

NORMALIZACJA W ZAKRESIE AKUSTYKI BUDOWLANEJ - POSTĘP WE WDRAŻANIU NORM EN ISO JAKO NORM KRAJOWYCH

Transkrypt:

Przegrody warstwowe z rdzeniami dźwiękochłonnymi z granulatów gumowych Jan Sikora, Jadwiga Turkiewicz W artykule przedstawiono wyniki badań izolacyjności akustycznej prototypów przegród warstwowych (przegrody dwuścienne), w których granulaty gumowe stanowią rdzeń dźwiękochłonny. Granulaty gumowe uzyskane w wyniku recyklingu odpadów produkcyjnych i zużytych wyrobów zawierających przekładki bawełniane charakteryzują się dobrymi własnościami dźwiękochłonnymi. Badania izolacyjności akustycznej przegród warstwowych z blachy stalowej i płyty gumowej z zastosowanymi granulatami wykazały ich przydatność stosowania jako elementów ściennych zabezpieczeń wibroakustycznych, szczególnie takich jak zintegrowane obudowy dźwiękochłonno-izolacyjne. Zaprezentowane wyniki związane są z realizowanym przez autorów projektem rozwojowym poświęconym opracowaniu nowych rozwiązań materiałowych przegród warstwowych przydatnych w projektowaniu zabezpieczeń wibroakustycznych. W Katedrze Mechaniki i Wibroakustyki realizowany jest projekt badawczo-rozwojowy, którego celem jest opracowanie zestawu zmodyfikowanych przegród warstwowych (pojedynczych i dwuściennych), z różnych tworzyw o odpowiednio dobranych parametrach mechanicznych i akustycznych, przydatnych w projektowaniu zabezpieczeń wibroakustycznych maszyn i urządzeń. Przyjęto, że nowe rozwiązania przegród warstwowych (o grubościach: minimalnej 3,5 mm, maksymalnej 22 mm), stanowiących elementy ścienne zabezpieczeń, będą zbudowane z różnych, nowych dotychczas nie stosowanych materiałów i tworzyw, charakteryzujących się dobrymi własnościami akustycznymi (dźwiękochłonnymi i dźwiękoizolacyjnymi). Założono także, aby w badaniach uwzględnić materiały uzyskiwane w wyniku recyklingu. Spośród wielu przetestowanych materiałów na uwagę zasługują wyniki badań granulatów wytworzonych z odpadów produkcyjnych wyrobów gumowych. Badania doświadczalne obejmowały ocenę własności dźwiękochłonnych granulatów gumowych, tkaninowo-gumowych i tkaninowych o grubościach warstwy: 0,, 30, 40 i 50 mm oraz ocenę izolacyjności akustycznej od dźwięków powietrznych wybranych konfiguracji przegród warstwowych (dwuściennych) z zastosowanymi granulatami. Poniżej przedstawiono wyniki oceny akustycznej trzech prototypowych przegród warstwowych z rdzeniami dźwiękochłonnymi z granulatu gumowego i granulatu tkaninowo-gumowego, a także wyniki badań własności dźwiękochłonnych tych granulatów. Zastosowania przegród warstwowych w rozwiązaniach ograniczających poziom hałasu maszyn i urządzeń Możliwości zastosowania przegród warstwowych w ograniczaniu nadmiernej hałaśliwości maszyn i urządzeń ilustrują trzy przedstawione poniżej zabezpieczenia przeciwhałasowe [2, 3, 5]. Na rys. 3 przedstawiono przykłady rozwiązań konstrukcyjnych prototypowych zabezpieczeń wibroakustycznych opracowanych w Katedrze Mechaniki i Wibroakustyki, w których ściankach zastosowano cienkie przegrody warstwowe. Rysunek prezentuje propozycję modyfikacji korpusu osłony wirnika wentylatora promieniowego pod kątem zwiększenia pochłaniania energii wibroakustycznej. Ściany osłony wirnika wykonane z blachy stalowej grubości 2 mm zastąpiono przegrodą dwuścienną z rdzeniem dźwiękochłonnym z gumy piankowej Armaflex grubości 25 mm. Natomiast przegrody dwuścienna składa się z dwóch ścianek: jednorodnej z blachy stalowej grubości 2 mm i niejednorodnej warstwowej grubości,3 mm (trzy blachy aluminiowe grubości 0,35 mm sklejone na całej po- Rys.. Obudowa wentylatora promieniowego o zwiększonym pochłanianiu energii wibroakustycznej 46 Tworzywa sztuczne w przemyśle. Nr 6/3

wierzchni). Po modyfikacji korpusu uzyskano obniżenie emisji hałasu o 8,5 db. Wykorzystanie w przegrodzie dwuściennej warstwy gumy litej oraz warstwy granulatu z tworzywa sztucznego przedstawiono na rys. 2 prezentującym zastosowane elementy obudowy zintegrowanej dla tokarki uniwersalnej. Jednym z rozwiązań jest zastąpienie oryginalnej osłony łańcuchów kinematycznych napędowych, osłoną o zwiększonej izolacyjności akustycznej. Po jej zastosowaniu osiągnięto obniżenie hałasu o 3 db. Zastosowanie warstw gumowych, pianki poliuretanowej oraz śrutu ołowianego w przegrodach pojedynczych i dwuściennych elementów prototypowej zintegrowanej obudowy minimalizującej hałas mechaniczny, uderzeniowy oraz urządzeń pomocniczych w prasie mechanicznej mimośrodowej zilustrowano na rys. 3. Po zastosowaniu zintegrowanej obudowy osiągnięto obniżenie hałasu w granicach od 8 do 0 db w zależności od trybu pracy prasy (skokowy, ciągły). Badania granulatów gumowych Otrzymane pozytywne wyniki badań dotyczące własności dźwiękochłonnych granulatów gumowych [2] zainspirowały badania akustyczne granulatów uzyskiwanych w wyniku recyklingu odpadów produkcyjnych taśm transporterowych we współpracy Katedry Mechaniki i Wibroakustyki z Fabryką Taśm Transporterowych Wolbrom w Wolbromiu [4]. W badaniach szczególną uwagę zwrócono na własności akustyczne granulatów gumowych nie oczyszczonych do końca z włókna bawełnianego, a także odzyskanego samego włókna z niewielkim zanieczyszczeniem drobnym ziarnem gumowym. Wstępne badania granulatów gumowych z zanieczyszczeniami włóknem bawełnianym wykazały, że charakterystyka pochłaniania dźwięku takich materiałów jest szerokopasmowa, zbliżona do charakterystyki wełny mineralnej, stanowiącej w pewnym sensie wzorzec szerokopasmowego materiału dźwiękochłonnego stosowanego w zabezpieczeniach wibroakustycznych. Granulaty gumowe powstają w wyniku rozdrobnienia odpadów gumowych: taśm transporterowych, bieżników opon, ochraniaczy, membran, uszczelek, wypływek itp. Mają postać ziaren o regularnych bądź nieregularnych kształtach i czarnej barwie. Materiały te o różnych frakcjach ziaren mają dobre własności dźwiękochłonne ze względu na strukturę warstwy, podobną do porowatej lub włóknistej, w której pochłanianie energii dźwiękowej odbywa się przez wnikanie jej w utworzone pory i kanaliki powietrzne. Proces rozdrobnienia odpadów produkcyjnych gumowych typu taśma transporterowa (pozostałości po obcinaniu obrzeży) pozwala na otrzymanie granulatu gumowego w trzech postaciach: granulatu gumowego (po oczyszczeniu z tkaniny bawełnianej), granulatu tkaninowo-gumowego (zanieczyszczonego włóknem bawełnianym) oraz tkaninowego (odseparowane włókno bawełniane od ziaren gumy poddane roztrzepaniu do postaci waty ). Fotografie 2 przedstawiają dwie z powyższych postaci granulatu, z wyznaczonymi charakterystykami pochłaniania dźwięku. Badania fizycznego współczynnika pochłaniania dźwięku αf (przy prostopadłym padaniu fali dźwiękowej na powierzchnię badanej próbki materiału) przeprowadzono dla pięciu grubości (0,, 30, 40 i 50 mm) każdej z trzech postaci granulatu gumowego. Do wykonania eksperymentu badawczego użyto rury impedancyjnej (Rury Kundta) [3] pozwalającej na określenie współczynnika pochłaniania dźwięku metodą wykorzystującą współczynnik fal stojących. Metoda ta jest bardzo przydatna do rozważań studialnych, a także do wstępnych badań umożliwiających określenie przydatności nowych materiałów (lub materiałów jeszcze niezbadanych) z punktu widzenia ich własności dźwiękochłonnych. Do wykonania badań akustycznych tą meto- Rys. 2. Zmodyfikowana osłona boczna łańcuchów kinematycznych napędowych tokarki Tworzywa Sztuczne w Przemyśle. Nr 6/3 Rys. 3. Przegrody warstwowe jako elementy ścienne zintegrowanej obudowy prasy mechanicznej mimośrodowej 47

Fot.. Granulat gumowy gęstość objętościowa: 458 kg/m 3, frakcja ziarna: 2x4 mm, kształt ziarna: płatki nieregularne, typ drobnoziarnisty Fot. 2. Granulat tkaninowo- -gumowy gęstość objętościowa: 340 kg/m 3, granulat gumowy zanieczyszczony kłaczkami z włókna bawełnianego, frakcja ziarna: 2x4 mm dą potrzebna jest niewielka ilość badanego materiału: 2 próbki (krążki) o średnicy 30 i 00 mm, co ma duże znaczenie z punktu widzenia ekonomicznego stosunkowo niewielki koszt wykonania próbki materiału do badania laboratoryjnego. Własności dźwiękochłonne granulatu gumowego w dwóch postaciach uzyskanych na drodze recyklingu zużytych taśm transporterowych zilustrowano w postaci wykreślnej. Testowane przegrody warstwowe Ze względu na konstrukcje przegród i ich zachowanie się w polu akustycznym, przegrody dźwiękochłonno-izolacyjne stosowane zarówno w budownictwie, jak i w wibroakustyce (elementy ścienne zabezpieczeń przeciwhałasowych) dzielą się na podstawowe rodzaje [3]: pojedyncze, proste (jednorodne, niejednorodne, wielowarstwowe) i wielokrotne, złożone (wykonane z przegród jednorodnych, niejednorodnych, wielowarstwowych o identycznej lub różnej strukturze ze szczelinami powietrznymi pomiędzy nimi). Najczęściej stosowanymi przegrodami warstwowymi w zabezpieczeniach przeciwhałasowych są przegrody pojedyncze i dwuścienne [, 3]. Przegroda pojedyncza w najprostszym rozwiązaniu składa się z płyty dźwiękoizolacyjnej oraz warstwy dźwiękochłonnej. Natomiast najprostsza przegroda dwuścienna (zwana podwójną) składa się z dwóch jednakowych płyt dźwiękoizolacyjnych z umieszczoną pomiędzy nimi warstwą dźwiękochłonną rdzeniem dźwiękochłonnym. Test przydatności (z punktu widzenia oczekiwanych parametrów izolacyjności akustycznej) zastosowania granulatów gumowych w przegrodach warstwowych przeprowadzono dla próbek przegród, których zestawienie zamieszczono w tabeli. Przegroda warstwowa I (rys. 6) składa się z dwóch płyt dźwiękoizolacyjnych z blachy stalowej grubości mm, pomiędzy którymi znajduje się rdzeń dźwiękochłonny z granulatu tkaninowo-gumowego o gęstości objętościowej 340 kg/m 3. Kształt ziarna gumowego: płatki nieregularne, frakcja ziarna: 2x4 mm, typ drobnoziarnisty. Granulat tego typu powstaje w jednej z faz recyklingu, kiedy to ziarno gumowe jest zanieczyszczone kłaczkami z włókna bawełnianego. Przegrodę I wykonano w dwóch wersjach grubości warstwy rdzenia dźwiękochłonnego (0 i mm). Budowa przegrody warstwowej II (rys. 7) jest identyczna jak przegrody I, z tym że rolę rdzenia dźwiękochłonnego pełni czysty granulat gumowy, bez zanieczyszczeń, o gęstości objętościowej 458 kg/m 3. Próbka przegrody wykonana także w dwóch wersjach grubości rdzenia dźwiękochłonnego (0 i mm). Przegroda warstwowa III (rys. 8) zbudowana jest z dwóch płyt dźwiękoizolacyjnych z gumy zwykłej grubości 3 mm, pomiędzy którymi znajduje się rdzeń dźwiękochłonny z granulatu tkaninowo-gumowego w postaci płyty o grubości 4 mm (ziarna gumowe sklejone z włóknem bawełnianym klejem poliuretanowym). Płyty gumowe połączone są z rdzeniem także tym samym klejem. Przegroda III jest wersją, w której granulat tkaninowo-gumowy ma postać elastycznej płyty. W przegrodach I i II granulat jest wsypywany do szczeliny pomiędzy płytami dźwiękoizolacyjnymi. Własności dźwiękoizolacyjne testowanych przegród warstwowych Wyniki badań izolacyjności akustycznej próbek przegród warstwowych I, II i III w postaci wykresów charakterystyk izolacyjności akustycznej w pasmach /3 oktawowych częstotliwości przedstawiono na rys. 9 (przegroda I), rys.0 (przegroda II) i rys. (przegroda III). W tabeli 2 zestawiono wyniki badań dla wszystkich przegród łącznie z podaniem dodatkowo jednoliczbowego wskaźnika izolacyjności od Rys. 4. Porównanie charakterystyk pochłaniania dźwięku pięciu grubości warstwy granulatu gumowego 48 Rys. 5. Porównanie charakterystyk pochłaniania dźwięku pięciu grubości warstwy granulatu tkaninowo-gumowego Tworzywa sztuczne w przemyśle. Nr 6/3

Tabela. Zestawienie testowanych próbek przegród warstwowych dwuściennych z rdzeniami dźwiękochłonnymi z granulatów gumowych Przegroda I I II II III Układ warstw materiałów Granulat tkaninowo-gumowy Granulat tkaninowo-gumowy Granulat gumowy Granulat gumowy Guma zwykła PZ Granulat tkaninowo gumowy Guma zwykła PZ Grubość warstwy materiału [mm] 0 0 3 4 3 Grubość przegrody [mm] 2 22 2 22 Masa m 2 warstwy materiału [kg] 8,0 6,0,0 22,0 3,6 2,8 3,6 Masa m 2 przegrody [kg] 23,7 3,7 26,7 37,7 Rys. 6. Schemat poprzeczny przekroju (rdzeń: granulat tkaninowo-gumowy) Rys. 7. Schemat poprzeczny przekroju przegrody warstwowej I przegrody warstwowej II rdzeń: granulat gumowy) Rys. 8. Schemat poprzeczny przekroju przegrody warstwowej III (rdzeń: granulat tkaninowo-gumowy w postaci elastycznej płyty) Rys. 9. Porównanie charakterystyk izolacyjności akustycznej przegrody warstwowej I: blacha stalowa o gr. mm granulat tkaninowo-gumowy (gr.: 0 i mm) blacha stalowa o gr. mm Rys. 0. Porównanie charakterystyk izolacyjności akustycznej przegrody warstwowej II: blacha stalowa o gr. mm granulat gumowy (gr.: 0 i mm) blacha stalowa o gr. mm dźwięków powietrznych R w wyznaczonego w odniesieniu do poszczególnych przegród. Rysunek 2 ilustruje zestawienie porównawcze charakterystyk izolacyjności akustycznej przegród I i II (z rdzeniem dźwiękochłonnym o grubości mm) z przegrodą III. Tworzywa Sztuczne w Przemyśle. Nr 6/3 Wnioski z badań Analizując przedstawione powyżej wyniki badań izolacyjności akustycznej wybranych przegród dwuściennych z rdzeniami dźwiękochłonnymi z granulatów gumowych, można wyciągnąć następujące zasadnicze wnioski: 49

Rys.. Charakterystyka izolacyjności akustycznej przegrody warstwowej III: guma zwykła o gr. 3 mm granulat tkaninowo-gumowy o gr 4 mm guma zwykła o gr. 3 mm Rys. 2. Porównanie charakterystyk izolacyjności akustycznej przegród warstwowych I II: Przegroda I: blacha stalowa ( mm) granulat tkaninowo- -gumowy ( mm) blacha stalowa ( mm) Przegroda II: blacha stalowa ( mm) granulat gumowy ( mm) blacha stalowa ( mm) Przegroda III: guma zwykła (3 mm) granulat tkaninowo- -gumowy klejony (4 mm) guma zwykła (3 mm). Charakterystyki pochłaniania dźwięku granulatu tkaninowo-gumowego pozwalają na zaliczenie go do materiałów dźwiękochłonnych szerokopasmowych (rys.5). Charakterystyka pochłaniania dźwięku tego materiału jest zbliżona do charakterystyk wełny mineralnej. Wzrost grubości warstwy powoduje wzrost średniej wartości współczynnika pochłaniania. 2. Czysty granulat gumowy charakteryzuje się, podobnie jak granulaty z innych tworzyw naturalnych i sztucznych, wąskopasmową charakterystyką pochłaniania dźwięku (rys. 4). Stąd też nie występuje wzrost średniej wartości współczynnika pochłaniania, natomiast wraz z grubością warstwy częstotliwość Tabela 2. Zestawienie zbiorcze wartości izolacyjności akustycznej zbadanych przegród warstwowych Przegroda I: blacha stalowa ( mm) granulat tkaninowo-gumowy blacha stalowa ( mm) Przegroda II: blacha stalowa ( mm) granulat gumowy blacha stalowa ( mm) Przegroda III: guma zwykła (3 mm) granulat tkaninowo-gumowy (klejony) guma zwykła (3 mm) I II III Przegrody warstwowe Grubość warstwy rdzenia dźwiękochłonnego [mm] 0 0 4 Izolacyjność akustyczna właściwa R [db] Częstotliwość f [Hz] 50 6,2 6,2 7,0 7,8 8,6 63,9 2,5,5 2,7 23,7 80,8 2,5 9,4, 8,8 00 23,4 22,6 22, 22,6 24,3 25,9 2,4 2,5,3 23,6 60 6,5 7,5 6,4 6,0 2, 0,9 2,2 22, 9, 24, 250 24,2,4 2,8 23,5 27, 35 29,9 30,0 23,6 27,5 29,8 400 33,9 34, 25,7 30,4 29,5 500 35,8 35,8 32,4 35,0 32,9 630 34, 35,0 34,7 35,6 34,2 800 34,5 36,4 36,3 36,9 35,8 000 35,6 38,5 38,5 39,5 38,4 250 36,8 40,8 40,8 4,2 40,4 600 38,4 43,7 43,6 43,5 42,0 00 39,6 45,5 45,2 45,2 44,4 2500 39,7 45,9 46,0 46, 45,5 350 42,2 46,5 46,2 47,0 46,6 4000 44,9 47, 46,9 47,6 48,5 5000 46,5 48,5 49,0 49,5 50,3 R w [db] 35 36 34 35 37 50 Tworzywa sztuczne w przemyśle. Nr 6/3

rezonansowa (w której występuje największe pochłanianie dźwięku) przesuwa się od częstotliwości wysokich do częstotliwości średnich. 3. Wszystkie zbadane przegrody charakteryzują się bardzo dobrymi własnościami dźwiękoizolacyjnymi. Wartości jednoliczbowego wskaźnika izolacyjności akustyczne R w wynoszą od 34 db do 37 db (tab.2). 4. Zwiększenie grubości rdzenia dźwiękochłonnego (z 0 mm na mm) w przegrodach I i II powoduje nieznaczny przyrost izolacyjności akustycznej R w zakresie określonych częstotliwości. W przypadku przegrody I w zakresie częstotliwości powyżej 800 Hz (rys.9), w przypadku przegrody II w zakresie częstotliwości od 250 Hz do 630 Hz (rys. 0).Wskaźnik jednoliczbowy R w wzrasta z 35 do 36 db dla przegrody I oraz z 34 do 35 db dla przegrody II (tab. 2 ). 5. Przegroda III charakteryzuje się najkorzystniejszym wskaźnikiem R w = 37 db. Porównanie jej charakterystyki izolacyjności akustycznej R z charakterystykami przegród I i II z rdzeniami dźwiękochłonnymi o grubości mm wykazuje zwiększoną izolacyjność przegrody III w zakresie niskich częstotliwości od 00 Hz do 35 Hz (rys. 2). W pozostałych zakresach izolacyjność akustyczna jest porównywalna dla trzech próbek. Przedstawione powyżej możliwości zastosowania przegród warstwowych z rdzeniami dźwiękochłonnymi uzyskanymi w wyniku recyklingu wyrobów gumowych są oczywiście propozycją do praktycznego wykorzystania, ostateczne rozwiązania mogą być modyfikowane i uzupełniane innymi dodatkowymi warstwami dźwiękochłonnymi i dźwiękoizolacyjnymi, także innymi granulatami z odzysku o podobnej strukturze jak opisane w artykule. Literatura [] A. Kaczmarska, Z. Engel, J. Sikora: Dobór warstwowych zabezpieczeń przeciwhałasowych wytyczne dla projektantów, Bezpieczeństwo Pracy, nr 6/05, s. 0-3. [2] J. Sikora: Materiały ziarniste w zabezpieczeniach przeciwhałasowych. Materiały Budowlane: technologie, rynek, wykonawstwo, Nr 8/0, Miesięcznik techniczno-ekonomiczny, Warszawa 0, str. 5-7 i 36. [3] J. Sikora: Warstwy gumowe w rozwiązaniach zabezpieczeń wibroakustycznych, Wydawnictwa AGH, Kraków. [4] J. Sikora, J. Turkiewicz: Właściwości dźwiękochłonne i zastosowanie granulatów gumowych, Izolacje, nr /2, s. 54-58. [5] Sikora: Przegrody warstwowe w rozwiązaniach ograniczających hałas maszyn I urządzeń. Bezpieczeństwo Pracy: nauka i praktyka, 2, nr 8, str. 26-3. R E K L A M A Artykuł opracowano w ramach realizacji projektu rozwojowego nr II.B.2 (-3) pt.: Nowe rozwiązania materiałowe przegród warstwowych w projektowaniu zabezpieczeń wibroakustycznych maszyn i urządzeń, stanowiącego jedno z zadań programu wieloletniego Poprawa bezpieczeństwa i warunków pracy koordynowanego przez CIOP - PIB w Warszawie dr inż. Jan Sikora dr inż. Jadwiga Turkiewicz AGH Akademia Górniczo-Hutnicza w Krakowie Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki al. A. Mickiewicza 30, 30-059 Kraków Tworzywa Sztuczne w Przemyśle. Nr 6/3 5